2003年5月

滇西南耿马地区弄巴剖面早石炭世硅质岩 的地球化学特征及古地理意义

张 Λ^1 ,冯庆来¹,张志斌²,段向东²

(1.中国地质大学地球科学学院,湖北 武汉 430074;2.云南省地质矿产局地调院区域地质研究所,云南 玉溪 653100)

摘要:滇西南耿马地区弄巴剖面由不同时代、不同岩性的地层断片组成,其中早石炭世2个断片由玄武岩和灰白色、 紫红色放射虫硅质岩、硅质泥岩、凝灰岩组成。对硅质岩进行地球化学研究后发现,该地区硅质岩SiO2含量均在80% 以上 MnO/TiO2的平均值为0.58 Al/(Al+Fe+Mn)的平均值约为0.48 Ce/Ce*的平均值为0.91 ,与已知大地构造背 景的硅质岩地球化学特征对比,表明其为近大陆边缘的洋盆边缘型硅质岩。

关 键 词 滇西南 ;弄巴剖面 ;硅质岩 ;玄武岩 ;地球化学

中图分类号: P588.24+4 文献标识码: A 文章编号: 1671-2552(2003)05-0335-06

弄巴剖面位于滇西南耿马县城东弄巴村附近, 耿马县城至四排山乡公4~10km里程碑之间,南皮河 与剖面相伴(图1)。蓝朝华(1983)以该剖面为基础建 立南皮河组,时代定为晚二叠世。杨伟平等^[1]在该剖 面碎屑岩中发现晚泥盆世—早石炭世孢粉化石,认 为其时代不是晚二叠世,而是晚泥盆世—早石炭 世。贾进华^[2]对碎屑岩部分的沉积特征进行了研究, 认为属大陆边缘重力流沉积。冯庆来等^[3]根据放射 虫生物地层学研究成果,认为该剖面不是连续剖 面,是由不同时代、不同岩性的地层断片组成的。

2001年3—4月期间在耿马地区开展1:25万临沧 幅区域地质调查工作中,因公路改修,弄巴剖面露 头良好,笔者对其重新进行细致的实测,收集了大 量沉积学方面的资料及一批植物、牙形石、笔石和 放射虫等古生物化石。证实该剖面由7个地层断片 组成,碎屑岩组成的断片的时代为泥盆纪—早石 炭世,而不是晚二叠世(段向东等,出版中),玄武 岩与放射虫硅质岩组成的断片的时代为早石炭 世。为了查明与玄武岩共生的灰白色、紫红色硅质 岩的成因背景,对其进行了地球化学研究,并探讨 其古地理意义。

收稿日期 2002-11-30 ;修订日期 2003-02-22

地调项目:中国地质调查局项目"1:25万临沧幅区域地质调查"成果之一。

作者简介 :张凡(1979-),女,硕士研究生,古生物专业。E-mail z_ffff@sina.com.cn

1 硅质岩形成的地质背景和时代

昌宁-孟连构造带是特提斯-喜马拉雅褶皱带 中关键的构造带之一,许多地质学家认为该带可能 是扬子与滇缅马地块之间主缝合线的位置^[4-7]。昌 宁-孟连构造带主体成南北向延伸,耿马弄巴地区 处于该带的西侧,近年来受到越来越多的关注。

弄巴剖面是由7个主要地层断片组成的断片 型地层体。其中断片3和5主要为灰绿、浅灰色致密 状玄武岩和灰白色中、薄层状硅质岩、紫红色薄层 状硅质泥岩、泥质硅质岩、浅灰色薄层状凝灰岩 (图2)。玄武岩呈块状结构,绿泥石化、帘石化现象 普遍。新鲜面可见长石呈短-长柱状自形晶搭成的 格架,内充填暗色矿物。与玄武岩共生的灰白、紫 红色硅质岩中含早石炭世放射虫化石Albaillella cartalla Ormiston et Lane Albaillella paradoxa Deflandre, Entactinia parva Won Entactinia vulgaris Won Entactinia variospind Won) Entactinia comets Foreman Astroentactinia multispinosa (Won) Belowea variabilis (Ormiston et Lane) Latentifistula ruestae (Ormiston et Lane), Latentifistula plenespongiosa (Won)。凝灰岩中含早石炭世牙形石Neorhipidognathus sp. Hindeodella sp. H. cf. germana Holms Scaliognathus anchoralis Branson & Mehl,

