第 7卷 第 3期 1998年

JOURNAL OF PRECIOUS METALLIC GEOLOGY

沙德铭

(沈阳地质矿产研究所)

西天山阿希金矿含金石英脉内流体包裹体粒度细小,形态多样,以单一液相为主.化学成分上属 $\[mathbf{k}^{*}$ (Na^{*}) - SOa^{*} (CF)型,其中阳离子成分以 K^{*}为主,Na^{*}次之;阴离子成分以 SOa^{*}为主,CF次之;气相成分以 H₂O CO₂为主,富含 O₂ N₂等气体,还原性气体 (H₄ CH₄ CO等)含量亦较高.成矿作用发生于浅成 (300~900 m) 低温 (120~180[°]C)和较封闭的还原环境.成矿流体盐度低,主要为大气降水并混以少量火山成因的岩浆水.

关键词 西天山 阿希金矿 流体包裹体

1 地质概况

阿希金矿位于西天山的吐拉苏火山盆地内,大地构造位置处于塔里木板块与哈萨克斯坦 板块接合部位南侧,隶属于博罗霍洛古生代活动带内之晚古生代火山盆地. 盆地呈近东西向 展布,南北界线清楚,以近东西向断裂与相邻构造单元分开. 盆地是在前华力西构造基底之 上发展起来的. 基底具双层结构,由沉积、变质、变形等特征不同的两个构造层组成. 盆地 主体组成为下石炭统大哈拉军山组火山岩,为研究区金矿的主控矿岩系,笔者等将其划分为 3个活动亚旋回、5个岩性段. 阿希金矿即产于此火山岩系的第5岩性段内,容矿构造为阿希 古破火山口缘环状断裂 (图 1).[?]

2 包裹体的一般特征

阿希金矿主要的矿石类型为石英脉型,故研究工作主要针对石英晶内包裹体而展开.此 矿床中石英颗粒结晶程度低,晶体粒度细小(一般仅几十个微米),其中流体包裹体不甚发育, 且粒径极细小.多数包裹体粒度在 2~5^µ m之间,少数可达 10^µ m以上.包裹体形态复杂多 样,但总体以浑圆状、短棒状和不规则状为主,呈星散状或沿石英锥体生长面集中分布.包 裹体多为纯液相,气液两相者不多见,且气液比较小,一般在 5%~10% 间变化,常温下可见 气泡游动现象.

3 包裹体成分特征

 [?] 本文资料源自国家 305项目 "新疆伊宁县阿希金矿控矿规律与外围靶区评价研究" 专题报告,参加研究工作的还有毋瑞身、田昌烈、杨芳林、刘海山、贾斌等.

[?] 收稿日期: 1997-06-06. 李兰英、邵晓东编辑.

图 1 阿希金矿区地质简图

Fig. 1 Geologic map of Axi gold deposit

ト下石炭统阿恰勒河组碎屑岩 (clastic rocks of Lower Carboniferous Aqialehe fm.); 2~5~下石炭统大哈拉军山组火
山岩 (volcanic rocks of Lower Carboniferous Dahalajunsh an fm.); 2~安山玢岩 (andesitic porphyrite); 3~安山质含火
山弾角砾岩 (andesitic volcanic breccia); 4~安山岩 (and esite); 5~安山质角砾熔岩 (andesitic breccia lava); 6~含金
石英脉 (gold-bearing quartz vein); 7~断裂 (fault); 8~地磁正场体环 (positive ring of geomagnetism); 9~火
山岩产状 (attitude of volcanic rocks)

阿希金矿流体包裹体成分见表 1和表 2.

