www.cagsbulletin.com

中蒙边界地区铜区域地球化学分布及远景区预测

聂兰仕^{1,2)}, 刘汉粮^{1,2)*}, 李江鹏³⁾, 范 羽³⁾, 迟清华^{1,2)}, 刘东盛^{1,2)}, 周怡宁^{1,2)}, 王学求^{1,2)}

1)自然资源部地球化学探测重点实验室,中国地质科学院地球物理地球化学勘查研究所,河北廊坊 065000;
2)联合国教科文组织全球尺度地球化学国际研究中心,河北廊坊 065000;
3)中国冶金地质总局山东正元地质勘查院,山东济南 250014

摘 要:中蒙边界地区成矿地质条件优越,是世界上重要的金属成矿省和全球三大斑岩型铜(金、钼)成矿带之 一,资源潜力巨大。中蒙合作边界地区1:100万地球化学填图采集了海量的地球化学数据,为该地区研究元素 分散富集、成矿趋势、资源评价和环境变化提供基础数据。本文依托中蒙边界1:100万地球化学填图数据,探 讨铜在不同构造单元内的地球化学参数及区域地球化学异常特征。全区铜元素中位值和平均值分别是 20.1×10⁻⁶和21.6×10⁻⁶;东西准噶尔弧盆系、阿尔泰构造带、阿尔泰南缘弧盆系、戈壁阿尔泰弧盆系、准噶 尔地块、北山—戈壁天山弧盆系 6 个构造单元铜含量中位值和平均值均高于全区铜含量,是铜元素的富集构 造成矿带优势区;根据85%累积频率,圈定出91个铜地球化学异常区,其中34个铜地球化学异常达到地球化 学省规模,Oyu Tolgoi、Tsagaan Suvarga等大型铜矿均产在地球化学异常内,根据铜地球化学异常分布模式为 该区寻找铜等多金属矿床提供了重要选区。本项研究填补了中蒙边界地区铜元素地球化学分布的空白,同时 为两国边境地区铜等多金属矿床对比提供基础数据。

关键词:铜;区域地球化学分布;远景区预测;地球化学填图;中蒙边界地区中图分类号:P596;P632 文献标志码:A doi:10.3975/cagsb.2020.070901

Regional Geochemistry and Distribution of Anomalies Related to Potential Copper Mettallogic Areas in China–Mongolia Border Region

NIE Lan-shi^{1, 2)}, LIU Han-liang^{1, 2)*}, LI Jiang-peng³⁾, FAN Yu³⁾, CHI Qing-hua^{1, 2)}, LIU Dong-sheng^{1, 2)}, ZHOU Yi-ning^{1, 2)}, WANG Xue-qiu^{1, 2)}

 Key Laboratory of Geochemical Exploration, Ministry of Natural Resources, Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang, Hebei 065000;
UNESCO International Centre on Global-scale Geochemistry, Langfang, Hebei 065000;

3) Geological Exploration Institute of Shandong Zhengyuan, China Metallurgical Geology Bureau, Jinan, Shandong 250014

Abstract: China-Mongolia border region has excellent ore-forming geological conditions and is one of the world's important metal mineralization provinces and one of the world's three major porphyry copper (gold and molybdenum) metallogenic belts. China-Mongolian cooperative 1:1 000 000 geochemical mapping project collected a lot of geochemical data, providing basic data for the study of element dispersion and enrichment, mineralization trends, resource evaluation and environmental changes in this region. This paper discussed the geochemical parameters of copper in different tectonic belts and the regional geochemical anomalies based on 1:1 000 000 geochemical data across the boundary between China and Mongolia. The median and average values of copper are 20.1×10^{-6} and 21.6×10^{-6} . The median and average values of the eastern and western Junggar arc basin systems, the Altay tectonic belt, the arc basin system on the Altay southern margin, the Gobi Altay arc basin

本文由中国地质调查局地质调查项目(编号: DD20190451; DD20160116; DD20190450)资助。

收稿日期: 2020-06-09; 改回日期: 2020-06-22; 网络首发日期: 2020-07-13。责任编辑: 张改侠。

第一作者简介: 聂兰仕, 男, 1979年生。博士, 高级工程师。长期从事勘查地球化学研究。通讯地址: 065000, 河北省廊坊市金光道 84号。 E-mail: nielanshi@163.com。

^{*}通讯作者:刘汉粮,男,1985年生。硕士,高级工程师。长期从事勘查地球化学研究。E-mail: liuhanliang912@163.com。

system, the Junggar block, and the Beishan–Gobi Tianshan arc basin system are higher than the values of other tectonic belts, showing that copper is enriched in those area. A total of 91 copper geochemical anomalies were delineated respectively based on the 85% cumulative percentage and 34 geochemical provinces that were selected. The work fills the gap in the copper geochemical distribution and provides important data for the comparison of ore deposits in this area.

Key words: copper; regional geochemistry; metallogenic prospective area; geochemical mapping; China–Mongolia border region

中蒙边界地区成矿地质条件优越,是世界上重 要的金属成矿省和全球三大斑岩型铜(金、钼)成矿 带之一,分布有 Oyu Tolgoi 超大型斑岩型铜金矿、 Tsagaan Suvarga 大型斑岩型铜钼矿等, 资源潜力巨 大,是国际、国内地学研究和勘查的热点地区(聂凤 军等, 2004, 2010; 侯万荣等, 2010; 方俊钦等, 2013; 李俊建等, 2015; Wainwright et al., 2017)。围绕国家 "一带一路"战略及"两种资源、两个市场"和产 业转移战略对矿产信息的重大急迫需求,利用中国 领先的地球化学填图技术,采集中蒙边界地区地球 化学数据,为资源评价和环境变化提供科学数据, 为"一带一路"资源布局提供决策依据。根据中蒙 双方签署的"中蒙合作地球化学填图协议",在中 蒙边界地区共完成了约1 300 000 km²的国家尺度 (1:100 万)地球化学填图工作,该工作由中国地质 科学院地球物理地球化学勘查研究所和蒙古地质调 查中心联合完成。笔者以中蒙边界地区 1:100 万地 球化学填图数据为依托,统计了汇水域沉积物铜元 素地球化学参数,并绘制了中蒙边界地区铜地球化 学图,为进一步深入开发利用填图数据和资料提供 可供对比的基础数据和图件。

1 区域地质概况

本文所指的中蒙边界地区包括中国的新疆、甘 肃和内蒙古与蒙古国接壤的边界地区, 大地构造位 置地处华北克拉通与西伯利亚地台之间的古生代褶 皱带内(图 1)。区内古生代地层出露广泛, 深大断裂 纵横交错, 岩浆岩十分发育, 金属矿床(点)星罗棋布, 是中亚成矿带的重要组成部分(Badarch and Tomurtogoo, 2001; 聂凤军等, 2004; Tomurtogoo, 2006)。聂 凤军等(2004)指出中蒙边境及邻区将有可能成为本 世纪初全球铜矿找矿勘查的"热点"地区之一。该 区代表性的铜和铜多金属矿床有延东--土屋、公婆 泉、白山堂、欧玉陶勒盖(Oyu Tolgoi)、查干苏布尔 加(Tsagaan Suvarga)、霍各乞、炭窑口、东升庙、白 乃庙、奥尤特、小坝梁和乌努格吐, 其中蒙古国欧玉 陶勒盖矿床以规模大、品位高和杂质少而著称于世 (Perello et al., 2001)。李俊建等(2015)以板块构造理论 为指导,对中蒙边界地区构造格架进行了统一厘定

