宁夏西吉盆地花岗岩地球化学特征、锆石 U-Pb 年龄及其地质意义

吴文忠,马瑞赟,潘进礼,王忠禹 WU Wenzhong, MA Ruiyun, PAN Jinli, WANG Zhongyu

宁夏回族自治区地质调查院,宁夏银川 750021 Ningxia Institute of Geological Survey, Yinchuan 750021, Ningxia, China

摘要:对北祁连山东段宁夏西吉盆地花岗岩地球化学特征和U-Pb年龄进行研究,并与区域上中酸性岩体进行对比。西吉盆 地花岗岩属高钾钙碱性系列,具有富钠、过铝质的特征,LREE/HREE=10.89~11.93,轻稀土元素相对富集,分馏明显,重稀土 元素分馏不明显,具有陆缘弧岩石的特点。岩石负Eu异常不明显,轻、重稀土元素分馏明显(La_N/Yb_N=10.90~15.41)。在微量 元素组成上,花岗岩富集大离子亲石元素Rb、Th、Pb、La,亏损Sr、Ta、Nb、Ce、Ti元素,Pr、Nd、Sm、Dy弱富集,曲线形态具有造 山花岗岩的特征,并具有负 Nb异常,属正常大陆弧花岗岩。西吉盆地花岗岩成因类型为I型,形成于陆缘弧环境,为板块碰撞 造山作用的产物,岩浆来源于下地壳的部分熔融。通过锆石U-Pb定年获得花岗岩结晶年龄为434.3±9.0Ma,为早志留世,属 加里东期岩浆侵入活动的产物。西吉盆地花岗岩与北祁连造山带东段南华山—屈吴山一线的花岗闪长岩体及甘肃老虎山闪 长岩体同属北祁连岩浆弧带,是同期岩浆活动的产物,与板块俯冲消减作用有关,间接证明了西吉盆地属于北祁连造山带。 关键词:西吉盆地;花岗岩;地球化学特征;U-Pb年龄;北祁连山 **中图分类号**:P588.12^{*}1;P597^{*}.3 **文献标志码**:A **文章编号**:1671-2552(2018)07-1271-08

Wu W Z, Ma R Y, Pan J L, Wang Z Y. Geochemical characteristics and zircon U–Pb ages of the granite in Xiji basin of Ningxia. *Geological Bulletin of China*, 2018, 37(7):1271–1278

Abstract: In this paper, the authors studied geochemical characteristics and U–Pb age of the granite in Xiji basin of Ningxia in North Qilian Mountains and made a comparative research on the acid rocks of this area. The granite in the Xiji basin is a series of high potassium calc–alkaline rocks and shows sodium–rich and aluminium characteristics. LREE/HREE=10.89 ~ 11.93, LREE are relatively rich, LREE fractionation is obvious, and HREE earth distillation is not obvious with characteristics of the continental arc rock. The negative anomaly of Eu is not obvious, REE data for the granodiorite show strongly fractionated REE patterns (La_N/Yb_N= 10.90 ~ 15.41). As for the composition of trace elements, the granite is rich in LILE Rb, Th, Pb and La, but poor in Sr, Ta, Nb, Ce and Ti, with weak enrichment of Nd, Sm and Dy. The curve of trace elements has the characteristics of orogenic granite with Nb negative anomaly, suggesting normal continental arc granite. The genetic type of granite in the Xiji basin is of I type, which formed in the continental arc environment and was the product of the collision of plates. Its magma was derived from the partial melting of the lower crust. U–Pb zircon dating by LA–ICP–MS shows that magma crystallization age is 434.3 \pm 9.0Ma, suggesting early adakite and a product of the magma intrusion of Caledonian period. The granite in the Xiji basin, the granodiorite in Nahuashan – Juewushan area of eastern North Qilian Mountain and the diorite of Laohushan area in Gansu Province are the same products as the northern Qilian magmatic arc belt and were formed by lava activity related to the plate subduction. It is thus proved that the Xiji basin belonged to the North Qilian orogenic belt indirectly.

