从成矿和变形时代的不耦合现象 探讨康古尔金矿的成因

陈 文^{1,2}) 韩春明³) 张 彦¹) 刘新宇¹) P6 A

(1)中国地质科学院地质研究所,北京,100037;2)中国科学院地质与地球物理研究所,北京,100029;3)中国科学院高能物理研究所,北京,100039)

摘 要 位于塔里木盆地北缘的康古尔金矿出露于秋格明塔什-黄山巨型韧性剪切带中部,长期以来被当作剪切带型金矿加 以研究。通过初步的同位素年代学研究却发现了成矿和变形时代的不耦合现象:康古尔金矿成矿时代在 290 Ma 左右,而秋 格明塔什-黄山韧性剪切带剪切变形时代在 225~236 Ma。如果认定康古尔金矿成矿作用发生在海西期,则发生于印支中·晚 期的韧性剪切变形作用不仅不是康古尔金矿成矿作用的主因,而且对金矿的改造作用也是有限的。因此,康古尔金矿不能被 称为剪切带型金矿。

关键词 成矿时代 变形时代 韧性剪切带 康古尔金矿 成因

Study on the Genesis of Kanggur Gold Deposit Based on the Discordance of the Metallogenic Epoch and Deformation Time

CHEN Wen^{1,2)} HAN Chunming³⁾ Zhang Yan¹⁾ Liu Xinyu¹⁾

(1) Institute of Geology, CAGS, Beijing, 100037;2) Institute of Geology and geophysics, Chinese Academy of Science, Beijing, 100029;3) Institute of High-Energy Physics, CAS, Beijing, 100039)

Abstract The Kanggur gold deposit, located in the northern margin of Tarim plate, outcrops in the middle part of Quigemingtashi-Huangshan ductile shear zone, so it is, in the long time, considered to be the gold deposit of shear zone type. However, the preliminary study of isotope geochronology indicates that the metallogenic epoch is discordant with the deformation age. Metallogenic epoch of the Kanggur gold deposit is about 290 Ma while deformation age of the Quigemingtashi-Huangshan ductile shear zone is about $225 \sim 236$ Ma. If the metallization is considered to occur in Heicynian period, ductile shear deformation occurred in the middle-late Indo-Sinian period is not the key factor of Kanggur gold deposit metallization and it is also limited on the alteration of the gold deposit. Therefore, Kanggur gold deposit is not that of shear zone type.

Key words metallogenic epoch deformation time ductile shear zone Kuanggur gold deposit genesis

东天山造山带中韧性变形带十分发育。展布于 造山带中部的秋格明塔什-黄山巨型韧性剪切带被 认为是东天山晚古生代南北两大板块双向俯冲-碰 撞的产物,是造山带重要的组成部分,同时也是一条 重要的铜、镍、金等多金属成矿带(秦克章等,2002; Qin等,2001;张连昌等,2000;马瑞士等,1997)。康 古尔金矿床就位于秋格明塔什-黄山巨型韧性剪切 带中。自该矿床被发现以来,一直被当作剪切带型 金矿床加以研究。然而,通过在对剪切带和金矿床 进行初步的同位素年代学研究过程中,却发现了变 形时代和成矿时代不耦合的现象:成矿作用在前,时 代为华力西期;剪切变形在后,时代为印支期。这一 发现不仅对康古尔金矿床的韧性剪切带成因说提出 了质疑,也对重新认识东天山地区铜、镍、金等多金 属矿床的成因有重要意义。

1 区域地质背景及剪切带基本特征

1.1 区域地质背景

康古尔金矿床位于塔里木板块北部活动大陆边 缘阿齐山-雅满苏岛弧的北缘,北邻秋格明塔什-黄

本文由国家重点基础研究发展规划项目(编号:2001CB409807-2)及中国地质调查局地质调查项目(编号:200020190118-02)资助。 责任编辑:官月登。