和划分,认为该区I级构造单元主体隶属于中亚构造带的阿尔泰—兴蒙造山系,部分属塔里木—华北陆块区。阿尔泰—兴蒙造山系可划分为 10 个 II 级、 27 个 III 级和 69 个 IV 级构造单元,塔里木—华北陆 块部分划分出 2 个 II 级、2 个 III 级和 4 个 IV 级构 造单元;在成矿区带方面划分成古亚洲成矿域和滨 太平洋成矿域(叠加在古亚洲成矿域之上),共划分 出 5 个 II 级成矿省、16 个 III 级成矿带和 34 个 IV 级成矿亚带(李俊建等, 2016)。

2 工作方法

中蒙边界地区 1:100 万地球化学填图以 1:25 万或 1:20 万地形图作为野外工作用图, 以 1:2.5 万图幅(经度差 7.5'×纬度差 5.0', 面积大约 100 km²)作为一个采样单元网格,每个网格采集 1 件样品或组合样品。汇水域沉积物是低密度地球 化学填图的最理想采样介质(Wang et al., 2007)。采 样点分布兼顾样品均匀性与最有效控制汇水域、样 品在 50 m 范围内多点组合采样(3~5 个点), 所有采 样点位筛取-100 目的细粒级样品,由于样品粒度 细、介质均匀, 代表性强, 同时细粒级样品具有独 特的吸附特性,可以将含矿信息捕获与富集(王学 求等, 2001, 2007, 2020; 聂兰仕等, 2015; 刘汉粮等, 2018a, b, 2019, 2020)。为满足矿产勘查、基础地质 和生态环境的需要,分析了包括区域化探 39 种元素 在内的 69 种元素, 所有样品在中国地质科学院地球 物理地球化学勘查研究所中心实验室加工、分析,采 用地壳全元素配套分析方案及分析质量监控系统(张 勤等, 2012), 以保障样品分析数据的准确性和一致 性。铜检出限1×10⁻⁶, 报出率100%, 标准样合格率 100%, 重复样合格率 100%(聂兰仕等, 2015)。

3 结果与讨论

中蒙边界地区共完成了约1 300 000 km²的国家尺度(1:100 万)地球化学填图工作,由中国地质科学院地球物理地球化学勘查研究所和蒙古地质调查中心联合完成,工作范围是东西方向(经度) 86°—120°,南北方向沿边境线向两国境内各延伸约 100 km,共采集样品 10 505 件。

3.1 中蒙边界地区铜地球化学参数统计

测区数据根据构造单元统计了铜元素地球化 学参数,结果列于表 1。构造单元划分为阿尔泰构 造带、阿尔泰南缘弧盆系、东西准噶尔弧盆系、准 噶尔地块、戈壁阿尔泰弧盆系、北山—戈壁天山弧 盆系、巴音毛道—雅干—Baruun Tsohio 构造带、 Ereen Davaa—额尔古纳微陆块、Baruun Urt—Hutag Uul—东乌旗—阿尔山弧盆带、Sulinheer—满都拉— 霍林郭勒弧盆系、塔里木陆块、华北陆块 12 个二级 构造单元(李俊建等, 2015)。

中蒙边界地区汇水域沉积物铜含量直方图(图 2)显示铜的分析数据大致具有对数正态分布特征,

构造单元: 1—阿尔泰构造带; 2—阿尔泰南缘弧盆系; 3—东西准噶尔弧盆系; 4—准噶尔地块; 5—戈壁阿尔泰弧盆系; 6—北山—戈壁天山弧盆系; 7—巴音毛道—雅干—Baruun Tsohio 构造带; 8—Ereen Davaa—额尔古纳微陆块;

9—Baruun Urt—Hutag Uul—东乌旗—阿尔山弧盆带; 10—Sulinheer—满都拉—霍林郭勒弧盆系;

11—塔里木陆块; 12—华北陆块。

Tectonic units: 1-the Altay tectonic belt; 2-the arc basin system at the Altay southern margin; 3-the eastern and western Junggar arc basin systems; 4-the Junggar block; 5-the Gobi Altay arc basin system; 6-the Beishan—Gobi Tianshan arc basin system; 7-the Bayimaodao—Yagan—BaruunTsohiot tectonic belt; 8-the Ereen Davaa—Ergun micro-block; 9-the Baruun Urt—Hutag Uul—East Ujimqin Banner—Arshaan arc basin zone; 10-the Sulinheer—Mandula—Holingol arc basin system; 11-the Tarim block; 12-the North China block. 图 1 采样点位和构造单元示意图(据李俊建等, 2015, 2016 和刘汉粮等, 2020 修改)

Fig. 1 Map of the working area showing the sampling sites and tectonic units (modified after LI et al., 2015, 2016 and LIU et al., 2020)

表1 中蒙边界地区汇水域沉积物铜元素地球化学参数

Table 1 Copper geochemical parameters of catchment sediments collected from different tectonic beltsin China–Mongolia border region										
构造单元	最小值	2.5% 分位数	25% 分位数	50% 分位数	 75% 分位数		97.5% 分位数	最大值	平均值	标准差
全区	0.95	8.20	15.11	20.10	25.90	29.72	43.79	675.75	21.61	12.72
1	0.95	11.95	22.08	28.29	35.70	40.44	56.80	180.52	30.03	13.42
2	7.82	13.75	21.48	26.54	33.30	37.10	50.05	108.00	28.37	10.80
3	1.62	14.30	24.06	28.75	34.10	38.89	54.51	103.80	30.05	10.10
4	3.88	12.68	20.70	25.12	31.39	35.64	46.37	63.95	26.63	8.69
5	8.90	11.83	20.00	25.50	31.70	34.90	47.17	80.90	26.49	9.34
6	6.57	13.49	19.70	22.70	27.00	29.80	42.78	675.75	25.07	23.20
7	4.05	10.88	16.76	19.10	22.82	25.24	36.06	50.54	20.20	6.03
8	3.15	6.48	10.88	14.40	19.34	22.35	31.21	103.08	15.89	7.38
9	3.76	6.87	12.26	15.82	20.22	22.50	29.49	804.08	16.80	16.21
10	5.21	8.82	13.80	17.57	21.17	23.51	31.10	54.37	17.99	5.83
11	7.86	8.86	15.84	20.24	23.82	26.59	46.21	56.55	21.05	8.62
12	8.52	11.29	14.88	17.68	20.42	22.13	28.25	74.62	18.56	6.64