分析结果表明,流体包裹体成分以水为主,占总量的 71.52% ~ 97.57%.液相成分中,阳 离子含量略高于阴离子.在 25个样品中,阳离子量居多者有 13个,阴离子量居多者有 7个, 其余 5个样品,二者基本相等.一般认为,成矿流体中阳离子量占优势有利于含金络合物的 形成.阳离子成分中,碱金属总量远远大于碱土金属总量,尤以 K^{*}的高含量为特征,N^a/K^{*} 比值多小于 0.5,而 N^a/(M^{2*} + C^{a*})多在 10~60间变化.大量碱金属离子的存在,有 利于 SiO₂的溶解 迁移、渗透和交代.阴离子成分以富 SO^{2*}为特征,其含量多在 2~ 15 μ g/g 间变化,最高可达 46 μ g/g,基本上占阴离子总量的一半以上.SO^{2*} 离子的大量存在,对形 表 1 阿希金矿流体包裹体主要液相成分

Table 1 Chemical composition of liquid facies of the inclusions from Axi gold deposit

序号	样号	Na ⁺	k⁴	Mg [≇]	Ca ²⁺	F	Cŀ	NO3	SO ₄ -	<u>N a*</u> K*	$\frac{\mathrm{N}\mathrm{a}^{\mathrm{t}}}{\mathrm{C}\mathrm{a}^{2\mathrm{t}}} + \mathrm{M}\mathrm{g}^{2\mathrm{t}}$	$\frac{\mathrm{SO}_4^{2-}}{\mathrm{Cl}^{-}}$
1	SAI134- 1	1.16	5.04	0. 01	0. 09		1.40		3. 55	0.39	1. 12	1.8
2	SAI135- 1	6.60	66.88	0. 01	_		5.50		43. 50	0.17	—	5.6
3	SAI136- 4	4.30	38. 30	0. 06	0. 19		8.00		30. 00	0. 05	94	2. 73
4	SAI5- 9	0.30	2.78	0. 04	0. 28		0.07		2.65	0.18	0. 897	29. 8
5	SAI6- 7	0.32	1. 80	0. 06	0. 28		0.08		3. 60	0. 32	0.74	31
6	SAI8- 3	0.30	2.07	0. 06	0. 09		0.07		1. 95	0. 26	6. 5	19.5
7	SAI10- 1	2.21	10. 90	—	—		2.60		5.35	0.35	—	1. 52
8	No1- 2	0.46	6. 32	0. 06	_		2.60		2.70	0.12	22	0. 75
9	SAI6- 3	0.36	5. 20	0. 05	0. 28		0.08		3. 40	0.12	1. 07	32
10	4032- Q1	3.27	5. 09	0.36		0. 24	2.93	1.19	4. 09	0. 64	9. 08	12.21
11	4044- Q ₁	8.00	64.49	0. 11		0. 91	34.07	29.42	13. 18	0.12	72. 73	37.44
12	8016- Q1	2.46	8. 43	0. 01		0. 55	3.60	1.23	6.00	0. 29	24. 6	6. 55
13	8024- 1	3.31	13. 08	0. 08		0.41	4.31	1.51	3. 46	0. 25	4.14	10.51
14	9032- Q1	3.52	11.84	0. 02		0. 28	5.32	1.57	9.00	0. 30	17.6	19.00
15	8044- Q1	3.20	14. 30	0. 05		0.35	3.29	1.31	12.75	0. 22	64	9.40
16	8048- Q1	4.76	3. 14	0.11		1. 43	9.16	3.01	5. 68	1. 52	43. 27	6. 41
17	4020- Q ₂	4.43	0.71	0. 21		0. 19	3.60	0.00	6. 43	6. 24	21. 10	18.95
18	4024- Q2	2.14	13. 36	0. 21		0. 25	3.20	6.94	15.00	0.16	10. 19	12.80
19	4032- Q2	5.23	13. 69	0. 27		1. 76	7.11	2.52	10. 39	0. 38	19. 37	4. 04
20	4044- Q ₂	6.27	23. 33	0. 10		0. 59	11.29	2.19	46.00	0. 25	62.7	19.14
21	8016- Q ₂	4.64	16.07	0.11		0.82	8.20	4.69	6.43	0. 29	42.18	10.00
22	8024- Q ₂	4.66	11. 31	0. 24		0.39	3.52	3.16	29.48	0.41	19.42	9. 03
23	8032- Q ₂	2.81	10.88	0.06		1. 43	4.29	1.23	2.81	0. 26	46.83	3. 00
24	8044- Q ₂	3.79	13.07	0.07		0. 63	4.90	0.94	6. 43	0. 29	54.14	7.78
25	8048- Q ₂	3.42	2.33	2.35		0. 73	2.90	0.55	14.38	1. 47	1. 46	4. 00