Key words: the Xiji basin; granite; geochemical characteristics; zircon U-Pb ages; North Qilian Mountain

收稿日期:2017-06-05;修订日期:2017-11-02

资助项目:宁夏地质矿产资源勘查开发创新团队项目(编号:宁地科发[2016]1号)

作者简介:吴文忠(1981-),男,硕士,工程师,从事矿产勘查工作。E-mail: wuwz1981@126.com

西吉盆地位于北祁连造山带东段,阿拉善地 块南缘,鄂尔多斯地块西缘,地处"秦-祁-贺"三 岔裂谷系交汇部位,大地构造位置特殊,构造变 形复杂。自20世纪90年代至今,依托矿产勘查 项目及专题研究,前人对北祁连造山带进行了系 统深人的研究,取得了较多重要成果。较一致的 认识是,自元古代以来,北祁连经历了陆壳形成-裂解-俯冲、碰撞造山-陆内叠覆造山等复杂的 地质发展过程,形成多期聚合与离散的复合造山 带[1-13],并在构造演化过程中伴随有各种类型、多 期次的花岗岩浆活动^[14-17]。然而,对北祁连东段 位于宁夏境内的部分,即北祁连山东端的研究较 少,且都是针对海原南华山、西华山海原群变质 岩的研究^[13,18-23]。位于北祁连东段的西吉盆地被

第四系覆盖,几乎无基岩出露,对西吉盆 地的研究尚处于空白,现有的认识都是 根据区域资料进行的推断,认识较模 糊。因此,本文系统分析西吉盆地钻孔 所见花岗岩体的地球化学特征、时代归 属,并与邻区花岗岩进行对比,为北祁连 东段的演化提供基础资料,同时为西吉 盆地的地质构造演化分析提供重要的参 考资料。

1 地质概况

研究区全部被新生界覆盖,根据钻孔 揭露情况,西吉盆地新生界覆盖层之下为 斜长角闪岩、变粒岩、绿片岩、石英片岩等 区域变质岩,以及侵入其中的基性、中酸性 岩体。区域上,在研究区北部海原县南华 山一甘肃崛吴山一带有花岗闪长岩体零星 分布(图1)。本次花岗岩样品采自钻孔岩 心(图2-a),钻孔揭露的花岗岩岩体厚度 超过500m。

镜下观察表明,西吉盆地花岗岩的主要矿物成分为斜长石(45%~50%)、石英(35%~45%)、黑云母(8%~10%)、钾长石(2%~8%),副矿物为磷灰石、锆石。斜长石为更长石,呈半自形柱状,绢云母化,少数局部伴绿帘石化。石英以粒状他形为主。黑云母多呈鳞片状,局部绿泥石化(图2-b)。

2 花岗岩地球化学特征

2.1 主量元素

西吉盆地花岗岩主量、微量和稀土元素含量见 表1和表2。

花岗岩主量元素分析结果显示,样品SiO₂含量为66.94%~70.90%,Al₂O₃为13.43%~15.12%,CaO为1.82%~4.00%,TFe为2.31%~2.77%,P₂O₅为0.085%~0.098%,MnO为0.091%~0.16%,TiO₂为0.22%~0.29%,MgO为0.71%~0.99%,Na₂O为3.23%~4.27%,K₂O为2.23%~2.70%。Na₂O>K₂O,属钠质。在SiO₂-K₂O图解(图3-a)上,样品点均落于高钾钙碱性系列区域,在A/CNK-A/NK图解(图3-b)上,所有样品点落在过铝质

图1 西吉盆地区域地质简图

Fig. 1 Regional geological map of the Xiji basin

%

表1 西吉盆地花岗岩主要氧化物含量及特征参数 Table 1 Main oxide content and characteristic parameters of the granite in the Xiji basin