2 硅质岩样品特征

为了示踪岩石来源和确定大地构造属性,笔者

选取8个硅质岩样品进行了岩石地球化学研究。8 件样品采自7个不同层位,分属于断片3和5。这2个 地层断片的岩性特征为由紫红色(LC-16-2),灰白 色中—薄层状放射虫硅质岩、泥质硅质岩、硅质泥 岩与灰绿、灰白色薄层状凝灰岩组成的韵律性基 本层序。硅质岩样品挑选出的放射虫化石的含量 明显不同,部分放射虫化石因重结晶已无法鉴定, 但部分个体外形轮廓仍较清楚。样品LC-37-4放射 虫含量高达60%~70%,而样品LC-16-2,LC-35-2放 射虫稀少,含量约10%,其余样品放射虫化石含量适 中。这些岩石样品新鲜致密,未见任何脉体。

3 硅质岩地球化学特征及沉积环境

硅质岩是确定沉积盆地大地构造位置和古水深 条件最有意义的岩石类型。研究硅质岩岩石地球化 学特征是确定其沉积构造背景的有效方法。下面根 据大量分析结果,通过与硅质岩成因有关元素的计 算,利用定量类比和相关图解的手段,展示本区硅质 岩成因的地球化学标志特征。

3.1 常量元素

常量元素不仅能够用于硅质岩的硅质来源研究,而且也是沉积盆地古地理位置研究的重要手段。 样品的全岩常量元素分析由中国地质大学(武汉)分 析测试中心完成,采用X射线荧光光谱(XRF)法分 析测定,分析结果见表1。

Fe、Mn、Al等主要元素的含量对于区分热液成 因硅质岩与生物成因硅质岩具有重要意义。硅质岩

290° <

图2 云南耿马地区弄巴剖面实测简图

Fig. 2 Measured section of the Nongba section in the Gengma area, Yunnan Province
剖面位置见图1。1—硅质岩 2—硅质泥岩 3—凝灰岩 4—玄武岩 5—粉砂岩 5—泥岩 7—粉砂质泥岩 8—细砂岩;
9—硅质泥质砾岩;10—复成分砾岩;11—构造角砾岩;12—辉绿岩;13—角度不整合界线/分层线;14—逆断层;
15—放射虫;16—植物;17—笔石;18—牙形石;Dd1~Dd7—地层断片号;Q—第四系更新统

Table 1				Analytic result of major elements of cherts						
	样号(代号)	SiO_2	Al_2O_3	TFe_2O_3	MnO	${\rm TiO}_2$	Al/(Al + Fe + Mn)	Fe/Ti	MnO/TiO_2	
	LC – 16 – 2(1)	81.95	6.72	3.37	0.12	0.39	0.59	10.08	0.31	
	LC – 17 – 3(2)	85.41	4.00	3.77	0.36	0.35	0.42	12.57	1.03	
	LC – 24 – 4(3)	89.36	3.22	2.94	0.08	0.15	0.45	22.87	0.53	
	LC – 33 – 4(4)	67.34	8.76	7.90	0.54	1.04	0.44	8.86	0.52	
	LC – 35 – 2(5)	74.63	7.33	4.78	0.60	0.47	0.50	11.86	1.28	
	LC - 36 - 5(6)	82.47	4.76	3.93	0.10	0.37	0.47	12.39	0.27	
	LC – 37 – 4(7)	80.41	6.38	4.26	0.12	0.53	0.52	9.38	0.23	
	LC – 37 – 7(8)	83.76	5.10	2.55	0.15	0.34	0.59	8.75	0.44	

表1 硅质岩常量元素分析结果

注:氧化物含量为%

中Fe、Mn的富集主要与热液的参与有关,而Al的富 集则与陆源物质的介入有关。Bostrom等^[8]提出,海 相沉积中Al/(Al+Fe+Mn)值是衡量沉积物中热液 沉积物含量的标志,这个比值随着沉积物中热液沉 积物的减少而增加。Adachi等¹⁹和Yamamoto等¹⁰指 出这个比值在0.01(纯热液成因)到0.60(纯生物成 因)之间变化。从表1中可以看出,研究区硅质岩Al/ (Al+Fe+Mn)的平均值约为0.48,最大值为0.59,更 接近生物型。比值略高的硅质岩远离火山岩、富含 放射虫化石,可见必然是生物作用参与的结果。 Adachi等^{[9}和Yamamoto等^{[10}还拟定了Al-Fe-Mn三 角图解进行判别 发现所有热液成因硅质岩的比值 均落入图解的富Fe端,生物成因硅质岩的比值均落 入图解的富Al端。把研究区样品的Al、Fe、Mn的数据 投入该图(图3)中,大多数点也落在生物成因硅质岩 区,说明本区硅质岩以生物成因为主。