第一作者:陈文,男,1962年生,研究员,从事同位素地质年代学研究。

山海沟系。区内出露地层主要为下石炭统阿齐山组 (C_ia)海相-海陆交互相夹有正常沉积碎屑岩的多旋 回喷发钙碱性岛弧火山岩、雅满苏组(C₁v)碳酸岩 盐及正常碎屑沉积建造及苦水组(C2ks)半深海-深 海相劈理化灰色或黑色杂砂岩,并分属不同构造单 元:阿齐山组和雅满苏组为阿齐山-雅满苏岛弧地层 小区;苦水组为秋格明塔什.黄山海沟地层小区。研 究区内单个褶皱明显,多为紧闭,褶皱轴向近 EW, 形成时代为中石炭世末期。区内断裂构造发育,组 合形态复杂。几条区域性断裂规模大且延伸稳定, 与区域构造线方向一致。其中康古尔大断裂东起镜 儿泉(向东仍有延伸),向西经黄山北9号断裂,在香 山之西被北东断裂(以往曾称其为康古尔断裂的东 段) 左行切错, 经延东铜矿南直达"舌状" 岩体, 被 NW 向断层向南错移 10 km,继续向西延伸,经康古 尔"滴状"岩体,延至秋格明塔什,经过石英滩金矿北 转为 NE 向展布,逐渐靠拢 NW 向阿齐克库都克大 断裂,在却勒塔格一带归并于该断裂。雅满苏大断 裂位于海沟苫水组杂砂岩与岛弧阿齐山组火山岩之 间,东起黄山地区双叉沟花岗岩体南侧,向东掩伏于 第四系之下,向西一直延至库姆塔格沙垒,经南北大 沟、维权之北延至康古尔塔格金矿田,并逐渐与康古 尔大断裂靠拢,在小热泉子南归并于阿齐克库都克 大断裂。断裂两侧地层构造特征截然不同。北侧定 向构造明显,小褶皱、线理及劈理发育,主要表现为 韧性变形;南侧为较大的开阔褶皱,定向构造少见。 该区岩浆岩较发育,华力西旋回和印支旋回侵入活

动均较强烈,岩石类型复杂,有辉长岩、辉绿岩、石英 闪长岩、斜长花岗岩、二长花岗岩等。以深成岩为 主,浅成岩次之。矿区内岩浆岩主要是华力西晚期 的中酸性浅成、超浅成侵入体,主要有石英斑岩和正 长斑岩,分布于阿齐山组之中。变质作用类型在该 区可分为区域变质作用(主要为埋深变质作用)、接 触变质作用(以热接触变质作用为主)和动力变质作 用(以韧性剪切变质作用为主)3种,根据变质程度 可分为葡萄石-绿纤石相、低绿片岩相和角岩相 3 类⁶。

1.2 秋格明塔什-黄山韧性剪切带基本特征

秋格明塔什-黄山巨型韧性剪切带位于吐哈盆 地与中天山降起之间,西起小热泉子,东到黄山以 东,略呈南突的弧形(图1)。

剪切带东西长 600 km,南北宽 20~40 km,由 于受岩体等局部边界条件制约,韧性剪切变形带呈 舒缓波状展布。变形带西端在小热泉子西南变窄, 呈 NW 向尖灭于中天山北缘阿齐克库都克大断裂; 变形带东端受阿尔金 NE 向左行压扭断裂切错北移 (土屋一带),并略向 NE 偏转。

韧性剪切变形带主要发育于南北火山岛弧之间 的海沟复理石干墩组(C₁g)浊积岩之中,两侧岛弧 火山岩带边缘亦被卷入变形,但波及范围有限,而且 变形相对较弱,因此,该带可横分3带,即中央强变 形带和南、北边缘弱变形带,强、弱带的界线大致位 于干墩组的南北边界线,即雅满苏大断裂和康古尔 大断裂,而两侧弱带的边界不很清楚,呈渐变消失状

图 1 秋格明塔什-黄山韧性剪切带分布及康古尔金矿位置图

J.-Kanggur tault; Q.-Yamansu tault; Q.-Aqike-Kuduke tault; 1. Autorequan cupper deposit; 2. Nanggur gold deposit; 9. Yamansu tault; Q.-Aqike-Kuduke tault; 1. Autorequan cupper deposit; 6. Tuwu cupper deposit;
3. Kanggur gold deposit; 9. Yamansu tault; Q.-Aqike-Kuduke tault; 1. Autorequan cupper deposit;
5. Yandong cupper deposit;
6. Tuwu cupper deposit;
7. Huangshan cupper and nickel deposit;
9. Yaziquan cupper deposit;