1~ 9为作者数据, 10~ 25据新疆地科所 (1993); 10~ 25 SO靠 /CF 数据为 CI⁻ /F 值; 各离子单位为μg/g

成黄铁矿等主要载金矿物极为有利.不难看出,阿希金矿流体属 K^{*}(Na⁺) - SO²⁻(CΓ)型, 其中 Na⁺/K^{*} < 0.5, Na⁺/(Ca²⁺ + Mg²⁺)值为 10⁻ 60,而 SO²⁻/CΓ 值则多在 3⁻ 20间变化, 极少小于 1. 表 2 阿希金矿流体包裹体主要气相成分

Table 2 Chemical composition of gas facies of the inclusions from Axi gold deposit

序号	样品号	CO_2	H ₂ O	H_2	N_2	$\mathrm{C}\mathrm{H}_4$	CO	02	CO ₂ / H ₂ O	还原参数
1	SAI134- 1	56. 57	1337. 70	0.50	5.00	5.61	19.83	1. 67	0. 017	1. 01
2	SAI135- 1	65.74	8385.00	0.82	3.12	3.33	9.79	1. 19	0. 003	0. 65
3	SAI136- 4	330. 22	1989. 00	0. 62	3. 25	6.31	9.50	1. 33	0. 068	0.14
4	SAI5- 9	18.35	370. 50	0.41	1. 75	4.34	13.78	1. 33	0. 020	2.30
5	SAI6- 7	48.92	483. 60	0.44	4.17	3.54	11.83	1. 43	0. 041	0. 69
6	SAI8- 3	24.46	1033. 50	0.54	3.96	6.24	21.25	1. 53	0. 010	2.52
7	SAI10- 1	19.87	2359. 50	0.50	4. 58	5.82	21.33	1. 48	0. 003	4.06
8	No1- 2	29.05	912.60	0.82	2.50	9.18	51.67	1. 10	0. 013	4.29
9	SAI6- 3	67.27	538. 20	0.72	2.92	7.15	26. 25	1. 19	0. 051	1.16
10	4032- Q1	2.60	178.62	0.18	4. 28	0.14	0.95		0. 01456	4.83
11	4044- Q1	49.25	515.91	0.30	1.06	0.60	4.04		0. 09546	0.33
12	8016- Q1	3.36	298. 98	0. 03	0.14	0.06	4.80		0. 01124	2.45
13	8024- Q1	31.55	323. 20	0. 28	0.86	1.97	0.98		0. 09762	0.46
14	8032- Q1	3.17	384. 79	0.32	0. 66	1.75	0.49		0. 00824	4.31
15	8044- Q1	11.33	458. 23	0. 00	0. 85	0.11	0.82		0. 02473	0. 28
16	$8048-Q_1$	10.35	287.72	0. 03	3. 94	0.98	1.75		0. 03597	1. 19
17	4020- Q ₂	5.09	427.97	0. 00	0.38	0.02	0.18		0. 01189	0. 23
18	4032- Q2	8.51	326. 31	0. 04	1. 36	0.11	3.52		0. 02349	1.04
19	4032- Q2	68.59	706.63	0. 07	1.17	0.23	4.60		0. 09707	0.17
20	4004- Q2	36.73	320. 03	0. 00	1. 69	0.26	1.79		0. 11475	0.17
21	8016- Q ₂	10.44	124.14	0. 00	0.80	0.19	2.04		0. 08410	0. 50
22	8024- Q2	4.68	208. 24	0. 05	0.35	0.04	0.60		0. 02247	0. 58
23	8032- Q ₂	5.69	419. 19	0.12	1. 74	0.35	1.76		0. 01357	1. 60
24	8044- Q ₂	11.22	346. 31	0. 04	1.01	0.36	1.71		0. 03240	0. 55
25	8048- Q ₂	28.83	303. 26	0. 03	1. 88	0.12	2.08		0. 09507	0. 25