K.Bostrom^[11]根据现代海洋沉积物研究,还提 出了Fe/Ti-Al/(Al+Fe+Mn)的图解,将现代海洋

R Mn Fе 图3 硅质岩的Al-Fe-Mn图解^[9] Fig. 3 Al-Fe-Mn diagram of cherts A—生物成因硅质岩区; B—热水沉积硅质岩区

沉积物划分为生物、陆源和热液3种成因类型。把 研究区样品的Al/(Al+Fe+Mn)和Fe/Ti比值投入此图 (图4)中,样品点全部落在生物和陆源成因硅质岩 区之间。

MnO/TiO2比值也可作为判断硅质来源及沉 积盆地古地理位置的重要指标。Mn常作为来自大 洋深部物质的标志,离陆较近的大陆坡和陆缘海 沉积的硅质岩的MnO/TiO2比值偏低,一般均小于 0.5;而开阔大洋中的硅质沉积物的比值则比较高, 可达0.5~3.5^[12]。表1所列本区硅质岩的MnO/TiO。 平均比值为0.58,该比值小于0.5的样品有4件,比

值大于0.5的4件样品中,有2件稍大于0.5,2件稍大 于1。显然,这些样品在沉积过程中,部分受陆源影 响明显,部分受陆源影响则很弱。

Murray^{I13}认为,Al和Ti与陆缘Si关系密切,可作 为陆源物质注入的良好标志,Fe在洋脊附近的富金 属沉积物中富集,可作为洋盆扩张中心热液注入的 标志,根据Al、Ti、Fe和Si氧化物比值的相互关系,提 出了区分洋脊硅质岩和大陆边缘硅质岩的判别图 (图5)。从图5中可以发现研究区大多数样品点落在 大陆边缘区内。

如果把表1所列的Al/(Al+Fe+Mn),Fe/Ti和 MnO/TiO₂3种比值作为硅质岩形成背景的地球化 学指标进行比较,同时结合3种判别图解,不难看出 它们的变化趋势的吻合和差别,清楚地反映出,本 区硅质岩的硅质来源于陆坡区,与生物参与作用有 密切关系,并形成于远洋的大陆边缘区和近大陆边 缘的洋盆中。

3.2 稀土元素

研究区样品的微量和稀土元素分析在中国地 质大学(武汉)国土资源部壳幔体系组成、物质交换 及动力学开放研究实验室完成,采用ICP-MS法分 析测定。微量和稀土元素分析中的样品处理与制备 均由笔者完成。分析结果见表2。硅质岩沉积环境的 稀土元素研究,最早由Shimizu等(1977)开始,以后 Steinberg等(1983),Murray等^[14]也采用REE方法研 究硅质岩的沉积环境。近年来国内也有些学者在尝 试。大量研究已经证明,稀土元素是硅质岩沉积背 景研究的最有效手段之一,这是由稀土元素的自身 特征、来源及其在海水中的变化规律所决定的。

Murray等^[14]根据加利福尼亚海岸带的Franciscon岩系、Claremont组和Monterey组层状燧石和页 岩的稀土元素研究,指出扩张洋中脊区(400 km以 内)沉积的燧石、页岩以极小的Ce/Ce*(约0.29)为 特征,洋盆区的Ce/Ce*以中等值(约0.55)为特征, 而大陆边缘区的Ce/Ce*值很大(0.90~1.30)。本区 硅质岩具有弱的Ce异常值,Ce/Ce*值为0.85~1.01 (表2,图6),平均0.91,为大陆边缘型硅质岩。

Murray^[13]将稀土元素与常量元素结合,提出燧 石和页岩的沉积背景研究的经验图解,把它们的 沉积背景划分为大陆边缘、远洋和洋中脊3种类型 (图7)。从图7中可以发现研究区样品大多数点落 在大陆边缘地区,表明本区硅质岩沉积背景为大

Fig. 5 Scatter diagram of major element ratios

陆边缘环境。

4 讨 论

研究区硅质岩的产出和地球化学组合的独特之 处,显然与一般稳定的正常沉积岩系所形成的硅质 岩系不同,反映出硅质岩的形成和本区的地质构造 演化密切相关。

硅质岩的地球化学特征显示,弄巴剖面中与玄 武岩共生的灰白色、紫红色放射虫硅质岩部分不是 形成于典型的大陆边缘环境中,而是形成于近大陆 边缘的洋盆边缘环境。显然,这些样品在沉积过程中 均受到陆源物质的影响,其中部分受陆源影响明显,

