第15卷第3期	地 质 与 资 源	Vol. 15 No. 3
2006年9月	GEOLOGY AND RESOURCES	Sep. 2006

文章编号:1671-1947(2006)03-0179-08

中图分类号 :P618.52 文献标识码 :A

燕山地区银矿成矿时代与成矿物质来源探讨

李久明, 巩恩普, 姚玉增, 于海纲

(东北大学 资源与土木工程学院 辽宁 沈阳 110004)

摘 要:通过大量的 K – Ar 同位素年龄和硫、铅、氢 – 氧同位素数据统计、对比分析,认为燕山地区陆相火山 – 次火山岩型银 矿床与著名的环太平洋东带陆相火山岩型银矿床有着明显的差别。本区银矿成矿时代为 195~100 Ma;成矿物质以深部来 源为主,兼有基底和盖层物质加入;成矿热液主要是岩浆水中混入大量天水的混合水。

关键词:火山 – 次火山岩型银矿床;成矿时代;同位素;成矿物质来源

太行山北段、张家口 - 宣化、冀东和辽西部分地区 (以下称燕山地区)陆相火山 – 次火山热液型银矿产资 源丰富,成矿时间漫长,成矿期次众多,成矿物质来源 也长期争论不休[1~4]. 但越来越多的资料表明,印支期 一燕山期 (225~65 Ma), 特别是燕山中 - 晚期为该区 银矿产形成的重要时期.但是,与国外著名的环太平 洋东带第三纪陆相火山 - 次火山岩型银矿床相比, 燕 山地区在成矿时代与成矿物质来源方面更显示出较鲜 明的区域特色,这也是众多矿床地质学家争论的热点 和成矿理论研究不可回避的难点问题.随着资料的不 断积累,有必要从区域的层面上,从统计的角度来探讨 此问题,以克服因单个矿床少量数据的研究而导致认 识上的偏颇,通过野外实地考察和大量数据资料的收 集整理,从总体上认识燕山地区陆相火山 – 次火山热 液型银矿成矿的一般规律,可能会对下一轮深部找矿 和寻找独立、超大型银矿床靶区方面提供一些有益的 信息.

1 区域地质背景和矿床空间分布

研究区除个别地区外,普遍缺失上奥陶统、志留系 及下石炭统,目前被认可的出露最老地层为太古宇迁 西群,Sm-Nd同位素年龄为3500 Ma.中新元古界包 括长城系、蓟县系和青白口系,由一套碎屑岩、黏土岩 及富镁质碳酸盐岩构成的滨浅海相、潟湖相的石英砂 岩、石英岩、页岩夹砂页岩和粉砂质条带状白云岩组 成.古生界至中生界主要表现为一套碎屑岩和以碎屑 岩为主夹灰岩、煤层的海陆交互相含煤建造,及由凝灰

收稿日期 2006-04-20 ;修回日期 2006-05-23. 张哲编辑.

质砾岩、粉砂岩、安山岩、集块岩等组成的陆相碎屑岩 和火山 - 沉积岩组合,基底褶皱在燕山地区,主要可 分出 3 期:迁西期褶皱形成特殊的花岗片麻岩穹隆;阜 平期为一系列轴向近南北的紧闭同斜褶皱;五台 - 吕 梁期为北北东向紧闭同斜倒转褶皱,盖层褶皱在燕山 期变形最为明显,且伴随有大规模的北东—北北东向 和东西向断裂活动,如康保-赤峰东西向断裂为华北 地台与内蒙 – 大兴安岭褶皱带的分界断裂;另一东西 向尚义 – 平泉深断裂为内蒙台背斜与燕山台褶带的分 界断裂. 岩浆活动以印支—燕山期最为强烈, 形成-系列钙碱性陆相火山 - 侵入杂岩体. 其中早、中侏罗 世在燕山地区以基——中性火山喷发为主,侵入岩为中 酸性的小岩株.晚侏罗世是燕山期岩浆活动的高峰, 火山喷发和侵入作用都达到最强烈程度,规模大,分布 广,几乎都是中酸性岩.侵入岩呈东西和北东向成带 广泛分布,以中酸性大岩基为主.燕山晚期岩浆喷发 活动仍较强烈(以中性熔岩为主,次为酸性火山碎屑 岩),表现为广泛分布的中酸性小岩株和次火山岩体。 其中,晚侏罗世的陆相火山_侵入岩浆活动与区域银 成矿关系最为密切.