1~ 9系作者测试数据; 10~ 25为新疆地科所数据 (1993); 气体含量单位 µg/g

包裹体气相成分包括 H₄Q CO₃ CO H₄ N₃ O₂和 CH₄ 除 H₄O外, CO 含量较高, CO 次之.其中还原性气体 (如 CO CH H 等)含量偏高,利用李秉伦 (1986)还原参数 的概念和求算公式,求得的还原参数一半以上大于 1,最高达 5 (表 2),表明成矿介质具较强 的还原特征,有利于流体中 SO² 还原而成 S² 或 HS,便于主要载金硫化物黄铁矿、毒砂的 形成.具高还原参数是火山岩型金矿的突出特征之一 (李秉伦,1986),阿希金矿与此吻合. 包裹体成分中含有较丰富的 O₃ N₂等气体,暗示了矿液组成中大气降水的重要意义.

4 成矿温度

现今已有的多种地质温度计,以包裹体测温较为可靠(施立达,1992).包裹体测温可通

过两种途径:均一法和爆裂法,但均一温度 (T_h)和爆裂温度 (T_d)并非成矿温度 (T_i),它 们之间存在如下关系: $T_i = T_h + \Delta T$.式中 ΔT 为不确定的校正值,可由数摄氏度到 200[°]C不 等.其值大小主要取决于成矿压力和流体盐度.阿希金矿属浅成热液矿床,其成矿压力和流 体盐度均较低,相应的 ΔT 较小.因此,包裹体均一温度可以近似地视为本矿床的成矿温度.

笔者及前人资料,已有包裹体均一温度值 45个,从 87.3~ 260^{°C},集中在 120~ 180^{°C}区 间内 (表 3).统计结果显示塔式分布特征明显,峰值为 150^{°C}左右 (图 2),说明阿希金矿不 同期次矿化过程中,成矿流体温度基本在低温范围内.

图 2 阿希金矿均一温度直方图

Fig. 2 Histogram of homogeneous temperature of Axi gold deposit

表 3 阿希金矿包裹体测试及计算结果表

Table 3	Tested and	calculated results	of the	inclusions	from Ax	i gold d	eposit
---------	------------	--------------------	--------	------------	---------	----------	--------

山	样号	17 D	测定	冰点	均·	一温度/	°C	盐度	k (NaCl) 1%	T _o /	$P_{\rm o}$ /	$P_{\rm t}$ /	$H_{\rm t}$ /
序写		矿物	(平均)	最大	最小	平均	最大	最小	平均	°C	M Pa	M Pa	km	
1	4016- b1	石英		14. 01	131. 2	134. 9								
2	4020- b3	石英	- 1.5	152.7	124. 7	139. 0			4.00	410.88	32.38	10. 96	0. 438	
3	4024– b4	石英		140. 1	126. 1	128. 0								
4	8028- b22	石英		143. 6	129.4	137. 0								
5	4028- b6	石英		123. 4	89.4	103. 7								
6	8023- b24	石英		168. 2	133. 2	150.7								
7	4032- b8	石英				94. 5								
8	8016- b16	石英		147.5	97.6	122. 6								
9	8044- b30	石英		155.7	97.1	111. 2								
10	4024- b5	石英	- 3.8	164.7	126.5	142. 0	8.3	5.5	6.90	437.5	39. 98	12. 98	0. 519	
11	4028- b7	石英		19. 21	92.8	142.5								