新疆地质矿产局第一地质大队,1993.1:5万康古尔幅区调报告。

态,根据土屋一带实际测量,弱带宽度可达 5~7 km 以上。秋格明塔什-黄山巨型韧性剪切变形带两侧 的弱韧性变形带是该带重要组成部分,以往未予足 够重视。近年发现,东天山的金属矿床大都不分布 于主带,而主要分布于两侧弱带之中(韩春明等, 2002)。

2 康古尔金矿床地质特征

康古尔金矿床产于下石炭统阿齐山组,原岩为 一套海相中酸性火山岩建造。主要岩性为安山岩、 酸性凝灰岩和中酸性火山角砾岩。经剪切作用,原 岩普遍发生劈理化和千糜岩化。矿带走向大致 NEE,倾向 NNW,宽 5~20 m。矿体明显受脆性断 裂控制,产状与断裂一致,顶底板为黄铁绢英岩。矿 石矿物成份中金属矿物以黄铁矿、磁铁矿为主,次要 矿物有黄铜矿、方铅矿、闪锌矿、赤铁矿和自然金等。 表生矿物有褐铁矿、孔雀石和铜兰等。非金属矿物 以绿泥石、石英为主,次要矿物有绢云母、方解石,有 时可见重晶石、菱铁矿。矿石以粒状结构为主,其次 有交代结构、压碎结构和填隙结构等。矿石中最常 见的构造为脉状构造和浸染状构造,而与金矿关系 最密切的则为角砾状构造。金矿石的自然类型可分 为浸染状含金黄铁绢英岩型、角砾状绿泥蚀变岩型、 含金石英脉型和混合型等4种。金的成矿阶段可划 分为黄铁绢英岩化阶段(I成矿阶段)、金-黄铁矿-磁 铁矿-绿泥石-石英阶段(Ⅱ成矿阶段)、金-黄铁矿-石 英脉阶段(III成矿阶段)、多金属硫化物-石英脉阶段 (Ⅳ成矿阶段)、贫硫化物碳酸岩石英脉阶段(Ⅴ成矿) 阶段)等5个成矿阶段(姬金生,1994)。

3 同位素测年结果和讨论

在进行精细的变形、成矿作用年代学研究之前, 采用 K-Ar 同位素稀释测年法对秋格明塔什-黄山韧 性剪切带和康古尔金矿床中相关岩石进行了年龄扫 面工作。

所用样品为全岩样品,分别采自矿井中的矿石、 围岩中的糜棱岩及弱变形细粒花岗岩。样品粉碎至 60~80 目,用磁铁吸走磁性金属矿物,在纯净水和 丙酮中用超声波清洗后烘干备用。样品的 K-Ar 同 位素稀释法测年工作是在国土资源部同位素地质重 点实验室进行的。用双真空电子轰击炉在↓400 ℃ 一次全熔样品,释放的气体经海绵钛炉纯化(800 ℃,30 min:800~400 ℃,20 min)、钛升化泵纯化 (40A 电流下 1 min)及 Zr-Al 吸气泵在室温下纯化。 所混入的稀释剂为重新分装的瑞士产³⁸Ar,其 ⁴⁰Ar/³⁸Ar为0.001456;³⁶Ar/³⁸Ar 为0.0004998。每 次放人系统的稀释剂量在1.2×10⁻¹² mol 左右。使 用 MM1200B 质谱计和法拉第杯测量 Ar 同位素峰 值,每个峰值测量8组数据,并对其进行时间零点校 正、质量歧视校正和系统空白校正。全系统中 m/e 为40空白值为(3~4.5)×10⁻¹⁵ mol。使用ZBH-25 标准样(黑云母)标定仪器,其标准年龄为132.7+ 1.2 Ma,K 含量 7.599%。本次分析多个标样的年 龄在 131.5~134.2 Ma之间,相对标准偏差小于 2.5%,以此估计本批样品 K-Ar 年龄测定的准确 度。所使用的⁴⁰K 衰变常数 λ 为 5.543×10⁻¹⁰ a; ⁴⁰K/K原子比值为 0.0001167。年龄误差以 2σ 给出。