序号	样品号	岩石名称	SiO_2	CaO	MgO	Al_2O_3	FeO	Fe_2O_3	K_2O	Na_2O	${\rm TiO}_2$	P_2O_5	MnO	H_2O^-	$H_2O^{\scriptscriptstyle +}$
1	GS1	花岗岩	70.90	14.32	3.70	2.70	2.36	0.92	0.087	0.26	0.098	0.087	1.49	0.49	1.56
2	XW1	花岗岩	67.76	13.62	4.08	2.42	4.00	0.86	0.089	0.24	0.10	0.089	1.47	0.17	2.78
3	GS3	花岗岩	66.94	15.32	3.23	2.48	3.20	0.92	0.096	0.29	0.099	0.096	1.57	0.17	3.58
4	XW2	花岗岩	69.72	14.06	4.03	2.23	2.88	0.91	0.090	0.25	0.11	0.090	1.47	0.19	3.01
5	GS5	花岗岩	67.28	13.78	3.97	2.40	3.99	0.99	0.094	0.26	0.15	0.094	1.62	0.40	2.55
6	XW3	花岗岩	69.02	13.99	4.27	2.10	2.91	0.78	0.094	0.25	0.13	0.094	1.65	0.19	3.35
7	GS7	花岗岩	68.74	13.43	4.05	2.40	3.21	0.72	0.085	0.22	0.16	0.085	1.13	0.37	2.48
8	XW4	花岗岩	69.92	13.92	4.09	2.47	2.21	0.81	0.090	0.24	0.11	0.090	1.34	0.18	3.52
9	GS9	花岗岩	69.48	15.12	3.80	2.58	1.82	0.88	0.098	0.26	0.091	0.098	1.54	0.06	2.79
10	XW5	花岗岩	68.36	14.30	3.42	2.52	3.27	0.71	0.086	0.24	0.11	0.086	1.36	0.03	3.27
11	GS11	花岗岩	68.28	14.46	4.00	2.24	2.95	0.71	0.091	0.25	0.11	0.091	1.42	0.17	2.42

区域。总体看,岩石整体呈高硅、富钠、过铝的 特征。

2.2 稀土元素

西吉盆地花岗岩稀土元素总量 Σ REE=114.84× 10⁻⁶~182.59×10⁻⁶,轻稀土元素含量LREE=104.48× 10⁻⁶~168.48×10⁻⁶,重稀土元素含量HREE=9.78× 10⁻⁶~14.12×10⁻⁶。LREE/HREE=10.89~11.93,大 于1,轻稀土元素相对富集。球粒陨石稀土元素标 准化图解(图4)呈右倾型,属轻稀土元素富集型,轻 稀土元素分馏明显,重稀土元素分馏不明显,具有 陆缘弧岩石的特点。

2.3 微量元素

花岗岩微量元素蛛网图(图5)显示,岩石富集 大离子亲石元素 Rb、Th、Pb、La,亏损 Sr、Ta、Nb、 Ce、Ti元素,Pr、Nd、Sm、Dy弱富集。曲线形态具有 造山花岗岩的特征。造山花岗岩又划分为正常大 陆弧花岗岩和成熟大陆弧花岗岩,大陆弧背景下的 2种造山花岗岩均具Sr、Ti等元素的亏损,但成熟大 陆弧花岗岩不具Nb亏损,而正常大陆弧花岗岩具 有Nb的负异常,这种花岗岩是增生在大陆边缘的 新的地壳¹²⁶¹。因此,西吉盆地花岗岩应属正常大陆 弧花岗岩,是板块碰撞造山作用的产物。

2.4 岩石成因及构造环境

大量实验研究结果表明,I型花岗岩的P₂O₅含 量随SiO₂含量的增加而降低,特别是当SiO₂大于 75%时,绝大多数样品的P₂O₅小于0.05%;而S型花 岗岩的SiO₂和P₂O₅分布在一个非常分散的"三角 形"区域,从偏基性端的P₂O₅~0.15%向超酸性端的

图 2 花岗岩手标本照片(a)和镜下照片(b) Fig. 2 Photograph of hand specimen (a) and photo under the microscope (b) of granite

2个方向演化,P₂O₅从 0.02%变化到 0.42%,大多数酸 性 S 型花岗岩的 P₂O₅大于 0.1%^[28]。在 K₂O-Na₂O 图解(图 6-a)中,西吉盆地花岗岩的 11个样品点均 投入 I 型区域。花岗岩体 P₂O₅含量较低(0.085% ~ 0.098%),明显不同于 S型花岗岩 P₂O₅含量高(大于 0.1)的特征。在 SiO₂-P₂O₅图解(图 6-b)上,P₂O₅随 着 SiO₂的增加而降低,呈反相关关系,均与 I 型花岗 岩演化趋势一致。综上认为,宁夏西吉盆地钻孔所 见花岗岩体的成因类型为 I 型。