注:含量单位为10⁻⁶。1-12代表不同构造单元,名称同图1。1-阿尔泰构造带(样品数760件);2-阿尔泰南缘弧盆系(样品数311件); 3-东西准噶尔弧盆系(样品数1038件);4-准噶尔地块(样品数171件);5-戈壁阿尔泰弧盆系(样品数614件);6-北山—戈壁天山弧盆系 (样品数1421件);7-巴音毛道—雅干—Baruun Tsohio 构造带(样品数892件);8-Ereen Davaa—额尔古纳微陆块(样品数750件); 9-Baruun Urt—Hutag Uul—东乌旗—阿尔山弧盆带(样品数2979件);10-Sulinheer—满都拉—霍林郭勒弧盆系(样品数1333件); 11-塔里木陆块(样品数66件);12-华北陆块(样品数170件)。 铜含量在 25%~75%分位数区间内较为集中。中蒙边 界地区汇水域沉积物铜元素地球化学参数(表 1)和 箱状图(图 3)可以得出:中蒙边界地区铜元素总体 含量变化范围(2.5%~97.5%)是 8.20×10⁻⁶~43.8×10⁻⁶, 中位值和平均值分别是 20.1×10⁻⁶和 21.6×10⁻⁶。对 于划分的构造单元而言,阿尔泰构造带铜元素总体 含量变化范围(2.5%~97.5%)是 11.9×10⁻⁶~56.8×10⁻⁶, 中位值和平均值分别是 28.3×10⁻⁶和 30.0×10⁻⁶; 相 应地,阿尔泰南缘弧盆系 13.8×10⁻⁶~50.0×10⁻⁶, 26.5×10⁻⁶, 28.4×10⁻⁶; 东西准噶尔弧盆系 14.3×10⁻⁶~54.5×10⁻⁶, 28.7×10⁻⁶, 30.1×10⁻⁶; 准噶

尔地块 12.7×10⁻⁶~46.4×10⁻⁶, 25.1×10⁻⁶, 26.6×10⁻⁶; 戈壁阿尔泰弧盆系 11.8×10⁻⁶~47.2×10⁻⁶, 25.5×10⁻⁶, 26.5×10⁻⁶; 北山—戈壁天山弧盆系 13.5×10⁻⁶~ 42.8×10⁻⁶, 22.7×10⁻⁶, 25.1×10⁻⁶; 巴音毛道—雅干 —Baruun Tsohio 构造带 10.9×10⁻⁶~36.1×10⁻⁶, 19.1×10⁻⁶, 20.2×10⁻⁶; Ereen Davaa—额尔古纳微陆 块 $6.48 \times 10^{-6} \sim 31.2 \times 10^{-6}$, 14.4×10^{-6} , 15.9×10^{-6} ; Baruun Urt—Hutag Uul—东乌旗—阿尔山弧盆带 $6.87 \times 10^{-6} \sim 29.5 \times 10^{-6}$, 15.8×10^{-6} , 16.8×10^{-6} ; Sulinheer---满都拉---霍林郭勒弧盆系 8.82×10⁻⁶~ 31.1×10⁻⁶, 17.6×10⁻⁶, 18.0×10⁻⁶; 塔里木陆块 8.86×10⁻⁶~46.2×10⁻⁶, 20.2×10⁻⁶, 21.0×10⁻⁶; 华北 陆块 11.3×10⁻⁶~28.2×10⁻⁶, 17.7×10⁻⁶, 18.6×10⁻⁶。 铜元素对于划分的构造单元而言以中位值排序: 东西 准噶尔弧盆系>阿尔泰构造带>阿尔泰南缘弧盆系> 戈壁阿尔泰弧盆系>准噶尔地块>北山---戈壁天山弧 盆系>塔里木陆块>全区>巴音毛道—雅干—Baruun Tsohio 构造带>华北陆块>Sulinheer—满都拉—霍林 郭勒弧盆系>Baruun Urt—Hutag Uul—东乌旗— 阿尔山弧盆带>Ereen Davaa—额尔古纳微陆块; 以平均值排序:东西准噶尔弧盆系>阿尔泰构造带> 阿尔泰南缘弧盆系>准噶尔地块>戈壁阿尔泰弧盆 系>北山---戈壁天山弧盆系>全区>塔里木陆块> 巴音毛道—雅干—Baruun Tsohio 构造带>华北陆块 >Sulinheer — 满都拉 — 霍林郭勒弧盆系> Baruun Urt—Hutag Uul—东乌旗—阿尔山弧盆带>

Fig. 3 Copper boxplots of catchment sediments collected from different tectonic belts in China-Mongolia border region

Ereen Davaa—额尔古纳微陆块。无论是中位值还是 平均值东西准噶尔弧盆系、阿尔泰构造带、阿尔泰 南缘弧盆系、戈壁阿尔泰弧盆系、准噶尔地块、北 山—戈壁天山弧盆系 6 个构造单元铜含量均高于全 区铜含量;巴音毛道—雅干—Baruun Tsohio 构造 带、华北陆块、Sulinheer—满都拉—霍林郭勒弧盆 系、Baruun Urt—Hutag Uul—东乌旗—阿尔山弧盆 带、Ereen Davaa—额尔古纳微陆块 5 个构造单元铜 含量均低于全区铜含量。结果显示铜元素在各个构 造单元分布不均一,而正是这种局部的不均一性才 能通过加密采样刻画出地球化学模式的细节变化, 为逐步追踪矿化体奠定基础。东西准噶尔弧盆系铜 含量最高,中位值和平均值分别是全区中位值和平 均值的 1.43 倍和 1.39 倍,说明该构造单元是铜元素 的富集区。

3.2 中蒙边界地区铜区域地球化学分布及远景区 优选

利用中国地质调查局发展研究中心研发的 GeoExpl 软件绘制元素地球化学图, 并统计各异常 区内相关参数。根据累积频率(0%、0.5%、1.2%、 2%, 3%, 4.5%, 8%, 15%, 25%, 40%, 60%, 75% 85% 92% 95.5% 97% 98% 98.8% 99.5% 100%)制作地球化学图(图 4),图中显示铜高值区主 要集中在中蒙边界西部,整体呈西高东低的趋势。 西部为山区, 基性岩等分布较广导致整体背景高于 东部草原、干旱半干旱覆盖区。为了更好地圈定各 个构造单元内的地球化学异常,根据整体中位值和 各个构造单元中位值对数据进行子区中位值衬值 计算, 以剔除各个构造单元背景衬值, 降低高、低 背景对异常筛选的影响,制作中蒙边界地区铜地球 化学图(图 5)。将铜含量 25.8×10⁻⁶(累积频率 85%) 作为中蒙边界地区铜异常下限,同时满足异常范围 内有连续异常点或者具有地球化学异常套合结构 特征。地球化学异常或地球化学块体多层套合结构 是指一系列由高到低多层套合异常组成的区域地 球化学分布模式,也就是说局部异常被区域异常所 包裹, 而区域异常又依次被更大规模的地球化学 省、地球化学巨省等所包裹(谢学锦等, 2002)。按照 这个原则分别圈定出 91 个铜地球化学异常(编号 Cu01-Cu91), 其中有 34 个异常(Cu20、Cu28、Cu11、 Cu74、Cu53、Cu71、Cu87、Cu06、Cu83、Cu79、 Cu63、Cu76、Cu85、Cu12、Cu67、Cu05、Cu59、 Cu19, Cu01, Cu84, Cu36, Cu30, Cu16, Cu38, Cu54, Cu68, Cu88, Cu69, Cu72, Cu31, Cu90, Cu65、Cu35、Cu78)面积大于1000 km², 达地球化 学省规模(谢学锦等, 2002; 王学求等, 2013), 各个