续	表	3
	~ ~	_

这只	》 样是	则定	冰点	均-	一温度/	C	盐度	k (NaCl) 1%	$T_{\rm o}$ /	$P_{\rm o}$ /	$P_{\rm t}$ /	$H_{\rm t}$ /
	1 千 5 石		(平均)	最大	最小	平均	最大	最小	平均	°C	M Pa	M Pa	km
12	8016- b17 7	石英				146. 2							
13	8032- b25 7	石英	- 2.4	185.4	102.7	161. 2	6.1	3.8	4.2	412.6	32. 9	12.84	0. 513
14	8036- b27 7	石英	- 2.1	140. 3	83. 6	125. 8	5.2	3.5	4.4	414.5	33. 43	10. 15	0. 406
15	8044- b31 7	石英	- 2.7	293	78.7	143. 9	8.3	2.2	5.3	422.8	35. 79	12.18	0. 487
16	8048- b32 7	石英		175.8	155. 0	165.4							
17	9048- b33 7	石英		164. 0	111.6	137.8							
18	4020- b34 7	石英		183. 9	138.8	152.9							
19	SAI- 11- 15- 1方	解石	1. 3			108.6	5.1		2.1	393. 3	27.4	7. 566	0. 303
20	SAI- 13- 7 7	石英				201. 5							
21	SAI- 1- 2 7	石英				87.3							
22	SAI- 22- 6 7	石英	- 2.34			88.8			45	415.4	33. 69	7. 202	0. 288
23	SAI- 6- 7 7	石英	- 1.4			99. 7			2.7	398.8	28.97	7.24	0. 290
24	901D6- S002 7	石英	- 0.5			154			0.87	415. 9	33. 69	7. 206	0. 288
25	901D6- S011 7	石英	- 0.2			202. 8			0.35	398.8	28.97	7.24	0. 290
26	901D6- S014 7	石英	- 2.5			135.6			4.17	382	24.18	9. 748	0. 390
27	901D6- S080 7	石英	- 0.6			175.4			1.05	383. 7	24.65	11. 27	0. 451
28	901D6- S017 Z	石英	- 0.5			155. 2			0.87	382	24.18	9.82	0. 930
29	901 D6- S08 7	石英	- 2.8			168. 2			4.64	416.6	34.06	13. 75	0. 550
30	901D6- S167 7	石英	- 1.0			153.6			1.73	389. 9	26.43	10. 41	0. 417
31	901D6- S012 7	石英	- 0.8			162.5			1.39	386.8	25.54	10. 74	0. 429
32	901D6- S066 7	石英	- 1.1			168.4			1.90	396. 5	20. 88	11.56	0. 463
33	901D6- S162 7	石英	- 6.3			193. 3			9.60	462.3	47.05	19.67	0. 787
34	901D6- S192 7	石英	- 0.4			161. 2			0.70	380.4	23. 73	10.06	0. 402
35	901D6- S193 7	石英	- 0.2			146.8			0.35	377. 2	22.82	8.88	0. 355
36	901D6- S075 주	石英	- 1.4			176.5			2.40	396. 1	28.14	12.56	0. 502
37	901D6- S94 주	石英	- 4.2			260			6.73	435. 9	39. 53	22.65	0. 906
38	901D6- S104 7	石英	- 3.8			248			6.14	430. 5	37.99	21.88	0.875
39	901D6- S128 7	石英	- 0.2			218.6			0.35	377. 2	22.82	13. 22	0. 529
40	901D6- S020 7	石英	- 3.4			217.3			5.55	425. 1	36.44	17.52	0. 701
41	901D6- S024 7	石英	- 3.8			225. 6			6.14	430. 5	37. 99	19.91	0. 796
42	901D6- S176 7	石英	- 0.8			214. 5			1.39	386.8	25. 54	14. 16	0. 567
43	901D6- S170 7	石英	- 2.3			245.6			3.85	409.4	31. 99	19. 19	0. 768
44	901D6- S002方	解石	- 1.5			158.5			2.56	697.6	28. 31	11.40	0. 456
45	901D6- S128方	解石	- 0.4			186.2			0.70	380.4	25. 22	12.35	0. 494

1~ 18系新疆地科所资料, 25~ 45系新疆实验测试中心资料, 其他系作者测试结果

5 成矿压力

迄今为止的各种地质压力计均不十分精确 可靠,只能是一种近似的方法.本文对成矿压力 的计算,采用的是邵洁涟[●]的经验公式,邵洁涟 认为:成矿压力 (P_1)与成矿温度 (T_1)及流体 盐度 (N)有一定关系,即 $P_1=P \stackrel{\times}{\rightarrow} T_1 / T_0$,其 中 $T_0 = 374$ + 9.20N ($^{\mathbb{C}}$), $P_0 = 219$ + 26.20N(10° Pa).这里 T_1 已知, N 系经冷冻法测出流体 冰点 (表 3),再利用 NaCl- H₂O- CO₂体系盐度 与冰点关系对比图 (图 3)而求得 (见表 3).

