内蒙古扎鲁特盆地坤都地区满克头鄂博组流纹岩 锆石U-Pb年龄及岩石成因

张 超^{1,2},张渝金^{1,2},权京玉³,郭 威¹,郭建刚¹,王青召¹,李 伟¹,汪 岩¹, 宋维民¹,那福超¹,谭红艳¹

ZHANG Chao^{1,2}, ZHANG Yujin^{1,2}, QUAN Jingyu³, GUO Wei¹, GUO Jiangang¹,

WANG Qingzhao¹, LI Wei¹, WANG Yan¹, SONG Weimin¹, NA Fuchao¹, TAN Hongyan¹

1.中国地质调查局沈阳地质调查中心,辽宁沈阳 110034;

2.吉林大学地球科学学院,吉林长春 130061;

3.东北煤田地质局沈阳测试研究中心,辽宁沈阳 110016

1. Shenyang Institute of Geology and Mineral Resources, CGS, Shenyang 110034, Liaoning, China;

2. College of Earth Sciences, Jilin University, Changchun 130061, Jilin, China;

3. Shenyang Tests Research Center, Northeast China Coal Field Geology Bureau, Shenyang 110016, Liaoning, China

摘要:为研究內蒙古扎鲁特盆地坤都地区晚保罗世火山岩的构造属性,对研究区内流纹岩开展了锆石U-Pb定年和原位Lu-Hf 同位素研究。锆石U-Pb定年结果显示,流纹岩形成于151.2±1.2Ma,属于晚保罗世。岩石地球化学研究表明,火山岩具高硅富 碱、贫镁钙的特征,稀土元素总量为110.38×10⁻⁶~138.88×10⁻⁶,轻、重稀土元素分馏中等,弱负Eu异常(&Eu=0.72~0.98),微量元素 特征为富集Cs、Rb、Ba和轻稀土元素,强烈亏损Sr、P、Ti,相对亏损Nb、Ta, EH(t)值为-10.1~4.9,对应的地壳模式年龄(T_{DM}^C)为 1192~3639Ma,反映其岩浆来源于元古宙、太古宙地壳物质的部分熔融,之后经历矿物分离结晶作用。通过对比大兴安岭地区同 时代岩浆-构造活动,研究区满克头鄂博组流纹岩形成于后造山伸展背景,与蒙古-鄂霍茨克造山后伸展作用有关。 关键词:扎鲁特盆地;晚侏罗世;流纹岩;满克头鄂博组;锆石U-Pb定年;Hf同位素 中图分类号:P588.14⁺1;P597⁺.3 文献标志码:A 文章编号:1671-2552(2018)09-1633-11

Zhang C, Zhang Y J, Quan J Y, Guo W, Guo J G, Wang Q Z, Li W, Wang Y, Song W M, Na F C, Tan H Y. Zircon U–Pb geochronology and petrogenesis of rhyolites in Manketouebo Formation from the Kundu area in Jarud Basin, Inner Mongolia. *Geological Bulletin of China*, 2018, 37(9):1633–1643

Abstract: Age and tectonic implications of the Late Jurassic rhyolites in Kundu area of Jarud Basin were studied by using zircon U– Pb dating, in situ Lu–Hf isotopic analysis, petrographic analysis and other geochemical methods. LA–ICP–MS zircon U–Pb dating results show that the rhyolites were formed in Late Jurassic, with their formation age being 151.2±1.2Ma. The geochemical study suggests that rhyolites are rich in silicon and alkali, but poor in calcium and magnesia. The REE values of them are between 110.38×10⁻⁶ and 138.88×10⁻⁶, displaying medium LREE–enriched and HREE–depleted REE patterns [(La/Yb)_N=6.24~7.43], with weak negative Eu anomaly (δ Eu=0.72~0.98). The trace element geochemistry is characterized evidently by enrichment of Cs, Rb, Ba and LREE, strong depletion of Sr, P, Ti, and mediate depletion of Nb, Ta, with the $\varepsilon_{He}(t)$ values varying from –10.1~4.9, corresponding to T_{DM}^{-6} model ages of 1192~3639Ma, which shows that the rhyolite magma originated mainly from the partial melting of Proterozoic

收稿日期:2018-03-20;修订日期:2018-06-28

资助项目:中国地质调查局项目《内蒙古1:5万陶海营子等四幅区域地质矿产调查》(编号:DD20160048-04)、《太平洋构造域北段构造格局、演化历史研究及1:250万构造图编制》(编号:DD20160343-08)和《古亚洲洋构造域东段构造格局、演化历史研究及1:250万构造图编制》(编号:DD20160343-09)

作者简介:张超(1986-),男,在读博士生,从事区域地质调查工作。E-mail:congray@163.com

and Archean crustal rocks, and suffered fractional crystallization. Based on the above result, in combination with previous studies of the contemporaneous magma-tectonic activities in Da Hinggan Mountains, the authors hold that the rhyolites in Manketouebo Formation were formed in an extensional setting related to Mongolia Okhotsk orogenesis

Key words: Jarud Basin; Late Jurassic; rhyolites; Manketouebo Formation; zircon U-Pb dating; Hf isotope

火山岩作为油气的主要储集岩之一,已经成为 油气勘探的重要研究目标。近些年来,"松辽外围 中新生代盆地群油气地质综合调查"项目在大兴安 岭中南部大面积火山岩覆盖区发现扎鲁特盆地、龙 江盆地、突泉盆地、林西盆地、乌兰盖盆地5个油气 新区^①(图1-a)。其中扎鲁特火山-沉积盆地是晚古 生代地层之上发育的侏罗纪断陷盆地",火山岩储 层主要见于早侏罗世红旗组和中侏罗世新民组,随 之,将该盆地中生代火山岩的研究提到重要位置。 满克头鄂博组火山岩作为扎鲁特盆地油气盖层的 重要层位之一,还有许多研究需要深入,如火山岩 物质来源、年代学、形成的构造背景等。阿鲁科尔 沁旗坤都地区位于扎鲁特火山-沉积盆地中部,满 克头鄂博组火山岩大面积出露,对这些火山岩进行 详细的研究,可以为松辽盆地外围西部盆地群的火 山岩地层对比提供新材料,并探讨扎鲁特盆地的形 成演化。作为大兴安岭中生代巨型火山岩带的重 要组成部分12-41,扎鲁特盆地坤都地区火山岩的研 究资料也有助于对大兴安岭中生代火山岩的深入 研究。