参数见表2。

Cu20: 分布在中蒙边界工作区东部,属于大兴 安岭成矿省(李俊建等,2016)。研究区内大兴安岭成 矿省可划分为克鲁伦—额尔古纳铜、钨、钼、铅、 锌、银、金、萤石、铀(煤)成矿带,努库特达班 (Nukhetdavaa)—二连—东乌旗—阿尔山铜、钼、铅、 锌、钨、锡、铬、铁成矿带和 Sulinheer—白乃庙— 锡林浩特铁、铜、钼、铅、锌、铬、(金、锰)锗、 煤、天然碱、芒硝成矿带(李俊建等,2016;刘汉粮 等,2020)。Cu20 异常面积达 19 620 km²,异常点 232 个,异常内平均值 31.6×10⁻⁶,异常强度 1.57, 异常衬度 1.22,达到地球化学巨省规模(谢学锦等, 2002)。王守光等(2004)也指出南戈壁—东乌旗—带 是—条值得重视的铜多金属跨国境成矿带。

Cu28: 分布在中蒙边界工作区东部,属于大兴安 岭成矿省(李俊建等,2016),与Cu20构造位置一致,且 有已知矿分布。异常面积达13004 km²,异常点168个, 异常内平均值 30.7×10⁻⁶,异常强度 1.53,异常衬度 1.19,达到地球化学巨省规模(谢学锦等,2002)。

Cu36: 分布在中蒙边界工作区中部,蒙古境内 赛音山达西南部, Cu36 异常面积达 1 700 km², 异常 点 28 个, 异常内平均值 69.7×10⁻⁶, 异常强度 3.47, 异常衬度 2.70, 异常强度高, 异常衬度大, 达到地 球化学省规模(谢学锦等, 2002), 该地球化学巨省内 产出查干苏布尔加(Tsagaan Suvarga)大型斑岩型铜 钼矿。查干苏布尔加铜(钼)矿床位于蒙古国东戈壁 省,欧玉陶勒盖铜(金)矿区北东方向 150 km,赛因 山达西南方向约 150 km。矿床中心地理位置坐标: 北纬 43°52′, 东经 108°20′, 大地构造位置处于南蒙 古构造岩浆带内, 西伯利亚板块南缘近东西向和北 东向深大断裂所夹持的古生代岛弧带内。矿区内出 露的地层主要为石炭系砂岩、粉砂岩、凝灰岩、凝 灰砂岩、生物灰岩、英安玢岩、安山玢岩和粗面安 山岩等。区内构造主要由北东向和北西向断裂构造 及裂隙发育带所控制,主要控矿构造是出露在查干 苏布尔加岩体内、外的北东向构造带,呈雁列状分 布,查干苏布尔加矿床就产在构造带的北部带中 (侯万荣等, 2010)。

Cu39: 分布在中蒙边界工作区中部,蒙古境内 欧玉陶勒盖,异常面积达 673 km²,异常点 15 个, 异常内平均值 26.7×10⁻⁶,异常强度 1.33,异常衬度 1.03,该地球化学异常内产出欧玉陶勒盖(Oyu Tolgoi)斑岩型铜金矿。欧玉陶勒盖斑岩型铜(金)矿田位 于蒙古国南戈壁省,北距蒙古国首都乌兰巴托市 550 km,南距中蒙边境 80 km。矿区中心的地理坐 标为北纬 43°01',东经 106°51'。大地构造位置上, 欧玉陶勒盖铜金矿床位于西伯利亚板块与华北陆块 之间古生代造山带东蒙古地幔异常区(构造隆起带) 南缘,属南蒙古后贝加尔褶皱系肯特杭爱弧形断 块。欧玉陶勒盖地区以泥盆纪和石炭纪岛弧火山岩 和沉积岩为主,其中,泥盆系岩石被认为是超大型 欧玉陶勒盖斑岩型铜(金)矿田的围岩。欧玉陶勒盖 铜金矿田位于泥盆系基性-中性火山岩、火山碎屑岩 和沉积岩的极少露头范围内,晚泥盆世侵入岩被石 炭纪火山岩和沉积岩所环绕(张义等,2003; 方俊软 等,2013)。地理景观为干旱荒漠区,风成沙干扰以 及 Oyu Tolgoi 等铜矿床均为隐伏矿,导致该区仅显 现低缓异常,且异常规模不大。

Cu74、Cu53、Cu71、Cu79、Cu63、Cu76、Cu67、 Cu59、Cu38、Cu54、Cu68、Cu69、Cu72、Cu65、 Cu78:分布在中蒙边界工作区中西部,属于准噶尔 —南蒙古成矿省(李俊建等,2016)。准噶尔—南蒙古 成矿省可进一步划分为北准噶尔—Baruunhuurai

铜、镍、钼、金成矿带, Edrengiin 铜、锌、锰、铁 成矿带, Edren—Zoolon 金成矿带, 卡拉麦里(东准 噶尔)铬、铜、金、锡、硫铁矿、石墨、石棉、水晶 成矿带,准噶尔盆地石油、天然气、铀、煤、盐类、 膨润土成矿带,准噶尔南缘---觉罗塔格---黑鹰山---七一山—Tomortein Nuruu—Tsagaan Suvarga 铜、 钼、金、钨、铁、铬、锰、稀有、硼、沸石、石墨、 透闪石玉、滑石成矿带,雅干—Harmorit— Hanbogd—Lugiingol 锡、钨、铌、钽、锆、稀土、 铁、铜、金、镍成矿带和乌力吉---欧布拉格铜、铁、 金、镍、钴、铀、油页岩成矿带(芮宗瑶等, 2002; Kirwin et al., 2005; 李俊建等, 2016), 铜是该区主 要矿产, 共圈定 15 个地球化学省。高地球化学背景 为大型矿床的形成提供了充足的巨量元素供给,为 地球化学块体理论、巨量物质聚集、套合的元素地 球化学模式谱系与大型巨型矿床形成关系的研究提 供了基本的地球化学证据(谢学锦等, 2002)。

图 4 中蒙边界地区铜地球化学图

图 5 中蒙边界地区铜地球化学图(按构造单元中位值剔除衬值后)

Fig. 5 Copper regional geochemical map of catchment sediments collected in China–Mongolia border region (after removing the contrast value according to the median value of the tectonic unit)

表 2 中蒙边界地区铜地球化学异常统计参数 Table 2 The statistics parameters of copper geochemical anomalies in China–Mongolia border region