			•					
样号	LC – 16 – 2	LC – 17 – 3	LC – 24 – 4	LC - 33 - 4	LC - 35 - 2	LC - 36 - 5	LC – 37 – 4	LC – 37 – 7
Be	1.42	1.11	0.51	1.71	1.94	1.47	1.15	1.45
Sc	11.1	8.39	3.86	15.0	10.4	7.22	9.04	5.43
V	34.2	43.0	29.9	59.7	68.5	51.5	86.7	46.4
Co	7.16	31.2	8.31	41.6	12.9	9.17	10.0	5.85
Ni	48.2	116	61.5	148	57.6	43.1	31.1	13.9
Cu	68.9	92.3	57.5	177	87.9	63.5	92.7	66.2
Zn	38.6	55.2	27.5	87.4	67.2	45.5	49.5	41.9
Ga	12.0	12.6	5.83	20.4	18.7	13.7	10.3	11.3
Rb	86.5	36.1	18.6	73.6	80.5	56.2	60.1	49.6
\mathbf{Sr}	27.4	22.9	13.1	33.1	23.8	20.7	19.3	23.3
Y	10.4	12.6	6.67	25.5	15.6	10.2	11.2	21.9
Nb	7.35	5.14	4.27	12.4	10.6	8.25	7.51	22.2
\mathbf{Cs}	3.91	2.13	0.79	6.90	8.22	4.32	4.94	3.08
Ba	348	168	222	193	256	252	227	191
La	14.0	9.75	11.2	21.6	38.9	21.9	17.7	44.9
Ce	29.9	22.8	20.8	55.9	75.6	35.7	34.2	78.8
\mathbf{Pr}	2.97	2.55	2.73	7.20	8.38	3.49	4.28	8.83
Nd	10.9	10.2	11.1	29.4	31.1	12.9	16.0	30.4
\mathbf{Sm}	2.22	2.26	2.19	6.61	5.33	2.34	3.10	4.12
Eu	0.59	0.41	0.41	1.21	0.84	0.54	0.58	0.62
Gd	2.00	1.79	1.59	4.91	4.51	2.23	2.66	4.32
Tb	0.35	0.35	0.25	0.94	0.74	0.36	0.45	0.63
Dy	2.10	1.95	1.31	5.26	3.74	2.09	2.53	3.79
Ho	0.43	0.42	0.26	1.01	0.67	0.45	0.52	0.84
Er	1.17	1.09	0.77	2.62	1.94	1.16	1.37	2.65
Tm	0.18	0.17	0.13	0.40	0.30	0.18	0.22	0.43
Yb	1.29	1.28	0.98	2.70	2.20	1.31	1.53	3.22
Lu	0.20	0.21	0.16	0.41	0.34	0.21	0.24	0.52
Hf	2.48	2.35	0.96	3.81	2.52	2.20	2.28	3.29
Та	0.71	0.42	0.23	1.07	0.85	0.69	0.66	1.12
Pb	6.60	2.56	2.04	7.09	3.82	2.64	4.45	3.62
Th	6.76	3.16	1.59	6.38	8.73	5.69	5.93	4.82
U	0.81	0.61	0.30	0.84	0.79	0.56	1.00	2.21
δCe	1.0056	0.9944	0.8171	0.9662	0.9096	0.8688	0.8561	0.8560

表 2 硅质岩的微量元素和稀土元素分析结果(铈异常值 NASC 标准化, 据 Haskin 等, 1968) Table 2 Analytic results of trace elements and REE of cherts

注:元素含量为10⁻⁶

部分影响则很弱。

在硅质岩与玄武岩沉积序列的西部发现了同时 代的碎屑岩沉积序列,前人^[12]对碎屑岩的时代、沉 积特征以及生物地层学的研究结果表明,弄巴剖面 碎屑岩的时代是晚泥盆世—早石炭世,其沉积特征 属大陆边缘重力流沉积。这些碎屑岩为深水环境的 洋盆边缘沉积提供了大量的细碎屑和泥质。随着火 山的喷发与沉积的不断演化,形成了玄武岩与硅质 岩、硅质泥岩、凝灰岩构成的沉积韵律,这些沉积韵 律一般代表了大洋盆地相沉积。在针对这些沉积韵 律所进行的硅质岩沉积地球化学研究结果中,由于 陆源物质不同程度地加入,或多或少地影响了硅质 岩的地球化学指标的特征。因而部分硅质岩的地球 化学指标反映出倾向于大陆边缘的特征,但是同时 部分样品又具有洋盆沉积物的地球化学特征。