在R₁-R₂构造环境判别图解(图6-c)上,多数 样品点落入活动板块边缘(板块碰撞前)花岗岩区, 少数样品点落入碰撞花岗岩区。在(Y+Nb)-Rb 图解(图7-a)中投入火山弧花岗岩和同碰撞花岗岩

图 5 西吉盆地花岗岩微量元素原始地幔标准化蛛网图^[27] Fig. 5 Trace elements spider diagram of the granite in the Xiji basin

分界线附近,在Y-Nb图解(图7-b)中投入火山弧 花岗岩和同碰撞花岗岩区。按Barbarin构造分类^[29], 属岛弧高钾钙碱性花岗岩类(KCG),为板块俯冲作 用的产物。从区域构造分析,宁夏西吉盆地所在区 域为北祁连早古生代造山带东端的白银-西吉岛 弧,晚奥陶世晚期-志留纪早期,西吉盆地属于板 块汇聚环境,综上分析认为,西吉盆地花岗岩体形 成于陆缘弧环境,是板块俯冲作用的产物。

- 3 花岗岩U-Pb测年
- 3.1 分析方法

锆石分选在河北省地质矿产局廊坊实验室完成。锆石阴极发光(CL)照相、锆石U-Pb定年在武

汉上谱分析科技有限责任公司完成,利用LA-ICP-MS方法测定。分析所用激光剥蚀系统为GeoLas Pro,等离子体质谱仪为Agilent7700,激光能量80mJ,频率5Hz,激光束斑直径32μm。锆石U-Pb同位素测定过程中元素分馏效应采用标样91500为外标进行校正,具体分析条件及流程见Liu等^[31-32]。

3.2 测年结果

西吉盆地花岗岩(图2)所选锆石在双目镜下 为无色透明,自形程度较好,样品编号为TW1。阴 极发光图像(图8)显示,TW1中的锆石全部为具有 典型岩浆结晶环带的锆石。对23颗锆石进行了有 效的U-Pb同位素年龄测定,其中20个数据点的 ²⁰⁶ Pb/²³⁸U年龄加权平均值为434.3±9.0Ma(95%置 信度)(图9)。该年龄代表西吉盆地花岗岩的岩浆结 晶年龄,为早志留世,属早古生代加里东期岩浆侵入 活动的产物。

4 区域对比

区域上,西吉盆地钻孔所见花岗岩体可以与北 祁连造山带东段的南华山一甘肃崛吴山一线带状 展布的花岗闪长岩体进行对比。南华山一崛吴山 花岗闪长岩成因类型为I型,具有大陆岛弧型花岗 岩特征。3组锆石U-Pb同位素年龄值分别为431± 5Ma、451+54/-32Ma和437±5Ma,甘肃崛吴山花岗 闪长岩中测得的全岩 K-Ar 同位素年龄值为 425.8Ma[®]。上述4组年龄说明,南华山一崛吴山花 岗闪长岩体侵位时代为加里东晚期,形成于早志留

表 2 西吉盆地花岗岩微量和稀土元素含量 Table 2 Trace and rare earth elements contents of the granite in the Xiji basin

					10 °
含量	XW1	XW2	XW3	XW4	XW5
Sc	1.2	1.2	1.2	1.2	1.2
Ba	946	1223	1066	1493	1009
Ti	2053	2319	2445	2469	2352
V	104	96.0	94.3	88.9	96.3
Cr	66.3	67.4	68.6	71.5	69.2
Со	8.6	8.5	8.7	8.1	8.0
Ni	4.7	1.8	2.0	2.6	2.2
Pb	7.4	10.5	19.1	8.8	10.0
Th	3.8	10.9	13.6	11.8	8.4
Rb	134	132	160	139	132
Zr	85.9	87.5	88.9	88.3	91.1
Hf	2.4	2.3	2.3	2.4	2.4
Nb	5.6	4.8	5.4	4.8	6.6
Та	0.4	0.4	0.6	0.5	0.5
Sr	264	340	228	341	389
Cu	26.7	27.3	27.6	26.4	26.4
La	27.5	26.8	35.5	35.9	43.0
Ce	51.0	50.4	65.7	67.7	80.7
Pr	5.57	5.37	6.99	7.35	8.91
Nd	18.2	17.8	23.0	24.1	29.5
Sm	3.18	3.1	3.89	4.24	5.15
Eu	0.96	1.05	1.08	1.35	1.26
Gd	2.83	2.78	3.37	3.65	4.47
Tb	0.44	0.44	0.52	0.58	0.66
Dy	2.55	2.7	2.98	3.36	3.7
Но	0.47	0.51	0.54	0.63	0.66
Er	1.47	1.62	1.69	1.87	2.01
Tm	0.22	0.25	0.26	0.28	0.29
Yb	1.54	1.76	1.82	1.93	2.00
Lu	0.25	0.29	0.3	0.31	0.32
Y	14.8	15.4	16	18.6	20.1
Σree	116.27	114.84	147.65	153.25	182.59
LREE	106.49	104.48	136.18	140.65	168.48
HREE	9.78	10.35	11.46	12.61	14.12
LREE/HREE	10.89	10.09	11.88	11.16	11.93
(La∕Yb) _№	12.8	10.9	14.03	13.36	15.41
δΕυ	0.95	1.07	0.89	1.03	0.78