1 区域地质背景及岩相学特征

扎鲁特盆地位于内蒙古自治区阿鲁科尔沁 旗—扎鲁特旗地区,大地构造位置处于西伯利亚板 块和华北板块所夹持的中亚造山带东缘,介于西拉 木伦缝合带与备受争议的黑河-贺根山缝合线之 间,位于锡林浩特微地块之上,东邻嫩江-八里罕断 裂,是古亚洲洋晚古生代残余洋盆消失的地区,保 存了该洋盆不同地质演化时期的沉积记录。

盆内的基底为晚古生代地层上二叠统林西组, 为一套陆相湖盆的沉积建造⁶¹,褶皱构造发育,标志 着华北和西伯利亚两大板块之间古海洋的消亡和 大陆汇聚的重要演化过程⁶⁰。盆地内充填的中生代 地层自下而上为下三叠统老龙头组、中侏罗统新民 组、上侏罗统满克头鄂博组和玛尼吐组。老龙头组 在区域内零星分布,为一套以红色碎屑沉积为标志 的陆相沉积建造⁷⁷;中侏罗统新民组为陆相酸性火 山岩夹碎屑沉积岩及煤线;满克头鄂博组以流纹质 熔岩、火山碎屑岩为主,夹少量凝灰质细-粉砂岩; 玛尼吐组主要为安山岩和粗安岩。其中,满克头鄂

图 1 松辽外围西部盆地群分布图(a)^[1]和扎鲁特盆地地质简图(b) Fig. 1 Distribution of basin groups of Songliao peripheral basins (a) and simplified geological map of Jarud Basin (b)

博组火山岩分布最广,与下伏的新民组火山-沉积 岩地层呈角度不整合接触,与玛尼吐组火山岩在空 间上相互叠置¹⁸¹,花岗岩主要由早白垩世碱长花岗 岩和二长花岗岩组成。研究区地质体的分布概况 如图1-b所示。

笔者于2016—2017年在扎鲁特盆地坤都地区 工作期间,沿冬斯格热-沃尔滚吉希勒进行地层 剖面实测(图2)和采样,详细考察了满克头鄂博 组的野外产状及空间分布特征和野外地质关系。 满克头鄂博组火山岩喷发不整合覆盖于新民组之 上,岩浆多次爆发与溢流交替,熔岩与火山碎屑岩 自冬斯格热-641.2高地一带呈线状喷出。火山 机构在地貌上表现为中央山峰高耸,外部为阶梯 状陡峻下降的多轮环状山,古火山口明显,呈串珠 状产出,与区域上的断裂构造方向一致。该套火 山岩下部为流纹质岩屑晶屑凝灰岩、角砾凝灰岩、 角砾岩,厚60~80m,上部为厚层灰紫色流纹岩夹 流纹质熔结凝灰岩,针对靠近火山盆地底部(不整 合面)的流纹岩进行年代学研究。其主要岩石学 特征如下。

流纹岩(图3):岩石呈灰紫色、浅紫红色,斑状 结构,块状构造、流纹构造,斑晶由斜长石和石英组 成,粒径一般为0.1~0.5mm,含量5%左右,斜长石呈 半自形板状,石英呈他形粒状,可见明显的波状消 光。基质由长英质隐微晶组成,定向排列,显示流 纹构造。

图2 满克头鄂博组火山岩实测剖面

Fig. 2 Measured section of volcanic rocks in Manketouebo Formation

图 3 满克头鄂博组流纹岩显微照片 Fig. 3 Microphotographs for rhyolites in Manketouebo Formation PI—斜长石

2 分析方法

样品的破碎和锆石分选由河北省廊坊市科大 矿物分选技术股份有限公司完成。样品靶的制备 与SHRIMP 锆石样品靶的制备方法类似¹⁹.在双目 镜下挑选透明、晶形好、无或少裂隙的锆石颗粒,置 于环氧树脂内进行制靶。锆石阴极发光(CL)图像 在北京中兴美科科技有限公司获取。LA-ICP-MS (激光剥蚀电感耦合等离子体质谱)锆石 U-Pb 定年 测试在中国科学院海洋研究所大洋岩石圈与地幔 动力学实验室进行。锆石 U-Pb 年龄测试结果见表 1。锆石Lu-Hf同位素原位分析在南京大学内生金 属矿床成矿机制研究国家重点实验室带有New wave UP193 激光剥蚀系统的 Neptune Plus MC-ICP-MS 仪器上进行。激光束斑直径为45µm,采 用氦气作为剥蚀物质的载气,具体分析流程见参考 文献[10-11]。分析过程中,测试10个测点测试1次 标样 91500 和 MT,其中,标样 91500 和 MT 的 176 Hf/ ¹⁷⁷Hf测试加权平均值分别为0.282290±0.000013、 0.282498±0.000009。ε_{нf}(t)计算采用的¹⁷⁶Lu衰变常 数为1.865×10^{11[12]}, 球粒陨石¹⁷⁶Lu/¹⁷⁷Hf = 0.0332, ¹⁷⁶Hf/¹⁷⁷Hf =0.282772^[13],亏损地幔Hf 模式年龄(T_{DM}) 采用¹⁷⁶Lu/¹⁷⁷Hf=0.0384,¹⁷⁶Hf/¹⁷⁷Hf=0.283251计算^[14], 二阶段 Hf 模式年龄(Tpm^C)采用平均大陆壳¹⁷⁶Lu/ ¹⁷⁷Hf=0.015 计算^[15]。

图 4 满克头鄂博组流纹岩锆石阴极发光图像 Fig. 4 Zircon cathodoluminescence images of rhyolites in Manketouebo Formation