由上述方法计算获得成矿压力为 7.2~ 21.8 M Pa,集中于 10 M Pa左右.若以岩石静压 力 25 M Pa /km计,其成矿深度为 300~900 m, 集中在 400~500 m.这与地质情况基本吻合,尚需 指出的是,这种计算方法未考虑构造应力的影响.

6 成矿流体的酸碱度及氧化还原条件

6.1 成矿流体的酸碱度

研究表明,阿希金矿成矿作用过程中形成大 量的绢云母,同时有高岭石、蒙脱石、伊利石等 共生,并有一定量的冰长石出现,据此可以大体 判定: 阿希金矿成矿流体大致属中一弱碱性.

迄今利用包裹体分析资料求解成矿流体酸 碱度的方法很多.本文结合阿希金矿的实际情况,采用钾长石-绢云母法,假定成矿作用过程 中存在下列平衡:

图 3 NaCl浓度与冰点和 CO₂ 水合物的分解温度关系对比图 (据 Peter Collins, 1979)

Fig. 3 Corelation between NaCl concontration and freeze point of NaCl- H2O- CO2 system (after Peter Collins, 1979)

则可推导出: p H= 0.5 lg K- lg T_k - 0.5 lg [(T_{ser} - T_Q⁶) / I_{kf}^{3}) \approx 0.5 lg K- lg T_k

式中 K为平衡常数,可由 $\lg K = 12-0.012T$ 求得,按平均成矿温度 $150^{\mathbb{C}}$,平均盐度 3. 25% 计,求得 $pH值为 4.58 (150^{\mathbb{C}}$ 时水的中性 pH值为 5.82),与地质情况基本吻合. 6.2 氧化还原条件

鉴于气体还原参数可以定性地表示成矿流体的氧化还原环境,按照包裹体中气体成分中还原性气体 (CH, H, CO等)的摩尔总数和与 CO2摩尔数之比值 (李秉伦, 1986),我们 计算出阿希金矿成矿流体还原参数 (表 2)的平均值为 1.43,说明介质具有较强的还原性质. 7 成矿热力学参数

7.1 气体逸度计算

众所周知,成矿流体非均匀体系,某一气体总量由溶于盐水中气体和呈气相状态气体组成,使得气体逸度的计算十分复杂,为了简化计算过程,本文采用李秉伦的逸度 – 成矿温度关系图解,获得 O₃ CO₂的逸度值.其中 O₂逸度值为 10^{-24} ~ 10^{-44-5} ,集中于 10^{-38} ~ 10^{-40} 之间; CO₂逸度值为 $10^{2.8}$ ~ $10^{3.8}$.

7.2 氧化还原电位 (Eh值)

同样,采用李秉伦 (1986) Eh-T关系经验图解,概略求得成矿流体氧化还原电位值为 - 0.88~-1.18,反映出成矿环境为还原环境,与前述氧化还原条件的讨论结果一致.

8 成矿热液类型及来源

成矿流体中不同元素含量、比值等等,除了反映热液的性质外,亦有助于判定成矿热液的类型、来源.