世。常华进等^[33]认为,北祁连山东段(北掌山-屈吴 山-南华山)加里东晚期中-酸性侵入岩带可能是一 条埃达克岩条带,是由向北俯冲的老虎山弧后盆地 洋壳部分熔融形成的。位于北祁连造山带东段的 老虎山闪长岩侵位于晚奥陶世阴沟群砂板岩中,闪

图8 样品TW1锆石阴极发光图像

长岩的单颗粒锆石U-Pb年龄为423.5±2.8Ma,是早 志留世侵位的,老虎山闪长岩形成环境具岛弧或活 动陆缘环境的特征,是造山后侵位的,其成因可能 与岩石圈拆沉作用有关^[34]。

西吉盆地花岗岩体与北祁连造山带东段南 华山一崛吴山一线的花岗闪长岩体及甘肃老虎 山闪长岩体具有相同的地球化学特征和形成环 境,成因类型均为I型,均形成于活动陆缘的大陆 边缘岛弧环境,且年龄接近,属于志留纪,同属北 祁连岩浆弧带,是同期岩浆活动的产物,其成因 可能与岩石圈拆沉作用有关,是板块俯冲消减作 用的产物。

5 结 论

宁夏西吉盆地花岗岩成因类型为I型,具有陆缘弧岩石的特点,形成于陆缘弧环境,为板块碰撞

含量/10-6 ²³²Th

238U

660

821

359

784

1373

838

702

2515

287

222

926

1115

368

2281

281

905

1404

411

596

0.45

0.38

0.68

0.56

0.50

0.61

0.35

0.54

0.58

样品

编号

TW1-02 345

TW1-03 341

TW1-07 610

TW1-08 460

TW1-09 352

TW1-10 358

TW1-11 940

TW1-12 134

TW1-13 128

TW1-14 327

TW1-17 164

TW1-18 868

TW1-20 158

TW1-21 450

TW1-22 856

TW1-23 145

TW/1-24 321

TW1-25 1054 1812

TW1-15 1327 1662 TW1-16 568

TW1-19 2291 3390

TW1-05 1337 3890 TW1-06 142

Th/U		年龄/Ma										
	²⁰⁷ Pb/ ⁰⁶ Pb	1σ	$^{207}{\rm Pb}/^{235}{\rm U}$	1σ	$^{206}{\rm Pb}/^{238}{\rm U}$	1σ	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	$^{207}{\rm Pb}/^{235}{\rm U}$	1σ	$^{206}{\rm Pb}/^{238}{\rm U}$	1σ
0.52	0.05586	0.00128	0.5350	0.0133	0.06921	0.00090	456	51.8	435	8.8	431	5.4
0.42	0.05519	0.00131	0.5877	0.0160	0.07710	0.00121	420	53.7	469	10.3	479	7.3
0.34	0.05588	0.00096	0.4559	0.0096	0.05888	0.00068	456	37.0	381	6.7	369	4.1
0.40	0.05973	0.00152	0.7207	0.0187	0.08751	0.00100	594	54.5	551	11.0	541	5.9
0.78	0.05500	0.00126	0.5183	0.0120	0.06830	0.00073	413	50.0	424	8.0	426	4.4
0.33	0.05659	0.00108	0.4565	0.0105	0.05863	0.00108	476	42.6	382	7.3	367	6.6
0.42	0.05879	0.00145	0.5364	0.0135	0.06589	0.00062	567	53.7	436	8.9	411	3.8