3 分析结果

3.1 锆石 U-Pb 年代学

扎鲁特盆地满克头鄂博组流纹岩样品 (PM421TW31)采自坤都镇冬斯格热北部641.2高 地.北纬44°11′9″、东经119°59′31″(图1),样品新 鲜,蚀变较弱。所测样品的锆石多为无色透明-褐 色晶体,长50~150um,长宽比多介于1.5:1~2:1之 间,多数锆石呈长柱状或短柱状,部分锆石由于机 械分选而形成不规则碎块。从阴极发光图像看,大 部分锆石内部具明显的振荡环带(图4),Th/U值介 于0.46~1.62之间,表明其为岩浆成因16。本次对该 样品进行了30颗锆石的年龄测试,除1颗在谐和线 右侧外,其余都位于谐和线上或其附近(图5),206Pb/ ²³⁸U年龄明显分为3组,第一组25颗锆石²⁰⁶Pb/²³⁸U 年龄为238±4Ma(1σ);第二组2颗锆石²⁰⁶Pb/²³⁸U年 龄加权平均值为181±14Ma;第三组26颗锆石的 ²⁰⁶Pb/²³⁸U年龄介于141~158Ma之间(表1),其年龄 加权平均值为151.2±1.2Ma(MSWD=0.4),是流纹 岩的岩浆结晶年龄,而238Ma、181Ma为流纹岩中的 捕获锆石年龄。

3.2 地球化学特征

3.2.1 主量元素

扎鲁特盆地坤都地区满克头鄂博组流纹岩主 量、稀土、微量元素化学分析结果及有关参数列于 表2。

图 5 满克头鄂博组流纹岩锆石 U-Pb 谐和图 Fig. 5 Zircon U-Pb concordia diagram of rhyolites in Manketouebo Formation

7

6

163

168

分	2	含量/10-6				同位素比值					年龄/Ma									
析点	Pb	²³² Th	²³⁸ U	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	$\pm 1\sigma$	²⁰⁷ Pb/ ²³⁵ U	±1σ	²⁰⁶ Pb/ ²³⁸ U	±1σ	²⁰⁸ Pb/ ²³² Th	$\pm 1\sigma$	²⁰⁷ Pb/ ²⁰⁶ Pb	$\pm 1\sigma$	²⁰⁷ Pb/ ²³⁵ U	$\pm 1\sigma$	²⁰⁶ Pb/ ²³⁸ U	±1σ	²⁰⁸ Pb/ ²³² Th	±1c
01	7	93	106	0.88	0.0527	0.0042	0.1619	0.0110	0.0235	0.0006	0.0074	0.0003	322	183	152	10	150	4	148	6
02	11	152	114	1.34	0.0507	0.0040	0.1601	0.0119	0.0235	0.0006	0.0080	0.0003	228	181	151	10	150	4	161	5
03	11	149	107	1.40	0.0478	0.0085	0.1498	0.0303	0.0221	0.0012	0.0068	0.0006	100	378	142	27	141	8	137	12
04	14	201	183	1.09	0.0486	0.0029	0.1598	0.0102	0.0236	0.0005	0.0070	0.0003	128	137	151	9	150	3	141	5
05	26	153	115	1.33	0.1441	0.0096	0.5493	0.0491	0.0261	0.0009	0.0130	0.0008	2277	115	445	32	166	6	261	16
06	8	90	102	0.89	0.0539	0.0056	0.1793	0.0225	0.0231	0.0009	0.0094	0.0009	369	235	167	19	147	6	190	18
07	18	238	225	1.06	0.0497	0.0025	0.1617	0.0080	0.0237	0.0004	0.0079	0.0002	189	119	152	7	151	3	158	4
08	17	244	162	1.51	0.0495	0.0028	0.1593	0.0084	0.0237	0.0005	0.0076	0.0002	169	130	150	7	151	3	153	4
09	4	42	92	0.46	0.0467	0.0037	0.1622	0.0103	0.0236	0.0007	0.0074	0.0005	32	178	153	9	150	5	149	10
10	17	304	205	1.48	0.0505	0.0050	0.1595	0.0142	0.0236	0.0011	0.0061	0.0003	220	215	150	12	150	7	123	5
11	20	303	190	1.59	0.0484	0.0020	0.1613	0.0076	0.0239	0.0004	0.0075	0.0002	117	100	152	7	152	3	152	4
12	18	200	186	1.08	0.0488	0.0023	0.1641	0.0068	0.0237	0.0004	0.0079	0.0002	139	111	154	6	151	2	159	4
13	9	47	71	0.66	0.0524	0.0060	0.1727	0.0184	0.0236	0.0011	0.0078	0.0007	306	263	162	16	150	7	158	13
14	9	77	90	0.86	0.0504	0.0062	0.1914	0.0209	0.0280	0.0013	0.0093	0.0005	213	263	178	18	178	8	187	10
15	16	136	202	0.67	0.0496	0.0020	0.1614	0.0061	0.0238	0.0004	0.0076	0.0002	189	125	152	5	152	2	152	4
16	17	239	227	1.05	0.0499	0.0021	0.1601	0.0067	0.0235	0.0004	0.0072	0.0002	191	100	151	6	149	2	144	4
17	11	109	228	0.48	0.0472	0.0020	0.1528	0.0058	0.0238	0.0004	0.0072	0.0002	58	109	144	5	151	3	146	5
18	24	293	371	0.79	0.0498	0.0018	0.1630	0.0061	0.0239	0.0004	0.0075	0.0002	183	118	153	5	152	2	151	4
19	7	56	59	0.95	0.0536	0.0089	0.2200	0.0374	0.0299	0.0021	0.0143	0.0014	354	341	202	31	190	13	286	28
20	30	425	263	1.62	0.0496	0.0024	0.1585	0.0080	0.0234	0.0006	0.0074	0.0002	176	113	149	7	149	4	150	4
21	10	88	102	0.87	0.0496	0.0053	0.1559	0.0170	0.0233	0.0010	0.0074	0.0004	176	230	147	15	148	6	149	8
22	9	94	137	0.69	0.0489	0.0029	0.1585	0.0088	0.0239	0.0005	0.0086	0.0003	143	137	149	8	152	3	173	7
23	14	182	169	1.08	0.0507	0.0025	0.1593	0.0072	0.0232	0.0006	0.0076	0.0003	228	115	150	6	148	4	154	5
24	31	349	573	0.61	0.0497	0.0016	0.1654	0.0056	0.0242	0.0005	0.0077	0.0002	189	76	155	5	154	3	154	4
25	11	76	139	0.55	0.0512	0.0020	0.2672	0.0100	0.0377	0.0006	0.0132	0.0004	256	89	240	8	238	4	265	8
26	40	572	436	1.31	0.0499	0.0016	0.1654	0.0057	0.0240	0.0004	0.0080	0.0002	191	71	155	5	153	2	160	3
27	16	167	200	0.83	0.0502	0.0022	0.1620	0.0066	0.0237	0.0003	0.0076	0.0002	211	102	152	6	151	2	154	4
28	13	188	159	1.19	0.0494	0.0020	0.1621	0.0063	0.0237	0.0004	0.0075	0.0002	165	96	153	6	151	3	151	4