由上可见,滇西南弄巴剖面早石炭世沉积相及

沉积地球化学研究指示早石炭世弄巴地区发育了 被动陆缘大陆坡至深海盆地边缘构造环境的完整 沉积序列。

参考文献:

- [1] 杨伟平,贾进华. 滇西耿马四排山地区地质新认识[J] 地层学 杂志,1995,19(1)62~71.
- [2] 贾进华. 滇西昌宁-孟连带南皮河群地层、沉积特征及其构造 古地理意义[J] 岩相古地理, 15(4):1995, 21~27.
- [3] 冯庆来,叶玫. 造山带区域地层学研究的理论、方法与实例剖 析[M] 武汉:中国地质大学出版社 2000.36~56.
- [4] 李达周,张旗,张魁武.云南孟连地区火山岩岩石化学和地球 化学特征及其地质意义[A]见:中国科学院青藏高原综合科

学考察队编. 青藏高原研究 横断山考察专集(2]C] 北京: 科学出版社 ,1986.137~145.

- [5] Zhang Qi, et al. Preliminary study of Paleo-Tethyan ophiolites in Hengduan Mountains Region(HMR), China[J] Jour. SE Asian Earth Sci., 1989, 3 249~254.
- [6] 刘本培,冯庆来. 滇西昌宁-孟连和澜沧江带古特提斯多岛洋 构造演化[1] 地球科学,1993,18(5)529~539.
- [7] 方宗杰,周志橙,林敏基.关于滇西地质的若干新认识[J] 科 学通报,1990,35(5)363~365.
- [8] Bostrom K, Peterson M N A. The origin of Al-poor ferromaganoan sediments in areas of high heat flow on the East Pacific Rise[J] Mar. Geol. 1969 7 :427~447.
- [9] Adachi M, Yamamoto K, Sugisaki R. Hydrothermal chert and associated siliceous rocks from the Northern Pacific, their geological significance as indication of ocean ridge activity [J] Sedimentary Geology, 1986 A7 :125~148.
- [10] Yamamoto K. Geochemical characteristics and depositional environments of chert and associated rocks in the Franciscan and Shimanto Terranes J]Sediment. Geol. ,1987 52 65~108.
- [11] Bostrom K Kraemer T , Gartner S. Provenance and accumulation rates of opaline silica , Al , Ti , Fe , Mn , Cu , Ni and Co in Pacific pelagic sediments[J] Chem. Geol. ,1973 ,11: 123~148.
- [12] 王安东,陈瑞君. 雅鲁藏布缝合带硅岩的地球化学成因标志及 其地质意义[J] 沉积学报,1995,13(1) 27~31.
- [13] Murray R W. Chemical criteria to identify the depositional environment of chert : general principles and applications [J] Sedimentary Geology ,1994 ,90 213~232.
- [14] Murray R W Buchholtz ten Brink M R Jones D L, et al. Rare earth elements as indicates of different marine depositional environments in chert and shale[J] Geology ,1990 ,18: 268~271.

Geochemical characteristics and paleogeographic significance of Early Carboniferous cherts at the Nongba section in the Gengma area southwestern Yunnan

ZHANG Fan1 , FENG Qinglai1 , ZHANG Zhibin2 , DUAN Xiangdong2

(1. Faculty of Earth Sciences, Chinese University of Geosciences, Wuhan 430074, Hubei, China;

2. Institute of Regional Geology, Geology Survey Institute, Yunnan Bureau of Geology and

Mineral Exploration and Development, Yuxi 653100, Yunnan, China)

Abstract : The Nongba section in the Gengma area , southwestern Yunnan , consists of stratal fragments of varying age and lithology , of which two Early Carboniferous fragments are composed of basalt and graying white and purplish red radiolarian cherts , siliceous mudstone and tuff. Geochemical study of cherts indicates the following : the SiO₂ content in the cherts is >80% , the average MnO/TiO_2 ratio is 0.58 , the average Al/(Al+Fe+Mn) ratio is 0.48 and the average Ce/Ce^* ratio is 0.91. A comparison with the geochemical characteristics of cherts in the known tectonic setting indicates that they are cherts of oceanic basin-margin type near continental margins.

Key words : southwestern Yunnan ; Nongba section ; chert ; basalt ; geochemistry