对于热液矿床而言, 矿液的来源可能是多方面和多成因的, 如岩浆的、变质的 火山的 海水的、热卤水和大气降水等等, 但更多的是具混合成因者. 我们说, 包裹体是封存下来的 矿液"样品", 其组成成分等特点, 基本上代表了成矿流体的主体特征. 正是基于此, 许多地 质学家都在试图通过对包裹体成分"密码"的破译, 来讨论成矿流体的特征、类型, 并进而 讨论其来源. Roedder (1972)等众多的地质工作者, 经多年的潜心研究, 提出了确定成矿热 液类型的经验指标:若成矿流体中 $Na^{+}/K^{+} < 2$, 而 $Na^{+}/(Mg^{2} + Ca^{2+}) > 4$ 时, 为典型的 岩浆热液;若 $Na^{+}/K^{+} > 10$, $Na^{+}/(Mg^{2} + Ca^{2+}) < 1$. 5时, 为典型热卤水; 介于二者之间 者, 可能为沉积型或层控型. 一般而言, 流体中 CF 含量高, 显示海水的特征; CF 与 SO²⁺含 量高, 多与卤水成因有关; 流体中 F 含量高, 多与岩浆成因有关; SO⁻⁴含量高则多与火山成 因有关. 当然, 这些理论推断还应与具体地质情况结合起来, 才能获得圆满的解释.

综合前述有关内容及阿希金矿的地质特征,笔者认为:阿希金矿成矿热液是多成因和复杂的.溶液中富 K^{*}、 Na^{*}和 SO^{2*},显示了岩浆 – 火山成因热液特征;低盐度及富含 Na O2 等,反映了有大量气水的参与.笔者认为,阿希金矿成矿流体是大气水和火山成因岩浆水的 混合水.

阿希金矿同位素,特别是氢氧同位素的研究^① 亦反映了相同的结论. 阿希金矿 7个氢氧 同位素样品分析表明, $W^{8}O$ 值变化范围为 $5\% \sim 13\%$,WD值为 $- 59\% \sim - 115$. 6%,显示了大 气水特征. 在 $W^{8}O_{H,0}$ - WD 图解中,投影点均远离岩浆水,而逼近大气水线.

种种迹象表明,阿希金矿成矿热液以大气降水为主,同时又与华力西期陆相火山活动密切相关.

9 结 论

① 阿希金矿成矿流体具低盐度特征,属 K^{*} (Na^{*}) – SO²⁻ (Cl^{*})型;阳离子富 K^{*},阴 离子富 SO²⁻; 气相成分以 H₂O CO₂为主,富含 H₂ CO CH₄等还原性气体.

- ② 成矿环境为近中性介质的还原环境.
- ③ 矿床属低温、浅成,成矿温度集中在 120~ 180^C范围内,成矿深度为 300~ 900m.
- ④ 矿液表现为主体为大气降水,混有少量火山成因岩浆水的一种混合热液特征.

10 参考文献

- 1 何知礼. 包裹体矿物学. 北京: 地质出版社, 1982.
- 2 李秉伦. 矿物包裹体气体成分的物理化学参数图解. 地球化学, 1986, (2).
- 3 徐文//示. 矿物包裹体中水溶气体成分的物理化学参数图解. 矿产与地质, 1991, (3).
- 4 国家辉,施立达,等.桂西北超微粒型金矿及其成矿和找矿模式.北京:地震出版社,1992.

5 Roedder E. 流体包裹体 (上). 长沙: 中南工业大学出版社, 1985.

THE FLUID INCLUSION OF AXI GOLD DEPOSIT IN WEST TIANSHAN MOUNTAINS

Sha Deming

(Shenyang Institute of Geology and Mineral Resources)

Abstract

The fluid inclusions of Axi gold deposit are characterized by fine size, various shapes and mostly single liquid facies. They chemically belong to K^* (Na⁺) - SO^{2/+} (Cl⁻) type. K^* is the major part in cations while SO^{2/+} is the counterpart in anions. HeO and CO² are the major components in gas facies with rich O₂, N₂ and reduced gases (He, CH₄, CO, etc.). The ore-forming process took place in low temporature (120~ 180[°]C), shallow-seated (300~ 900m) and reduced evironment with low salinity fluid which is majorly atmospheric water mixed with minor volcanic-origin magmatic water.

Key words West Tianshan Axi gold deposit fluid inclusions

作者简介 沙德铭 男 1962年生,1989年毕业于长春地质学院,获构造地质学硕士学位.现任沈阳地 质矿产研究所区域地质研究室副主任、副研究员.通讯地址:沈阳市北陵大街 25号;邮政编码 110032.