共分析了5个金矿石样品,5个糜棱岩样品,1 个弱变形细粒花岗岩样品(表1)。

样品号	样品类型	K/%	样重/g	(⁴⁰ Ar/ ³⁸ Ar)m	(³⁸ Ar/ ³⁶ Ar)m	^{▶40} Ar/%	* ⁴⁰ Ar/ ⁴⁰ K/×10	$-2 t(\pm 2\sigma)/Ma$	
K0204	糜棱岩	1.06	0.02024	8.80498	258.2345	87.33	1.43550	231.5±3.6	
K0213	糜棱岩	0.85	0.01673	7.43053	121.8512	67.66	1.39722	22 5 .7±6.7	
K0214	糜棱岩	6.38	0.02005	49.0505	69.94231	91.66	2.64892	224.8 ± 3.5	
TS0204	糜棱岩	1.37	0.02061	11.9516	197.0387	87.66	1.46928	236.6±3.8	
TS0234	糜棱岩	1.92	0.01856	14.1096	188.3377	89.07	1.39099	224.8±3.7	
K0206	金矿石	1.39	0.01919	12.1281	254.9809	90.63	1.63430	261.4±4.4	
K0207	金矿石	0.85	0.01822	7.29455	260.1269	84.69	1.58040	253.3±6.4	
K0208	金矿石	0.55	0.01934	6.40563	187.5020	75.70	1.80342	286.4±7.4	
K0210	金矿石	0.35	0.01942	5.10817	148.5787	61.43	1.68126	290.1±5.8	
K0307	金矿石	2.06	0.01752	18.0733	95.95171	83.20	1.65151	263.9 ± 5.0	
TS0238	弱变形细粒花岗岩	0.25	0.02018	4.27532	140.7012	51.28	1.71329	273.1±5.9	

表 1 康古尔金矿区相关岩石样品 K-Ar 测年结果 Table 1 K-Ar data for whole rocks from Kanggur gold deposit and mylonite

注:**0Ar指放射成因*0Ar;m-表示质谱测定的混合比值。

5个矿石样品均采自康古尔金矿 珊号脉的矿井 中的不同部位。全岩样品 K-Ar 年龄很分散,从 290.1~253.3 Ma,时间跨度高达40 Ma。其中 290.1~286.4 Ma 这一组全岩 K-Ar 年龄值稍低于 阿齐山组流纹岩 299±16 Ma 的锆石 U-Pb 年龄(李 华芹等,1998),但和阿齐山组蚀变安山岩 290 ± 5 Ma的全岩 Rb-Sr 等时线年龄、正长斑岩 282 ± 16 Ma的全岩 Rb-Sr 等时线年龄、金属矿物 290.4 ± 7.2 Ma 的 Sm-Nd 等时线年龄、石英流体包裹体 282.3 ± 5 Ma 的 Rb-Sr 等时线年龄等非常接近, 倾 向于把 290.1~286.4 Ma 的年龄值解释为金成矿 的时代。这种解释和张连昌等(1998,2000)关于康 古尔金矿成矿时代为 282~290 Ma,李华芹等 (1998)认为最早一期成矿事件的时代为 295~280 Ma的结论相一致。另一组年龄范围在 263.3~ 253.3 Ma之间,它们和前人所测得的多金属硫化物 石英脉中石英流体包裹体 258 ± 2 Ma 的 Rb-Sr 等时 线年龄及碳酸岩-石英脉中石英流体包裹体 254 ± 7 Ma的 Rb-Sr 等时线年龄(李华芹等,1998)在误差范 围内也很好地吻合。李华芹等人将这一组年龄解释 为康古尔金矿最后一期成矿作用的年龄。另一种解 释:金矿床受到了后期剪切变形作用的影响,在动力 和流体的双重作用下, Rb-Sr 和 K-Ar 同位素体系开 放,但没有完全重置,因此 260~250 Ma 的 Rb-Sr 和 K-Ar 年龄很可能是没有地质意义的中间年龄。这 和下述弱变形细粒花岗岩的情况类似。