表1 满克头鄂博组流纹岩LA-ICP-MS 锆石 U-Th-Pb 分析结果 Table 1 LA-ICP-MS zircon U-Th-Pb analytical results of rhyolites in Manketouebo Formation

由表2可知,扎鲁特盆地坤都地区满克头鄂博组 流纹岩SiO₂含量高,介于75.22%~77.53%之间,Al₂O₃为 11.70%~13.10%,富碱(K₂O+Na₂O为7.39%~8.70%,平 均为8.05%;碱度率AR为2.50~3.86),富钾(K₂O/Na₂O 为1.41~3.2,平均为1.82)。相反,贫镁(MgO=0.002%~ 0.37%)、贫钙(CaO=0.08%~0.41%)。流纹岩样品的A/ CNK 值为1.05~1.28,为弱过铝质-过铝质岩石,在 TAS火山岩分类命名图解(图6)中,所有样品点均落入

 $59 \quad 1.01 \quad 0.0467 \quad 0.0034 \quad 0.1797 \quad 0.0108 \quad 0.0249 \quad 0.0007 \quad 0.0081 \quad 0.0003$

108 0.93 0.0512 0.0040 0.1648 0.0115 0.0243 0.0007 0.0083 0.0003

29 8

30 9 101

59

亚碱性系列的流纹岩范围,在SiO₂-K₂O图解(图7) 中,所有样品点都落入高钾钙碱性系列。

168

155

9

10

158

155

4

5

3.2.2 稀土和微量元素

35

250

176

180

扎鲁特盆地坤都地区满克头鄂博期流纹岩稀 土元素总量(ΣREE)为110.38×10⁻⁶~138.88×10⁻⁶。 岩石球粒陨石标准化的稀土元素配分曲线具有轻 稀土元素富集的右倾特征(图8-a),(La/Sm)_N=3.96~ 4.33,轻、重稀土元素分馏中等,(La/Yb)_N=6.24~

图 6 满克头鄂博组流纹岩样品 TAS 分类图解 (岩石分类据参考文献[17];系列界线据参考文献[18]) Fig. 6 TAS diagram of rhyolites in Manketouebo Formation

7.43,重稀土元素分布较平坦,具弱负Eu异常(δEu= 0.72~0.98)。在微量元素原始地幔标准化蛛网图上, 样品的分布形式相似(图8-b),大离子亲石元素Cs、 Rb、Ba等相对富集,Sr、P、Ti强烈亏损,Nb、Ta相对 亏损,暗示岩浆可能来源于地壳。

3.3 锆石 Hf 同位素

本文在对满克头鄂博组流纹岩样品锆石U-Pb 定年的基础上,挑选年龄较谐和的13颗锆石进行微 区原位Hf同位素分析。Hf同位素微区原位分析在 锆石U-Pb年龄分析点的同一位置上进行。这13 颗锆石的Lu-Hf同位素分析结果见表3,其中11颗 代表流纹岩成岩时代锆石(约2Ma)的(¹⁷⁶Hf/¹⁷⁷Hf)_i值 为0.282393~0.282818,对应的ε_{Hf}(0)值为-13.2~1.7,

 $\varepsilon_{\rm Hf}(t)$ 值为-10.1~4.9,波动范围较大, $T_{\rm DM}$ ^c模式年龄 变化于1192~2546Ma之间, $f_{\rm Lu/Hf}$ 平均值为-0.95。2 颗捕获锆石 (²⁰⁶Pb/²³⁸U年龄为190Ma和238Ma)的 (¹⁷⁶Hf/¹⁷⁷Hf)_i分别为0.282899、0.282440,对应的 $\varepsilon_{\rm Hf}(t)$ 值为8.7和-6.5, $T_{\rm DM}$ ^c为880Ma和2282Ma。

4 讨 论

4.1 岩浆源区与岩石成因

研究区满克头鄂博组火山岩以流纹岩为主,未 见同时代的玄武岩出露。一般认为,中酸性火山岩 的成因有3种可能:①基性岩浆的结晶分异作用^[22-23], 形成成分连续变化的岩浆系列,如玄武岩、安山岩、 英安岩;②与玄武岩构成双峰式火山岩组合^[24-25];

表2 满克头鄂博组流纹岩主量、微量及稀土元素分析结果 Table 2 Major, trace and REE compositions of rhyolites in Manketouebo Formation