伯日	面积	样点数/	极大值	极小值	平均值	中位值	总体背景	异常下限	南光	异常	异常	变异
狮方	/km ²	个	$/10^{-6}$	$/10^{-6}$	/10 ⁻⁶	/10 ⁻⁶	值/10-6	/10 ⁻⁶	呙左	强度	衬度	系数
Cu01	1 830	31	43.3	17.1	30.2	30.2	20.1	25.8	7.54	1.50	1.17	0.25
Cu02	256	2	34.4	27.8	31.1	31.1	20.1	25.8	4.67	1.55	1.21	0.15
Cu03	220	3	45.7	30.9	40.4	44.4	20.1	25.8	8.19	2.01	1.57	0.20
Cu04	330	3	64.4	26.7	39.8	28.3	20.1	25.8	21.29	1.98	1.54	0.53
Cu05	1 982	31	143.9	19.2	34.7	28.7	20.1	25.8	22.54	1.72	1.34	0.65
Cu06	3 682	46	65.2	19.6	34.9	33.9	20.1	25.8	8.85	1.74	1.35	0.25
Cu07	336	3	43.8	26.4	34.4	33.0	20.1	25.8	8.75	1.71	1.33	0.25
Cu08	476	9	38.5	24.8	30.3	28.5	20.1	25.8	4.94	1.51	1.17	0.16
Cu09	75	2	69.4	23.1	46.3	46.3	20.1	25.8	32.77	2.30	1.79	0.71
Cu10	252	5	45.5	26.4	34.2	32.0	20.1	25.8	7.20	1.70	1.33	0.21
Cu11	5 585	66	52.0	24.1	33.0	32.4	20.1	25.8	5.88	1.64	1.28	0.18
Cu12	2 373	26	39.1	21.7	31.1	31.6	20.1	25.8	4 00	1.55	1.20	0.13
Cu12	48	2	36.5	31.2	33.9	33.9	20.1	25.8	3 73	1.69	1.20	0.11
Cu14	64	2	30.7	28.9	29.8	29.8	20.1	25.8	1 27	1 48	1.16	0.04
Cu14	150	2	35.0	29.3	32.2	32.2	20.1	25.8	4.04	1.40	1.10	0.13
Cu16	1 586	16	38.9	18.4	28.7	28.5	20.1	25.0	1 00	1.00	1.25	0.15
Cu10	57	3	31.5	24.7	28.7	20.5	20.1	25.8	3.44	1.45	1.11	0.17
Cu17	200	3	22.9	24.7	20.0	27.9	20.1	25.8	2.50	1.59	1.09	0.12
Cu18	1.842	4	55.0 41.7	27.4	20.5	20.0	20.1	25.0	5.30	1.35	1.19	0.11
Cu19	1 843	24	41.7	20.0	29.5	30.0 20.5	20.1	25.8	5.02 20.68	1.47	1.14	0.17
Cu20	19 620	232	329.8	13.3	31.0	30.5	20.1	25.8	20.68	1.57	1.22	0.00
Cu21	130	1	34.0	34.0	34.0	34.0	20.1	25.8	5.26	1.69	1.32	0.17
Cu22	634	9	38.6	21.0	30.6	31.1	20.1	25.8	5.36	1.52	1.19	0.17
Cu23	851	10	40.0	26.9	30.9	29.3	20.1	25.8	4.32	1.54	1.20	0.14
Cu24	346	4	32.8	21.9	29.4	31.5	20.1	25.8	5.13	1.46	1.14	0.17
Cu25	540	7	50.4	15.2	35.8	35.4	20.1	25.8	13.31	1.78	1.39	0.37
Cu26	448	6	40.9	19.5	29.5	29.7	20.1	25.8	7.23	1.47	1.14	0.25
Cu27	479	7	36.0	30.9	33.5	33.6	20.1	25.8	1.88	1.66	1.30	0.06
Cu28	13 004	168	53.9	16.8	30.7	29.3	20.1	25.8	7.30	1.53	1.19	0.24
Cu29	181	3	34.3	19.8	28.5	31.4	20.1	25.8	7.69	1.42	1.11	0.27
Cu30	1 652	21	44.6	20.3	30.4	29.9	20.1	25.8	5.74	1.51	1.18	0.19
Cu31	1 233	16	56.6	17.0	34.8	33.7	20.1	25.8	10.84	1.73	1.35	0.31
Cu32	349	4	57.7	24.3	35.0	29.0	20.1	25.8	15.42	1.74	1.36	0.44
Cu33	790	6	84.7	20.7	42.5	31.7	20.1	25.8	25.37	2.11	1.65	0.60
Cu34	183	3	29.9	26.3	28.6	29.7	20.1	25.8	2.03	1.42	1.11	0.07
Cu35	1 084	12	46.3	22.2	30.7	29.2	20.1	25.8	7.49	1.53	1.19	0.24
Cu36	1 700	28	598.4	17.8	69.7	28.2	20.1	25.8	131.55	3.47	2.70	1.89
Cu37	521	10	35.2	22.6	28.7	28.4	20.1	25.8	3.80	1.43	1.11	0.13
Cu38	1 456	21	42.4	19.1	28.7	28.0	20.1	25.8	5.88	1.43	1.11	0.20
Cu39	673	15	31.9	17.9	26.7	26.0	20.1	25.8	3.91	1.33	1.03	0.15
Cu40	226	3	46.3	26.1	36.7	37.8	20.1	25.8	10.11	1.83	1.42	0.28
Cu41	411	5	35.9	30.5	32.9	32.4	20.1	25.8	2.33	1.64	1.28	0.07
Cu42	452	3	39.8	23.3	29.3	24.8	20.1	25.8	9.11	1.46	1.13	0.31
Cu43	598	6	40.3	24.5	30.6	29.5	20.1	25.8	5.44	1.52	1.19	0.18
Cu44	122	2	35.6	30.4	33.0	33.0	20.1	25.8	3.65	1.64	1.28	0.11
Cu45	160	4	31.1	25.6	29.2	30.0	20.1	25.8	2.56	1.45	1.13	0.09
Cu46	249	7	37.6	25.0	30.2	27.9	20.1	25.8	5.28	1.50	1.17	0.18
Cu47	467	5	38.1	24.4	32.3	31.4	20.1	25.8	5.55	1.61	1.25	0.17
Cu48	206	5	39.3	19.9	29.4	30.7	20.1	25.8	7.20	1.46	1.14	0.24
Cu49	205	3	35.1	25.7	30.7	31.1	20.1	25.8	4.75	1.53	1.19	0.16
Cu50	574	7	46.1	16.2	35.0	38.1	20.1	25.8	9.67	1.74	1.36	0.28
Cu51	118	2	40.3	27.9	34.1	34.1	20.1	25.8	8.82	1.70	1.32	0.26
Cu52	111	3	44.0	19.7	31.7	31.4	20.1	25.8	12.14	1.58	1.23	0.38
Cu53	4 017	39	53.2	11.7	31.2	32.5	20.1	25.8	10.42	1.55	1.21	0.33