5 个糜棱岩样品分别采自康古尔金矿的围岩 中。其中变形稍弱的 2 个样品(TS0204、K0204)给 出了 236.6±3.8 Ma 和 231.5±3.6 Ma 的年龄值, 另外 3 个强变形的样品分别给出了 224.8±3.5 Ma、225.7±6.7 Ma 和 224.8±3.7 Ma 的几乎一致 的年龄值。此前的研究结果证明,秋格明塔什-黄山 韧性剪切带中岩石动力变质变形温度为 300~500 ℃(韩春明,2002),而全岩 K-Ar 同位素体系封闭温 度为 300±50 ℃,因此,225 Ma 左右的 K-Ar 年龄是 剪切变形作用从 500 ℃的温度峰值冷却到 300 ℃时 的年龄最小估计值。糜棱岩样品的上述测年结果表 明,秋格明塔什-黄山韧性剪切带剪切变形作用发生 的时代在印支运动中-晚期(至少在康古尔金矿及其 周边地区是如此),比金成矿作用的时代晚 60~40 Ma。

康古尔金矿现在位于剪切变形带中,这是客观 存在的事实,长期以来,也一直被当作剪切带型金矿 加以研究。但金成矿作用时代大于剪切作用时代 60~40 Ma 的事实表明,金成矿在前,剪切作用在 后。显然,发生于印支运动中-晚期的韧性剪切作用 并不是康占尔金矿成矿作用的主因。那么,剪切变 形作用是否对金矿床产生了强烈的改造作用?回答 也是否定的。

由于金矿床位于剪切变形带中,不可否认剪切 变形作用对金矿床产生了改造。但这种改造作用是 很有限的,强度不大。本次分析的金矿石样品第一 组 K-Ar 年龄值 290.1~286.4 Ma,说明这些样品在 受到剪切变形作用后仍然保持 Ar 同位素体系的封 闭,没有放射成因 Ar 丢失。第二组矿石样品 K-Ar 年龄值 263.9~253.3 Ma,说明这些样品的矿石全 岩 Ar 同位素体系受到了扰动,但这种扰动未导致 全岩 Ar 同位素体系重置(否则其 K-Ar 年龄应该在 225 Ma 左右)。两组年龄结果都表明,在金矿床所 在位置,剪切作用发生时的温度不超过300℃(全岩 Ar 同位素体系封闭温度)。这与金矿床处于剪切带 边缘变形弱带位置的地质事实相符。岩组分析显 示:秋格明塔什-黄山韧性剪切带中央强带和两侧边 缘弱带的岩组图类型有较大差别;中央带(强变形 带)矿物定向以柱面滑移系或棱面滑移系为主,反映 变形的中高温低应变速率条件,而南北两侧边缘弱 变形带(金矿床即位于南侧边缘弱变形带中)岩组图 多为底面滑移定向,反映变形的中低温高应变速率 条件(韩春明,2002)。

细粒花岗岩位于秋格明塔什-黄山韧性剪切带 北侧边缘弱变形带中,在构造位置上和康古尔金矿 互相对称。对该花岗岩样品(TS0238)进行全岩 K-Ar 稀释法定年,得到了 273±5.9 Ma 的年龄值。这 一年龄和李华芹等(1998)得到的 275±7 Ma 的锆 石 U-Pb 谐和线下交点年龄在误差范围内一致。因 此可以认定,该套侵入岩结晶定位的时间在 275~ 273 Ma。李华芹等(1998)还得到了 248±1 Ma 的 全岩-矿物 Rb-Sr 内部等时线年龄,这一年龄值位于 岩浆结晶年龄和强剪切变形年龄之间,表明岩体定 位后虽然受到弱剪切变形作用的影响,全岩-矿物 Rb-Sr 同位素体系开放,但很可能没有完全均一化。

从上述初步的同位素年代学研究结果可以看 出,秋格明塔什-黄山韧性剪切变形作用对中央强带 岩石造成了强烈影响,但对南、北两侧弱变形带内的 金矿床和侵入岩体影响极其有限。

4 初步结论

康古尔金矿成矿时代和秋格明塔什-黄山韧性

剪切带剪切变形时代强烈的不耦合现象似乎可得到 2种看法①如果仍然认为康古尔金矿是剪切带型金 矿,则其成矿时代就应该是 225 Ma或更晚;②如果 认为康古尔金矿成矿时代在 290 Ma 左右或至少大 于 250 Ma,就不能把康古尔金矿称为剪切带型金 矿。笔者目前倾向于第二个看法,并得出如下儿条 结论:

(1) 康古尔金矿成矿时代在 290 Ma 左右, 是海 西期成矿作用的产物。

(2)秋格明塔什-黄山韧性剪切带剪切变形时代 在 225~236 Ma。

(3)发生于印支运动中-晚期的韧性剪切变形作 用不仅不是康古尔金矿成矿作用的主因,而且对金 矿的改造作用也是有限的。因此,康古尔金矿不能 被称为剪切带型金矿。

需要指出的是,上述结论并非最后的定论。目前,更精细的年代学研究工作仍然在继续中。

致谢 李红兵高级工程师在矿区野外地质调查 期间曾给予帮助,王义天研究员、毛景文研究员帮助 争取研究经费,特表示衷心感谢!

参考文献

- 韩春明,毛景文,杨建民等. 2002. 新疆东天山制及其多金属矿床成 矿系列研究. 矿床地质、21(Sup.):125-127.
- 姬金生,陶洪祥,曾章仁等.1994.东天山康占尔塔格金矿带地质与 成矿.北京:地质出版社,1~204.
- 李华芹,谢才富,常海亮等.1998.新疆北部有色贵金属矿床成矿作 用年代学.北京;地质出版社,62~105.
- 马瑞士,新良树等,1997.东天山构造演化与金属成矿作用,北京: 地质出版社,1~202.
- 秦克章,孙枢,李继亮等. 2002. 新疆古生代矿床组合的六大构造阶 段划分及其意义. 矿床地质,21(Sup.):203~206.

- 张连昌, 姬金生, 杨兴科等, 1998. 马头滩韧性剪切带型金矿地质特 征及成因, 西安工程学院学报, 20(4); 16-19.
- 张连吕,姬金生,李华芹等,2000.东天山康古尔塔格金矿带两类成 矿流体地球化学特征及流体来源,岩石学报,16(4):536-541.

References

- Han Chunming, Mao Jingwen, Yang Jianming et al. 2002. Research on Metallogenic Series of Copper-polymetallic Deposits in East Tianshan Mountains. Mineral Deposits. 21 (Sup.): 125 ~ 127 (in Chinese with English abstract).
- Ji Jinsheng, Tao Hongxiang, Zeng Zhangren. 1994. Geology and mineralization of Kanggurtage gold matellogenic belt, East Tianshan. Beijing:Geological Publishing House, 1~204(in Chinese with English abstract).
- Li Huaqin, Xic Caifu, Chang Hailiang et al. 1998. Study on metallogenetic chronology of Nonferrous and Precious Metallic Ore Deposits in Northern Xinjiang, China. Beijing: Geological Publishing House. 62~105(in Chinese with English abstract).
- Ma Ruishi, Shu Liangshu et al. 1997. Tectonic evolution and metallogeny of Eastern Tianshan mountains. Beijing: Geological Publishing House, 1~202 (in Chinese with English abstract).
- Qin Kezhang, Wang S L, Sun Su. 2001. Paleozoic epithermal Au and porphyry Cu in north Xinjiang: features, epochs and tectonic settings. International Symposium on Gold and Hydrothermal Systems, Fukuoka, Japan, 11 ~ 18.
- Qin Kezhang, Sun Shu, Li Jiliang et al. 2002. Division of six tectonic stages of major metallic deposits in Northern Xinjiang and its implications. Mineral Deposits, 21 (Sup.): 203 ~ 206 (in Chinese with English abstract).
- Zhang Lianchang, Ji Jinsheng, Li Huaqin et al. 2000. The geochemical features and sources of two type ore – forming fluids in Kanggurtag gold ore belt, east Tianshan mountains. Acta Petrological Sinica, 16 (4):535~541(in Chinese with English Abstract).
- Zhang Lianchang, Ji Jinshen, Yang Xinke et al. 1998. The geological features and genesis of Matoutan ductile shear zone type gold deposit. Journal of Xi'an Engineering University, 20(4):16~19(in Chinese with English abstract).