样品号	PM421YQ31	PM421YQ34	KD-2	KD-3	KD-4
SiO ₂	76.61	75.22	75.91	77.53	76.39
TiO_2	0.15	0.18	0.19	0.15	0.16
Al_2O_3	12.24	13.1	12.71	11.7	12.27
Fe ₂ O ₃	0.93	1.14	1.3	0.85	0.79
FeO	0.22	0.29	0.27	0.27	0.54
MnO	0.03	0.02	0.04	0.07	0.07
MgO	0.35	0.37	0.26	0.002	0.04
CaO	0.32	0.41	0.19	0.08	0.23
Na ₂ O	1.76	2.89	3.43	3.23	3.22
K_2O	5.63	4.97	4.86	4.79	5.48
P_2O_5	0.05	0.06	0.04	0.01	0.03
烧失量	1.29	1.05	0.98	0.95	0.91
总量	99.59	99.72	100.18	99.63	100.13
A/CNK	1.28	1.2	1.13	1.1	1.05
AR	3.86	2.50	3.27	3.43	3.13
Na ₂ O+K ₂ O	7.39	7.86	8.29	8.02	8.7
La	26.77	28.29	27.07	23.77	24.2
Ce	50.35	56.11	51.53	44.8	46.63
Pr	6.32	6.83	6.43	5.53	5.58
Nd	21.98	25.75	22.4	19.61	20.02
Sm	3.89	4.37	4.3	3.52	3.69
Eu	1.21	1.23	0.95	0.88	0.92
Gd	3.55	4.16	3.6	3.07	3.26
Tb	0.52	0.56	0.76	0.6	0.63
Dy	3.36	3.59	3.73	3.13	3.48
Ho	0.71	0.71	0.81	0.64	0.74
Er	1.8	1.99	2.19	1.83	2.17
Tm	0.38	0.37	0.49	0.38	0.42
Yb	2.43	2.57	2.67	2.25	2.61
Lu	0.35	0.35	0.47	0.38	0.43
Σ REE	123.6	136.88	127.4	110.38	114.78
(La/Yb) _N	7.42	7.43	6.83	7.13	6.24
(La/Sm) _N	4.33	4.07	3.96	4.25	4.13
(Gd/Lu) _N	1.27	1.46	0.95	1.01	0.94
δEu	0.98	0.87	0.72	0.8	0.79
Y	21.49	21.79	19.92	17.11	19.9
Rb	144.7	137.58	124.45	109.29	125.56
Ba	1000	795.03	824.49	952.51	1100
Th	4.33	4.87	11.13	10.55	10.52
U	2.19	2.41	2.38	1.65	1.93
Nb	13.3	13.99	14.4	13.03	14.14
Та	0.75	0.54	1.38	1.19	1.2
Hf	3.07	3.27	4.87	4.44	4.46
Sc	4.85	3.41	4.45	3.63	3.68
Ga	16.61	17.03	15.12	14.24	15.43
Pb	22.97	31.06	30.72	23.72	27.76
Sr	73.36	93.63	84.48	71.57	87.1
Cr	16.75	11.8	13.72	10.85	13.88
Zr	111.2	127.06	128.07	105.25	109.53
Со	2.04	1.76	2.83	2.76	2.53
Ni	2.7	0.87	2.59	6.56	11.2
V	11.67	10.76	13.79	10.59	13.67
Sb	0.23	0.3	0.38	0.21	0.22
Rb/Sr	1.97	1.47	1.47	1.53	1.44
Ti/Y	42.68	49.39	58.39	52.56	48.40
Ti/Zr	8.25	8.47	9.08	8.54	8.87

注:主量元素含量单位为%,微量和稀土元素为10-6

③地壳物质的部分熔融^[25]。因为玄武质岩浆只有经 过强烈的结晶分离作用才能产生酸性熔体^[26],所以 一般情况下,第一种过程大多只能形成小规模的中 酸性熔体^[27]。目前研究区及附近未见玄武质火山岩 及缺乏相应的研究。笔者获得该区玛尼吐组中性 火山岩的锆石U-Pb年龄介于137~143Ma(未发表) 之间,明显晚于本文研究的满克头鄂博组流纹岩。 因此,笔者认为,第三种过程更能产生以酸性火山 岩为主的满克头鄂博组火山岩系列。

1639

满克头鄂博组火山岩以流纹质熔岩、火山碎屑 岩为主,少有同期的中性火山岩发育,并表现出高 铝(11.70%~13.10%)的地球化学特征,说明壳源对岩 浆的形成起绝对作用。本文测年样品中存在不同 时代的捕获错石,表明在岩浆上升过程中受到中生 代地层的混染。样品的 Rb/Sr=1.44~1.97(>0.5), 平均为1.58, Ti/Y=42.68~58.39(<100), Ti/Zr= 8.25~9.08(<20),均位于壳源岩浆范围^[26,28],说明岩 浆可能来源于陆壳岩石的部分熔融,其中 Pb 的富集 也说明其可能来源于大陆地壳上部的部分熔融^[29]。

样品SiO₂与Al₂O₃、P₂O₅、TiO₂、TFeO等呈负相 关关系(哈克图解略),暗示流纹岩在形成过程中经 历了结晶分异作用。区内的流纹岩样品具有较高 的TFeO/MgO值和分异指数(93.15~97.08),明显经 历了强结晶分异作用。岩石具弱负Eu异常(图8a),表明源区斜长石不稳定,有残留相,而Ti、P的亏 损(图8-b)很可能与含Ti矿物(如金红石、钛铁矿 等)及磷灰石的分离结晶有关。由于石榴子石重稀 土元素(HREE)强烈富集,角闪石相对富集中稀土 元素(MREE)^[30],满克头鄂博组流纹岩的HREE分 布较平缓,部分样品MREE相对HREE略微亏损, 暗示部分熔融后的残留物中可能含有少量角闪石, 不含石榴子石。在Ba-Sr和Rb-Sr关系图(图9)中, 同样可以看出,岩石在形成过程中可能经历了斜长 石和角闪石的分离结晶。

代表流纹岩成岩时代的锆石 ɛ_{Hf}(t)值为-10.1~ 4.9,在 t-ɛ_{Hf}(t)图解(图 10)上大部分样品点落在球 粒陨石线下方,对应的地壳模式年龄(T_{DM}^C)为 1192~2546Ma,明显大于其形成时代(151.2Ma)。 这些特点表明,满克头鄂博组流纹岩岩浆主要源 自古老地壳的再循环,同时指示这种岩浆来源于 元古宙、太古宙地壳物质的部分熔融,同时一阶段 模式(T_{DM})年龄均小于二阶段模式年龄(T_{DM}^C),表

	表3	满克头鄂博组流纹岩锆石Hf同位素分析结果
Table 3	Zircon Hf	isotopic compositions of rhyolites in Manketouebo Formation