												绥衣 2
纪旦	面积	样点	极大值	极小值	平均值	中位值	总体背景	异常	卤 关	异常	异常	变异
细石	$/km^2$	数/个	$/10^{-6}$	$/10^{-6}$	$/10^{-6}$	$/10^{-6}$	值/10-6	下限/10-6	內左	强度	衬度	系数
Cu54	1 410	11	41.7	23.7	29.3	27.9	20.1	25.8	4.88	1.46	1.14	0.17
Cu55	389	2	35.6	30.8	33.2	33.2	20.1	25.8	3.40	1.65	1.29	0.10
Cu56	145	2	39.9	25.7	32.8	32.8	20.1	25.8	10.09	1.63	1.27	0.31
Cu57	224	3	44.8	22.8	34.8	36.7	20.1	25.8	11.16	1.73	1.35	0.32
Cu58	74	2	38.9	22.8	30.9	30.9	20.1	25.8	11.33	1.54	1.20	0.37
Cu59	1 850	23	37.2	24.5	29.8	30.0	20.1	25.8	3.08	1.48	1.15	0.10
Cu60	243	2	32.8	28.7	30.7	30.7	20.1	25.8	2.90	1.53	1.19	0.09
Cu61	193	4	33.6	21.3	30.0	32.5	20.1	25.8	5.90	1.49	1.16	0.20
Cu62	689	2	55.7	41.1	48.4	48.4	20.1	25.8	10.29	2.41	1.87	0.21
Cu63	2 677	21	76.0	18.4	32.2	28.7	20.1	25.8	12.90	1.60	1.25	0.40
Cu64	887	3	57.3	28.6	38.9	30.8	20.1	25.8	15.97	1.93	1.51	0.41
Cu65	1 209	12	138.9	19.0	37.3	29.1	20.1	25.8	32.36	1.86	1.45	0.87
Cu66	182	4	40.3	14.1	28.5	29.9	20.1	25.8	12.71	1.42	1.11	0.45
Cu67	1 983	20	56.0	16.1	31.3	29.6	20.1	25.8	10.89	1.56	1.21	0.35
Cu68	1 387	11	44.5	22.9	31.3	31.0	20.1	25.8	6.47	1.56	1.21	0.21
Cu69	1 331	9	41.0	23.7	30.6	28.2	20.1	25.8	6.35	1.52	1.18	0.21
Cu70	523	6	72.7	18.0	36.6	31.7	20.1	25.8	20.43	1.82	1.42	0.56
Cu71	3 808	35	65.3	19.0	33.6	31.2	20.1	25.8	11.13	1.67	1.30	0.33
Cu72	1 272	11	59.7	22.8	32.7	31.4	20.1	25.8	9.83	1.63	1.27	0.30
Cu73	517	6	42.2	22.1	33.4	34.9	20.1	25.8	7.86	1.66	1.30	0.24
Cu74	4 172	47	63.8	20.1	32.8	32.2	20.1	25.8	8.52	1.63	1.27	0.26
Cu75	417	5	36.5	22.3	29.4	32.3	20.1	25.8	6.39	1.46	1.14	0.22
Cu76	2 475	24	50.7	24.0	30.8	30.2	20.1	25.8	5.81	1.53	1.19	0.19
Cu77	879	11	34.0	24.8	28.8	28.1	20.1	25.8	2.32	1.43	1.12	0.08
Cu78	1 014	12	41.7	23.5	29.3	28.2	20.1	25.8	4.80	1.46	1.14	0.16
Cu79	2 894	31	51.2	15.2	30.2	29.1	20.1	25.8	7.09	1.50	1.17	0.23
Cu80	557	2	39.3	34.8	37.1	37.1	20.1	25.8	3.14	1.84	1.44	0.08
Cu81	333	3	41.3	23.1	35.0	40.6	20.1	25.8	10.33	1.74	1.36	0.30
Cu82	809	11	70.8	21.8	33.1	31.0	20.1	25.8	13.79	1.65	1.28	0.42
Cu83	3 404	36	47.9	18.3	29.8	29.8	20.1	25.8	6.48	1.48	1.16	0.22
Cu84	1 719	18	43.7	24.1	32.0	30.4	20.1	25.8	5.83	1.59	1.24	0.18
Cu85	2 377	25	78.8	13.6	31.7	29.2	20.1	25.8	12.47	1.58	1.23	0.39
Cu86	294	6	32.2	25.3	30.5	31.5	20.1	25.8	2.67	1.52	1.18	0.09
Cu87	3 728	38	59.2	18.7	33.1	32.0	20.1	25.8	8.70	1.65	1.28	0.26
Cu88	1 356	19	128.2	15.4	35.5	27.5	20.1	25.8	25.14	1.77	1.38	0.71
Cu89	544	6	44.6	21.4	30.0	28.0	20.1	25.8	8.23	1.49	1.16	0.27
Cu90	1 216	8	81.9	21.2	34.3	28.5	20.1	25.8	19.74	1.71	1.33	0.58
Cu91	209	3	116.1	17.2	52.2	23.3	20.1	25.8	55.42	2.60	2.02	1.06

注:异常强度=异常内平均值/背景值,异常衬度=异常内平均值/异常下限,变异系数=异常内离差/异常内平均值。

Cu87、Cu83、Cu85、Cu84、Cu88、Cu90: 分 布在中蒙边界工作区西部,蒙古科布多一中国阿勒 泰,属于阿尔泰成矿省(李俊建等, 2016),铜的重要 成矿带。阿尔泰成矿省可进一步划分为北阿尔泰稀 有、铜、铅、锌、钼、钨、银、铁、锑、汞、白云 母、宝石成矿带和南阿尔泰铜、铅、锌、铁、金、 稀有、白云母、宝石成矿带(李俊建等, 2006; 王鸿 祯等, 2006),该区同样是铜的重要成矿省和矿产地, 共圈定 6 个地球化学省。

Cu11、Cu06、Cu12、Cu05、Cu19、Cu01、Cu30、 Cu16、Cu31、Cu35:分布在中蒙边界工作区中东部, 属于大兴安岭成矿省(李俊建等, 2016)。圈定的 10 个地球化学省分布在克鲁伦—额尔古纳铜成矿 带、努库特达班(Nukhetdavaa)—二连—东乌旗—阿 尔山铜成矿带和Sulinheer—白乃庙—锡林浩特铜成 矿带(李俊建等, 2016; 刘汉粮等, 2020)。

4 结论

在中蒙边界地区开展 1:100 万地球化学填图工 作,覆盖了约 1 300 000 km²,获得了高质量铜地球 化学数据和图件。本文初步探讨了铜元素区域地球 化学分布特征,结果表明:(1)中蒙边界地区汇水域

沉积物铜含量具有对数正态分布特征, 铜含量在 25%~75%分位数区间内较为集中;(2)全区铜元素中 位值和平均值分别是 20.1×10⁻⁶ 和 21.6×10⁻⁶; (3)对于划分的构造单元而言,无论是中位值还是平 均值东西准噶尔弧盆系、阿尔泰构造带、阿尔泰南 缘弧盆系、戈壁阿尔泰弧盆系、准噶尔地块、北山 — 戈壁天山弧盆系 6 个构造单元铜含量均高于全区 铜含量; 东西准噶尔弧盆系铜含量最高, 中位值和 平均值分别是全区中位值和平均值的1.43倍和1.39 倍, 是铜元素的富集区; (4)根据 85%累积频率, 圈 定出 91 个铜地球化学异常区, 其中 34 个铜地球化 学异常达到地球化学省规模, Oyu Tolgoi、Tsagaan Suvarga 等大型铜矿均产在地球化学异常内, 根据 铜地球化学异常为该区寻找铜等多金属矿床提供了 重要选区。利用低密度地球化学填图方法寻找潜在 的大型、超大型矿床是一条高效率、低成本的可行 途径。

致谢:感谢所有参与样品采集和样品分析测试的工作者!感谢审稿人和责任编辑提出的宝贵修改意见!