0.51	0.05510	0.00136	0.5355	0.0136	0.07028	0.00086	417	58.3	435	9.0	438	5.2
0.37	0.05675	0.00115	0.5221	0.0107	0.06637	0.00066	483	46.3	427	7.2	414	4.0
0.47	0.05611	0.00166	0.5502	0.0166	0.07085	0.00088	457	64.8	445	10.9	441	5.3
0.58	0.05507	0.00176	0.5457	0.0180	0.07166	0.00097	417	70.4	442	11.8	446	5.8
0.35	0.05540	0.00111	0.5693	0.0125	0.07392	0.00083	428	44.4	458	8.1	460	5.0
0.80	0.05579	0.00114	0.5073	0.0113	0.06546	0.00088	443	44.4	417	7.6	409	5.4
0.51	0.05620	0.00122	0.5296	0.0119	0.06783	0.00082	461	48.1	432	7.9	423	5.0

表3 花岗岩锆石U-Th-Pb测试结果 Table 3 Zircon U-Th-Pb data of granite

0.0173 0.07220 0.00116

0.0111 0.06784 0.00079

0.07041

0.07277

0.07146

0.06762 0.00085

0.07415 0.00106

0.07599 0.00102

0.07140 0.00120

0.00100

0.00119

0.00081

造山作用的产物,岩浆来源于下地壳的部分熔融, 岩浆结晶年龄为434.3±9.0Ma(95%置信度)。西吉盆 地花岗岩与北祁连造山带东段的南华山一崛吴山 一线的花岗闪长岩体及甘肃老虎山闪长岩体同属 北祁连岩浆弧带,是同期岩浆活动的产物,为板块 俯冲消减作用的产物,也间接证明了西吉盆地属于 北祁连造山带。

0.05630 0.00166

0.05661 0.00101

0.05745 0.00106

0.05680 0.00193

0.05529 0.00114

0.05556 0.00113

0.00133

0.00168

0.00132

0.05571

0.05783

0.05601

0.5624

0.5350

0.5406

0.5535

0.5749

0.5837

0.5852

0.5519

0.5505

0.0115

0.0189

0.0156

0.0137

0.0190

0.0124

0.0141

参考文献

- [1]杜远生, 朱杰, 韩欣, 等. 从弧后盆地到前陆盆地-北祁连造山带 奥陶纪一泥盆纪的沉积盆地与构造演化[J]. 地质通报, 2004,23(9/ 10):911-917.
- [2]冯益民,何世平.祁连山大地构造与造山作用[M].北京:地质出版 社. 1996: 81-82.
- [3]夏林圻,夏祖春,徐学义.北祁连山早古生代洋脊-洋岛和弧后盆 地火山作用[J]. 地质学报, 1998, 72(4): 301-312.
- [4]冯益民. 祁连造山带研究概况——历史、现状及展望[]]. 地球科学

进展, 1997, 12(4): 307-314.

465

476

509

483

439

433

524

454

435

64.8

40.7

36.1

80.5

53.7

50.9

64.8

537

46.3

[5] 葛肖虹, 刘俊来. 北祁连造山带的形成与背景田. 地学前缘, 1996, 6(4): 223-230.