测 点	年龄 /Ma	¹⁷⁶ Yb/ ¹⁷⁷ Hf	2σ	¹⁷⁶ Lu/ ¹⁷⁷ Hf	2σ	¹⁷⁶ Hf/ ¹⁷⁷ Hf	2σ	(¹⁷⁶ Hf/ ¹⁷⁷ Hf) _i	$\epsilon_{\rm Hf}(0)$	$arepsilon_{ ext{Hf}}(t)$	$T_{\rm DM}/{ m Ma}$	<i>Т</i> _{DM} ^с /Ма	$f_{ m Lu/Hf}$
4	150	0.049168	0.000388	0.002152	0.000015	0.282399	0.000045	0.282393	-13.2	-10.1	1244	2546	-0.94
6	147	0.027371	0.000573	0.001190	0.000025	0.282645	0.000038	0.282642	-4.5	-1.4	865	1761	-0.96
8	151	0.039872	0.001256	0.001744	0.000055	0.282438	0.000039	0.282434	-11.8	-8.7	1174	2417	-0.95
9	150	0.018361	0.000418	0.000814	0.000017	0.282821	0.000034	0.282818	1.7	4.9	609	1192	-0.98
13	150	0.018636	0.000201	0.000796	0.000008	0.282808	0.000030	0.282806	1.3	4.5	627	1233	-0.98
17	151	0.026776	0.000433	0.001162	0.000018	0.282782	0.000023	0.282779	0.3	3.5	670	1319	-0.96
19	190	0.032803	0.000714	0.001378	0.000028	0.282904	0.000047	0.282899	4.7	8.7	499	880	-0.96
22	152	0.024753	0.000163	0.001047	0.000008	0.282518	0.000031	0.282515	-9.0	-5.8	1040	2157	-0.97
24	154	0.032726	0.000341	0.001349	0.000012	0.282720	0.000040	0.282716	-1.8	1.4	762	1515	-0.96
25	238	0.051298	0.000561	0.002218	0.000025	0.282450	0.000034	0.282440	-11.4	-6.5	1173	2282	-0.93
26	153	0.062658	0.000703	0.002614	0.000029	0.282780	0.000042	0.282772	0.3	3.4	700	1336	-0.92
29	158	0.040499	0.000318	0.001729	0.000014	0.282710	0.000039	0.282705	-2.2	1.1	784	1544	-0.95
30	155	0.041874	0.000374	0.001793	0.000018	0.282598	0.000044	0.282593	-6.1	-2.9	946	1905	-0.95

明源区物质在地壳存在较长时间。此外,岩石的 $\varepsilon_{\text{Hf}}(t)$ 值变化范围较大,其中4个锆石的 $\varepsilon_{\text{Hf}}(t)$ 值大 于+3,其 $T_{\text{DM}}(609\sim700\text{Ma})$ 和 $T_{\text{DM}}^{\text{C}}(1192\sim1136\text{Ma})$ 都远小于其他锆石,说明岩浆中有少量幔源组分 的加入。

综上分析,笔者初步认为,扎鲁特盆地坤都地 区满克头鄂博组流纹岩岩浆主要来源于元古宙、太 古宙地壳物质部分熔融,残留相有少量斜长石和角 闪石,之后经历了矿物分离结晶作用。

4.2 构造环境

关于大兴安岭地区中生代火山岩形成机制,存 在以下几种观点:与古太平洋板块向东亚大陆板块 俯冲作用有关,如大陆裂谷^[32]、造山带崩塌^[33]、俯冲 作用下的左行走滑拉张^[34]、软流圈上涌与岩石圈伸 展减薄^[35-36];地幔柱模式^[37-38];受太平洋板块的俯冲 及微板块的拼贴影响^[3];蒙古-鄂霍茨克洋闭合的造 山后伸展^[39-41]等。前人对于侏罗纪构造环境也有不 同的认识,一些学者认为以挤压构造环境为主,形

图 9 满克头鄂博组流纹岩 Sr-Ba(a)与 Sr-Rb(b)关系图^[31] Fig. 9 Sr-Ba (a) and Sr-Rb (b) diagrams of rhyolites in Manketouebo Formation Pl-斜长石;Kf-钾长石;Bi-黑云母;Ms-白云母;Hb-角闪石;Grt-石榴子石

图 10 满克头鄂博组流纹岩 $t - \varepsilon_{\text{Hf}}(t)$ 图解 Fig. 10 $t - \varepsilon_{\text{Hf}}(t)$ diagram of rhyolites in Manketouebo Formation

成广泛的大陆边缘弧和埃达克岩^[42-44];也有一些学 者认为在该时期存在伸展背景下的岩石记录^[45-46]。本 文从研究区火山岩组合、地球化学特征等对其构造 环境进行分析。

研究区满克头鄂博组火山岩的岩石组合以灰 紫色流纹岩-流纹质熔结凝灰岩为主,具有高钾钙 碱性特征。一般而言,高钾钙碱性系列岩石产出在 陆弧环境或后碰撞环境^[47],缺少同期中基性火山岩 而有别于典型岛弧火山岩。流纹岩的地球化学特 征为大离子亲石元素K、Cs、Rb等相对富集,Nb、Ta 相对亏损,Sr和Ti强烈亏损,目富集Pb(表2:图7b),显示本区火山岩形成于俯冲岛弧环境^[31,48]或岩 浆可能来源于地壳熔融⁽⁴⁾,结合其岩浆源区特征,表 明可能与壳源物质熔融有关。在花岗岩微量元素 判别图(图11)上,样品点都落入造山后花岗岩区, 而非常低的 Sr (71.57×10⁻⁶~93.63×10⁻⁶) 和高 Yb (2.25×10⁻⁶~2.67×10⁻⁶)的特征(图 12),也与张旗^[52]等 提出的南岭型造山后花岗岩特征相似。综合以上地 球化学特征,表明研究区流纹岩形成于造山后伸展 环境,那么是受何种体制制约呢?对于古太平洋板 块俯冲影响大兴安岭地区的时间,学者们还存在疑 问,李锦轶等53认为,与古太平洋板块俯冲作用有关 的大陆岩石圈在早白垩世晚期—古近纪早期才开始 伸展、减薄和岩浆活动;张旗等51认为,太平洋板块向 西俯冲时间只有125~110Ma和43~0Ma两个时间段: 许文良等54认为,中侏罗世晚期--早白垩世早期为古 太平洋俯冲的间歇期。本文流纹岩的岩浆结晶年龄 为151.2Ma,因此与古太平洋的俯冲作用无关。从已 有的研究成果可知,蒙古-鄂霍茨克洋形成于古生代 早期,中生代呈剪刀式自西向东逐渐闭合的特征,东 部闭合的时间可能持续到晚侏罗世——早白垩世[55-56]. 且中一晚侏罗世大兴安岭火山岩空间上呈北北东向 展布四,与蒙古-鄂霍茨克洋走向基本一致,根据时间 与空间变化特征,扎鲁特盆地满克头鄂博组流纹岩 的形成与蒙古-鄂霍茨克洋的碰撞造山有关。