Acknowledgements:

This study was supported by China Geological Survey (Nos. DD20190451, DD20160116 and DD20190450).

参考文献:

- 方俊钦, 聂凤军, 徐备, 陈鹏, 童勤龙. 2013. 蒙古国欧玉陶勒 盖斑岩型铜(金)矿田的找矿新进展[J]. 地质科技情报, 32(5): 188-194.
- 侯万荣, 聂凤军, 江思宏, 白大明, 刘妍, 云飞, 刘翼飞. 2010. 蒙古国查干苏布尔加大型铜-钼矿床地质特征及成因[J]. 地 球学报, 31(3): 307-320.
- 李俊建, 唐文龙, 付超, 陈正, OROLMAA D, OYUNTUYA N, DELGERSAIKHAN A, ENKHBAT T, 党智财, 赵泽霖, 张锋, 任军平, 赵丽君. 2016. 中蒙边界地区成矿区带划分[J]. 地质通报, 35(4): 461-487.
- 李俊建,张锋,任军平,唐文龙,付超,陈正,李承东,赵丽君, 冯晓曦,觉智财,赵泽霖,刘晓雪,TOMURTOGOO O, DELGERSAIKHAN A, ENKHBAT T, ALTANKHUNDAGA B, DORJSUREN B, BATBAYAR J. 2015. 中蒙边界地区构 造单元划分[J]. 地质通报, 34(4): 636-662.
- 刘汉粮, 聂兰仕, SHOJIN Davaa, 王学求, 迟清华. 2020. 中蒙 边界地区汇水域沉积物 69 元素背景值[J/OL]. 地学前缘, 1-20. https://doi.org/10.13745/.
- 刘汉粮, 聂兰仕, 王学求, 张义波, 刘东盛, 王玮, 迟清华. 2018a. 中蒙跨境阿尔泰构造带稀有元素锂区域地球化学分 布[J]. 现代地质, 32(3): 493-499.
- 刘汉粮, 聂兰仕, 王学求, 张义波, 王玮, 刘东盛. 2019. 中蒙跨 境阿尔泰地区铍区域地球化学特征[J]. 地质与勘探, 55(1): 95-102.

刘汉粮,王学求,聂兰仕,王玮,迟清华,刘东盛. 2018b.

阿尔泰成矿带中蒙边界地区稀有元素铌和钽区域地球化学特征[J].现代地质,32(5):1063-1073.

- 聂凤军,江思宏,白大明,侯万荣,刘翼飞. 2010. 蒙古国南部 及邻区金属矿床类型及其时空分布特征[J]. 地球学报, 31(3): 267-288.
- 聂凤军,江思宏,张义,刘妍,胡朋. 2004. 中蒙边境及邻区斑 岩型铜矿床地质特征及成因[J]. 矿床地质,23(2):176-189.
- 聂兰仕,刘汉粮,王学求. 2015. 中蒙合作边界地区地球化学填 图与勘查远景区优选成果报告[R]. 廊坊:中国地质科学院 地球物理地球化学勘查研究所.
- 芮宗瑶, 刘玉琳, 王龙生, 王义天. 2002. 新疆东天山斑岩型铜 矿带及其大地构造格局[J]. 地质学报, 76(1): 83-94.
- 王鸿祯,何国琦,张世红. 2006. 中国与蒙古之地质[J]. 地学前 缘, 13(6): 1-13.
- 王守光,黄占起,苏新旭,沈存利,胡凤翔.2004. 一条值得重 视的跨国境成矿带—南戈壁-东乌旗铜多金属成矿带[J]. 地 学前缘,11(1):249-255.
- 王学求,迟清华,孙宏伟. 2001. 荒漠戈壁区超低密度地球化学 调查与评价—以东天山为例[J]. 新疆地质,19(3):200-206.
- 王学求,刘汉粮,王玮,周建,张必敏,徐善法.2020. 中国锂矿 地球化学背景与空间分布:远景区预测[J]. 地球学报, 41(6):797-806.
- 王学求,申武军,张必敏,聂兰仕,迟清华,徐善法.2007. 地球 化学块体与大型矿集区的关系—以东天山为例[J]. 地学前 缘,14(5):116-123.
- 王学求,徐善法,迟清华,刘雪敏. 2013. 中国金的地球化学省 及其成因的微观解释[J]. 地质学报, 87(1): 1-8.
- 谢学锦,刘大文,向运川,严光生.2002. 地球化学块体—概念 和方法学的发展[J]. 中国地质,29(3):225-233.
- 张勤, 白金峰, 王烨. 2012. 地壳全元素配套分析方案及分析质 量监控系统[J]. 地学前缘, 19(3): 33-42.
- 张义, 聂凤军, 江思宏, 胡朋. 2003. 中蒙边境欧玉陶勒盖大型 铜-金矿床的发现及对找矿勘查工作的启示[J]. 地质通报, 22(9): 708-712.

References:

- BADARCH G, TOMURTOGOO O. 2001. Tectonostratigraphic terranes of Mongolia[J]. Gondwana Research, 2(4): 143-144.
- FANG Jun-qin, NIE Feng-jun, XU Bei, CHEN Peng, TONG Qin-long. 2013. Prospecting progress of the Oyu Tolgoi porphyry copper-gold orefield in Mongolia[J]. Geological Science and Technology Information, 32(5): 188-194(in Chinese with English abstract).
- HOU Wan-rong, NIE Feng-jun, JIANG Si-hong, BAI Da-ming, LIU Yan, YUN Fei, LIU Yi-fei. 2010. The geology and ore-forming mechanism of the Tsagaan Suvarga large-size Cu-Mo porphyry deposit in Mongolia[J]. Acta Geoscientica Sinica, 31(3): 307-320(in Chinese with English abstract).
- KIRWIN D J, FORSTER C N, KAVALIERIS I, CRANE D, ORSSICH C, PANTHER C, GARAMJAV D, MUNKHBAT T O, NIISLELKHUU G. 2005. The Oyu Tolgoi copper-gold porphyry deposits, South Gobi, Mongolia[C]//SELTMANN R, GEREL O, KIRWIN D J. Geodynamics and metallogeny of Mongolia with a special emphasis on copper and gold deposits. London: IAGOD, 5-12.
- LI Jun-jian, ZHANG Feng, REN Jun-ping, TANG Wen-long, FU

Chao, CHEN Zheng, LI Cheng-dong, ZHAO Li-jun, FENG Xiao-xi, DANG Zhi-cai, ZHAO Ze-lin, LIU Xiao-xue, TOMURTOGOO O, DELGERSAIKHAN A, ENKHBAT T, ALTANKHUNDAGA B, DORJSUREN B, BATBAYAR J. 2015. Tectonic units in China-Mongolia border area and their fundamental characteristics[J]. Geological Bulletin of China, 34(4): 636-662(in Chinese with English abstract).