11.2

7.4

7.6

12.4

10.1

8.8

12.2

81

9.2

453

435

439

447

461

467

468

446

445

449

423

422

439

461

472

453

445

445

7.0

4.8

5.1

6.1

6.3

6.1

7.1

49

7.2

- [6]宋述光. 北祁连山俯冲杂岩带的构造演化[]]. 地球科学进展, 1997,12(4):340-350.
- [7]李文渊, 夏林圻, 夏祖春, 等. 北祁连早古生代弧后盆地火山作用 及成矿特点[]]. 地质论评, 1999,45:1048-1053.
- [8]张建新, 许志琴, 徐惠芬, 等. 北祁连加里东俯冲增生楔结构及动 力学[]]. 地质科学, 1998, 33(3): 290-301.
- [9]张旗, 王焰, 钱青. 北祁连早古生代是裂陷槽还是大洋盆——与葛 肖虹讨论[]]. 地质科学, 2000, 35(1): 121-128.
- [10] 左国朝. 北祁连中段早古生代双向俯冲碰撞造山模式剖析[J]. 地 球科学进展, 1997, 12(4): 315-323.
- [11]夏林圻,夏祖春,徐学义.北祁连山构造-火山岩浆演化动力 学[]]. 西北地质科学, 1995,16(1): 1-28.
- [12]张建新, 许志琴, 李海兵. 北祁连加里东造山带从挤压到伸展造 山机制的转换[]]. 长春地质学院学报, 1997, 27(3): 277-283.
- [13]李天斌,张学文,王成,等.北祁连山东段海原一带海原群变质岩 原岩恢复及其构造背景[]]. 地质通报, 2006, 25(1/2): 194-203.

- [14]吴才来,杨经绥,杨宏仪,等.北祁连东部两类1型花岗岩定年及 其地质意义[J]. 岩石学报,2004,20(30):425-432.
- [15]徐卫东,岳世东,张国成.北祁连西段黑下佬同碰撞花岗岩地质 特征[J].地质调查与研究,2007,30(2):110-114.
- [16]吴才来,徐学义,高前明,等.北祁连早古生代花岗质岩浆作用及 构造演化[]].岩石学报,2010,26(4):1027-1044.
- [17]秦海鹏. 北祁连造山带早古生代花岗岩岩石学特征及其与构造 演化的关系[D]. 中国地质科学院博士学位论文, 2012.
- [18]霍福臣, 郑昭昌. 宁夏海原地区海原群的时代对比[J]. 地质论评, 1988, 34(1): 1-9.
- [19]闫志强, 李天斌. 宁夏南华山-西华山大型韧性剪切带特征[J]. 西 北地质, 1991,12(2): 13-18.
- [20]王崇礼,李厚民,等.海原群变质地质及含矿性研究[M].西安:陕 西科学技术出版社,1996:1-60.
- [21]李天斌. 宁夏南华山-西华山北麓断裂最大水平位移质疑[J]. 中国区域地质, 1999, 18(4): 359-365.
- [22] 闫志强. 宁夏海原地区的元古宇[J]. 地层学杂志, 1994, 18(1): 30-38.
- [23] 王成, 李明涛, 马彦云. 海原岩群锆石 SHRIMP U-Pb 测年及时 代归属讨论[]]. 地质论评, 2014, 13(1): 13-17.
- [24]Rickwood P C. Boundary lines within petrologic diagrams which use oxides of major and minor elements[J]. Lithos, 1989, 22(4): 247-263.
- [25]Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5): 635–643.
- [26]李佐臣, 裴先治, 李瑞保, 等. 西秦岭糜署岭花岗岩体年代学、地球化学特征及其构造意义[J]. 岩石学报, 2013,29(8):2617-2634.

- [27]Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for Mantle composition and processes[J]. Geological Society, 1989, 42 (1):313–345.
- [28]Chappell B W. Aluminium saturation in I and S-type granites and the characterization of fractionated haplogranites[J]. Lithos, 1999, 46:535-551.
- [29]Collins W J , Beams S D, White A J R. Nature and origin of Atype granites with particular reference to Southeastern Australia Contrib[J]. Miner. Petro., 1982, 80: 189–200.
- [30]Barbarin B. A review of the relationships between granitoid types, their oirgins and their geodynamic environmets[J]. Lithos, 1999, 46: 605-626.
- [31]Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chem. Geol., 2008, 257: 34–43.
- [32]Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling- induced melt- peridotite interactions in the Trans- North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2010 ,51(1/2): 537-571.
- [33]常华进, 储雪蕾, 王金荣, 等. 被祁连山东段埃达克岩带 Cu、Au 成矿初探[J]. 西北地质, 2008, 41(3): 30-37.
- [34]钱青, 王岳明, 李蕙民, 等. 甘肃老虎山闪长岩的地球化学特征及 其成因[]]. 岩石学报, 1998,14(4):520-528.
- ①王成,陈国新,杨军宁,等.1:25万固原市幅区域地质调查报告. 宁夏回族自治区地质调查院,2004.