图 11 满克头鄂博组流纹岩构造判别图(据参考文献[49];post-CEG据参考文献[50]) 图 11 Tectonic setting diagrams of rhyolites in Manketouebo Formation VAG—火山弧花岗岩;ORG—洋脊花岗岩;WPG—板内花岗岩; syn-COLG—同碰撞花岗岩;post-CEG—后碰撞伸展花岗岩

图 12 满克头鄂博组流纹岩 Yb-Sr分类图解⁵¹ Fig. 12 Yb-Sr diagram of rhyolites in Manketouebo Formation

A一高Sr、低Yb花岗岩;B一高Sr、高Yb花岗岩;C一低Sr、低 Yb花岗岩;D一低Sr、高Yb花岗岩;E一非常低Sr、高Yb花岗岩

5 结 论

(1)扎鲁特盆地坤都地区满克头鄂博组流纹岩中的锆石为岩浆成因,LA-ICP-MS U-Pb 定年结果为151.2±1.2Ma,表明其形成时代为晚侏罗世。

(2)满克头鄂博组流纹岩具高硅、富钾、富碱、 贫镁钙特征,其岩浆主要来源于元古宙、太古宙地 壳物质的部分熔融,残留相有少量斜长石和角闪 石,之后经历了矿物分离结晶作用。

(3)扎鲁特盆地坤都地区满克头鄂博组流纹岩 形成于后造山伸展背景,与蒙古-鄂霍茨克造山后 伸展作用有关。

致谢:沈阳地质调查中心基础地质室全体成 员、中国科学院海洋研究所郭鹏远研究员对本文提 供帮助,审稿专家提出了宝贵的修改意见及建议, 在此一并致以衷心的感谢。

参考文献

- [1]陈树旺, 丁秋红, 郑月娟,等. 松辽盆地外围新区、新层系——油气 基础地质调查进展与认识[]]. 地质通报, 2013, 32(8):1147-1158.
- [2]林强. 东北亚中生代火山岩研究若干问题的思考[J]. 世界地质, 1999, 18(2): 14-22.
- [3]吴福元, 曹林. 东北地区的若干重要基础地质问题[J]. 世界地质, 1999, 18(2):1-13.
- [4] 葛文春, 林强, 孙德有, 等. 大兴安岭中生代两类流纹岩成因的地球 化学研究[J]. 地球科学(中国地质大学学报), 2000,25(2): 172-178.

[5]张渝金, 张超, 郭威, 等. 内蒙古阿鲁科尔沁旗林西组植物化石新 材料[J]. 地质与资源, 2017, 26(4): 333-338.

- [6]王成文,金巍,张兴洲,等.东北及领区晚古生代大地构造属性新 认识[J]. 地层学杂志, 2008, 32(2): 119-136.
- [7]杨兵,张雄华,葛孟春,等.内蒙古林西地区晚二叠世一早三叠世 孢粉组合及三叠系的发现[J].地球科学,2014,39(7):784-794.
- [8]程银行, 滕学建, 杨俊泉, 等. 内蒙古东乌旗敖包查干地区中生代 陆相火山构造特征[J]. 地质调查与研究, 2011, 34(1): 16-22.
- [9]宋彪, 张玉海, 万渝生, 等. 锆石 SHRIMP 样品靶制作、年龄测定 及有关现象讨论[J]. 地质评论, 2002, 48(S1): 26-30.
- [10]Wu F Y, Yang Y H, Xie L W, et al. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology[]]. Chemical Geology, 2006, 234: 105-126.
- [11]Xie L W, Zhang Y B, Zhang H H, et al. In situ simultaneous determination of trace elements, U-Pb and Lu-Hf isotopes in zircon and baddeleyite[J]. Chinese Science Bulletin, 2008, 53: 1565–1573.
- [12]Scherer E, Munker C, Mezger K. Calibration of the lutetium-hafnium clock[J]. Science, 2001, 293: 683–687.
- [13]Blichert-Toft J, Albarede F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system[J]. Earth Planet. Sci. Lett., 1997, 148: 243-258.
- [14]Vervoort J D, Blichert- Toft J. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time[J]. Geochim. Cosmochim. Acta, 1999, 63: 533-556.
- [15]Griffin W L, Wang X, Jackson S E, et al. Zircon geochemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous conplexes[J]. Lithos, 2002, 61: 237–269.
- [16]Koschek G. Origin and significance of the SEM cathodoluminescence from zircon[J]. Journal of Microscopy, 1993, 171: 223-232.
- [17]Middlemost E A K. Naming materials in the magma/igneous rock system[J]. Earth Science Review, 1994, 37: 215–224.
- [18]Irvine T N, Baragar W R. A guide to the chemical classification of the common volcanic rocks[J]. Canadian Journal of Earth Science, 1971, 8: 523–548.
- [19]Peccerillo A, Taylor S R. Geochemistry of Eocene cala–alkallne volcanic rocks from the Kastamonu area. Northern Turkey[J]. Contrib. Mineral. and Petrol., 1976, 58: 63–81.
- [20]Boynton W V. Chapter 3–Cosmochemistry of the rare earth elements: meteorite studies[J]. Developments in Geochemistry, 1984, 2 (2):63–114.
- [21]Mcdonough W F, Sun S S. The composition of the Earth[J]. Chemical Geology, 1995, 120(3/4): 223–253.
- [22]Bacon C R, Druitt T H. Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon[J]. Contributions to Mineralogy and Petrology, 1988, 98(2): 224–256.
- [23]Bonin B. Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review[J]. Lithos, 2004, 78(1/2): 1–24.

[24]林强, 葛文春, 曹林, 等. 大兴安岭中生代双峰式火山岩的地球化

学特征[]]. 地球化学, 2003, 32(3): 208-222.