- LI Jun-jian, TANG Wen-long, FU Chao, CHEN Zheng, OROLMAA D, OYUNTUYA N, DELGERSAIKHAN A, ENKHBAT T, DANG Zhi-cai, ZHAO Ze-lin, ZHANG Feng, REN Jun-ping, ZHAO Lijun. 2016. The division of metallogenic belts in Sino-Mongolian border area[J]. Geological Bulletin of China, 35(4): 461-487(in Chinese with English abstract).
- LIU Han-liang, NIE Lan-shi, WANG Xue-qiu, ZHANG Yi-bo, LIU Dong-sheng, WANG Wei, CHI Qing-hua. 2018. Regional geochemistry of lithium in the Altay area across the boundary of China and Mongolia[J]. Geoscience, 32(3): 493-499(in Chinese with English abstract).
- LIU Han-liang, WANG Xue-qiu, NIE Lan-shi, WANG Wei, CHI Qing-hua, LIU Dong-sheng. 2018. Regional geochemistry of niobium and tantalum across the boundary of China and Mongolia in the Altay metallogenic belt[J]. Geoscience, 32(5): 1063-1073(in Chinese with English abstract).
- LIU Han-liang, NIE Lan-shi, WANG Xue-qiu, ZHANG Yi-bo, WANG Wei, LIU Dong-sheng. 2019. Regional geochemistry of beryllium in the Altay area across the border between China and Mongolia[J]. Geology and Exploration, 55(1): 95-102(in Chinese with English abstract).
- LIU Han-liang, NIE Lan-shi, SHOJIN Davaa, WANG Xue-qiu, CHI Qing-hua. 2020. Background values of 69 elements in catchment sediments of the China-Mongolia boundary region[J/OL]. Earth Science Frontiers, 1-20. https://doi.org/ 10.13745/(in Chinese with English abstract).
- NIE Feng-jun, JIANG Si-hong, ZHANG Yi, LIU Yan, HU Peng. 2004. Geological features and origin of porphyry copper deposits in China-Mongolia border region and its neighboring areas[J]. Mineral Deposits, 23(2): 176-189(in Chinese with English abstract).
- NIE Feng-jun, JIANG Si-hong, BAI Da-ming, HOU Wan-rong, LIU Yi-fei. 2010. Types and temporal-spatial distribution of metallic deposits in Southern Mongolia and its neighboring areas[J]. Acta Geoscientica Sinica, 31(3): 267-288(in Chinese with English abstract).
- PERELLO J. 2001. Oyu Tolgoi, Mongolia: Siluro-Devonian porphyry Cu-Au (Mo) and high_sulfidation Cu mineralization with a Cretaceous chalcocite blanket[J]. Economic Geology, 96: 1407-1428.
- RUI Zong-yao, LIU Yu-lin, WANG Long-sheng, WANG Yi-tian. 2002. The Eastern Tianshan porphyry copper belt in Xinjiang and its tectonic framework[J]. Acta Geologica Sinica, 76(1): 83-94.
- TOMURTOGOO O. 2006. Tectonic framework of Mongolia[C]//TOMURHUU D, NATAL'IN B, YA A. Structural and tectonic correlation across the central Asian orogenic collage:

Implications for continental growth and intracontinental deformation. Ulaanbaatar: Mongolian University of Science and Tectonology Press: 18-20.

- WAINWRIGHT A J, TOSDAL R M, LEWIS P D, FRIEDMAN R M. 2017. Exhumation and Preservation of Porphyry Cu-Au deposits at Oyu Tolgoi, South Gobi Region, Mongolia[J]. Economic Geology, 112(3): 591-601.
- WANG Hong-zhen, HE Guo-qi, ZHANG Shi-hong. 2006. The geology of China and Mongolia[J]. Earth Science Frontiers, 13(6): 1-13(in Chinese with English abstract).
- WANG Shou-guang, HUANG Zhan-qi, SU Xin-xu, SHEN Cun-li, HU Feng-xiang. 2004. A notable metallogenic belt striding across the border between China and Mongolia—south Gobi-Dongwuqi copper-polymetallic metallogenic belt[J]. Earth Science Frontiers, 11(1): 249-255(in Chinese with English abstract).
- WANG Xue-qiu, CHI Qing-hua, SUN Hong-wei. 2001. Wide-spaced geochemical survey in arid desdet terrain, a case history from the eastern Tianshan regions, northwestern China[J]. Xinjiang Geology, 19(3): 200-206(in Chinese with English abstract).
- WANG Xue-qiu, LIU Han-liang, WANG Wei, ZHOU Jian, ZHANG Bi-min, XU Shan-fa . 2020. Geochemical Abundance and Spatial Distribution of Lithium in China: Implications for Potential Prospects[J]. Acta Geoscientica Sinica, 41(6): 797-806(in Chinese with English abstract).
- WANG Xue-qiu, SHEN Wu-Jun, ZHANG Bi-Min, NIE Lan-Shi, CHI Qing-hua, XU Shan-Fa. 2007. Relationship of geochemical blocks and ore districts: examples from Eastern Tianshan metallogenic belt, Xinjiang, China[J]. Earth Science Frontiers, 14(5): 116-123(in Chinese with English abstract).
- WANG Xue-qiu, CHI Qing-hua, LIU Hui-yan, NIE Lan-shi, ZHANG Bi-min. 2007. Wide-spaced sampling for delineation of geochemical provinces in desert terrains, northwestern China[J]. Geochemistry: Exploration, Environment, Analysis, 7(2): 153-161.
- WANG Xue-qiu, XU Shan-fa, CHI Qing-hua, LIU Xue-min. 2013. Gold geochemical provinces in China: a micro and nano scale formation mechanism[J]. Acta Geologica Sinica, 87(1): 1-8(in Chinese with English abstract).
- XIE Xue-jin, LIU Da-wen, XIANG Yun-chuan, YAN Guang-sheng. 2002. Geochemical blocks-development of concept and methodology[J]. Geology in China, 29(3): 225-233(in Chinese with English abstract).
- ZHANG Qin, BAI Jin-feng, WANG Ye. 2012. Analytical scheme and quality monitoring system for China Geochemical Baselines[J]. Earth Science Frontiers, 19(3): 33-42(in Chinese with English abstract).
- ZHANG Yi, NIE Feng-jun, JIANG Si-hong, HU Peng. 2003. Discovery of the Ouyu Tolgoi cooper-gold deposit in the Sino-Mongolia border region and its significance for mineral exploration[J]. Geological Bulletin of China, 22(9): 708-712 (in Chinese with English abstract).