- [25]Guffanti M, Clynne M A, Muffler L. Thermal and massmimplications of magmatic evolution in the Lassen volcanic region, California, and minimum constraints on basalt influx to the lower crust[J]. Journal of Geophysical Research: Solid Earth (1978–2012), 1996, 101(B2): 3003–3013.
- [26]Wilson M. Magmatism and the geodynamics of basin formation[J]. Sediment Geology, 1993, 86(1/2): 5-29.
- [27]Shinjo R, Kato Y. Geochemical constraints on the origin of bimodal magmatism at the Okinawa Trough, an incipient back-arc basin[J]. Lithos, 2000, 54(3/4): 117–137.
- [28]Tischendorf G, Paelchen W. Zur Klassifikation von Granitoiden/ Classification of granitoids[J]. Zeitschrift fuer Geologische Wissenschaften, 1985, 13(5): 615–627.
- [29]单强, 曾乔松, 罗勇, 等. 新疆阿尔泰康布铁堡组钾质和钠质流纹岩的成因及同位素年代学研究[J]. 岩石学报, 2011, 7(12): 3653-3665.
- [30]Green T H. Experimental studies of trace-element partitioning applicable to igneous petrogenesis-Ssdona 16 years later[J]. Chemical Geology, 1994, 117: 1–36.
- [31]Janousek V, Finger F, Roberts M, et al. Deciphering the petrogenesis of deeply buried granites: whole-rock geochemical constraints on the origin of largely undepleted felsic granulites from the Moldanubian Zone of the Bohemian Massif[J]. Earth & Environmental Science Transactions of the Royal Society of Edinburgh, 2004, 95: 141–159.
- [32]刘德来,马莉.松辽盆地裂谷期前火山岩与裂谷盆地关系及动力 学过程[J].地质论评,1998,44(2):130-135.
- [33] 赵海玲, 邓晋福, 陈发景, 等.中国东北地区中生代火山岩岩石学 特征与盆地形成[J]. 现代地质, 1998, 12(1): 56-59.
- [34]吴福元, 叶茂, 张世红.中国满洲里-绥芬河地学断面域的地球动 力学模型[J]. 地球科学, 1995, 20(5): 535-539.
- [35]Wang P J, Liu W Z, Wang S X, et al. ⁴⁰Ar/³⁹Ar and K/Ar dating on the volcanic rocks in the Songliao basin, NE China: mConstraints on stratigraphy and basin dynamics[J]. International Journal of Earth Sciences, 2002, 91(2), 331–340.
- [36]Zhang J H, Gao S, Ge W C, et al. Geochronology of the Mesozoic volcanic rocks in the Great Xing' an Range, northeastern China: Implications for subduction– induced delamination [J]. Chemical Geology, 2010, 276(3/4): 144–165.
- [37]林强, 葛文春, 孙德有, 等. 中国东北地区中生代火山岩的大地构造意义[J].地质科学, 1998, 33(2): 129-139.
- [38] 邵济安, 张履桥, 牟保磊.大兴安岭中生代伸展造山过程中的岩 浆作用[J].地学前缘, 1999, (4): 339-346.
- [39]Wang P J, Chen F K, Chen SM, et al. Geochemical and Nd–Sr–Pb isotopic composition of Mesozoic volcanic rocks in the Songliao basin, NE China[J]. Geochemical Journal, 2006, 40(2): 149–159.
- [40]Xu W L, Pei F P, Wang F, et al. Spatial-temporal relationships of

Mesozoic volcanic rocks in NE China: Constraints on tectonic overprinting and transformations between multiple tectonic regimes[J]. Journal of Asian Earth Sciences, 2013, 74: 167–193.

- [41]张超, 吴新伟, 张渝金, 等. 大兴安岭北段龙江盆地光华组碱流岩 LA-ICP-MS 锆石 U-Pb 年龄及其地质意义[J]. 地质通报, 2017, 36(9): 1531-1541.
- [42]Wu F Y, Lin J Q, Wilde SA, et al. Nature and significance of the Early Cretaceous giant igneous event in eastern China[J]. Earth and Planetary Science Letters, 2005, 233(1/2): 103–119.
- [43]高晓峰, 郭锋, 范蔚茗, 等. 南兴安岭晚中生代中酸性火山岩的岩 石成因[J]. 岩石学报, 2005, 21(3): 737-748.
- [44]隋振民, 葛文春, 吴福元, 等. 大兴安岭东北部侏罗纪花岗质岩石的锆石 U-Pb 年龄、地球化学特征及成因[J]. 岩石学报, 2007, 23
 (2): 461-468.
- [45]陈志广, 张连昌, 周新华, 等. 满洲里新右旗火山岩剖面年代学和 地球化学特征[J]. 岩石学报, 2006, 22(12): 2971-2986.
- [46]李长华,卫三元,陈贵海,等.内蒙古满洲里地区中生代中基性火 山岩成因及构造地质背景[J].世界核地质科学,2009,27(1):19-24.
- [47]Pitcher W S. Granite type and tectonic environment[C]//Hsu K. Mountain Building Processes. London: AcademicPress, 1983: 19–40.
- [48]Davidson J P, Stern C R. Comment and Reply on "Role of subduction erosion in the generation of Andean magmas" [J].Geology, 1991,19(10): 1054–1056.
- [49]Pearce J A. Sources and settings of granitic rock[J]. Episodes, 1996, 19(4): 120–125.
- [50]Foster H J, Tischendorf G, Trumbull R B. An evaluation of the R. (Y+Nb) discrimination diagram to infer tectonic setting of silicic igneous rocks[J]. Lithos, 1997, 40: 261–293.
- [51]张旗. 中国东部中生代岩浆活动与太平洋板块向西俯冲有关 吗? [J]. 岩石矿物学杂志, 2013, 32(1): 113-128.
- [52]张旗, 王元龙, 金惟俊, 等. 造山前、造山和造山后花岗岩的识别[J]. 地质通报, 2008, 27(1): 1–18.
- [53]李锦轶,莫申国,和政军,等.大兴安岭北段地壳左行走滑运动的时代及其对中国东北及邻区中生代以来地壳构造演化重建的制约[]].地学前缘,2004,11(3):157-168.
- [54]许文良, 王枫, 裴福萍,等. 中国东北中生代构造体制与区域成矿 背景:来自中生代火山岩组合时空变化的制约[J]. 岩石学报, 2013, 29(2):339-353.
- [55]Kravchinsky V A, Cogné J P, Harbert W P, et al. Evolution of the Mongol–Okhotsk Ocean as constrained by new palaeomagnetic data from the Mongol–Okhotsk suture zone, Siberia[J]. Geophysical Journal International, 2002, 148(1): 34–57.
- [56]Sorokin A A, Yarmolyuk V V, Kotov A B, et al. Geochronology of Triassic–Jurassic granitoids in the southern framing of the Mongol–Okhotsk fold belt and the problem of Early Mesozoic granite formation in central and eastern Asia[J]. Doklady Earth Sciences, 2004, 399(8): 1091–1094.