事实上, 燕山地区虽然银矿床比较发育, 但独立 中、大型银矿床少见, 多是与铅、锌等多金属伴生的小 型矿床或矿点(表1), 主要分布在中生代燕山期陆相 火山沉积盆地与岩浆岩带的过渡带上, 以火山 – 次火 山热液型银矿床为主, 岩浆热液独立或伴生的银矿床 占次要地位,并有少量沉积 – 改造型银矿床.火山岩、 次火山岩和中生代断陷盆地控制了矿床的空间分布, 如河北省西北部的蔡家营 – 青羊沟一带次火山岩及超 浅成侵入岩呈北西向展布,与之有关的Ag多金属矿床 亦呈北西向展布,即矿床的空间分布是与区域成矿条 件在空间上的配置相关的.总体上,成矿带在空间上 的展布与构造岩浆岩带相一致:岩浆岩发育,则矿床数 目多、规模大、分布也相对集中;而岩浆岩不发育地区 矿化则相对微弱.地层对矿床的空间分布也具有重要 的影响,如冀西北地区分布有数量众多的银铅锌矿床, 与该区发育北东向展布的中生代火山岩系地层密切相 关.

2 成矿时代讨论 中生代燕山期是本区银矿最主要的成矿时期,区

内已知的大、中型银多金属矿床和几乎全部的小型银 矿床与矿点,均为中生代燕山中—晚期的产物.其证 据主要有3点:

2.1 宏观地质特征

区内大部分矿床,如蔡家营、八家子、松南、北岔沟 门、姑子沟、小扣花营等 Pb – Zn – Ag 矿床,相广、柴 屯、满汗土、双井子、小青沟、支家地等 Ag – Mn 矿床, 水关口、彭家沟、万全寺、青羊沟、火石沟等 Ag 矿床以 及双井子、红石砬子、蘑菇峪、丰宁银矿、洞子沟等Ag – Au(或 Ag – Cu – Au) 矿床,它们在宏观上都直接与中 生代的中酸性侵入岩、火山 – 次火山岩密切相伴(表 1).矿脉常穿切火成岩体及中酸性岩脉,煌斑岩脉则 既可以穿切矿脉也可以为含矿裂隙脉充填、穿插.由

	表 1	燕山地区银多	5金属创	床产出?	<u></u> 苻祉一览	记表	
Table 1	Occurrin	g charateristics	of Ag-p	olymetal	deposits	in Yanshan	area

序号	矿床名称	所在地区	矿 种	矿床规模	构造部位特征	矿体产出特征	主要围岩或蚀变	其他特征
1	三义庄	宣化	Ag – Zn – Mo	小型	隆拗过渡带	热液脉	花岗闪长斑岩	围岩蚀变以硅
2	蔡家营	张北	Ag - Pb - Zn	超大	断陷盆地	脉带状	花岗斑岩	化、钾化、绢云母
3	水关口	涿鹿	Ag	小型	岩体接触带	裂隙脉	花岗杂岩体	化为主,局部发
4	彭家沟	赤城	Ag	中型	断陷盆地	裂隙脉	火山岩	育重晶石化、萤
5	北岔沟门	冀北	Ag - Pb - Zn	小型	岩体接触带	脉带状	次火山斑岩体	石化、碳酸岩化
6	万全寺	赤城	Ag	小型	剪切带	裂隙脉	花岗岩	及青磐岩化;出
7	青羊沟	赤城	Ag	中型	剪切带	脉带状	钾长花岗岩	露次火山岩以酸
8	相广	涿鹿	Ag – Mn	大型	次级拆离带	裂隙脉	火山岩	性 – 偏碱性为特
9	火石沟	赤城	Ag	中型	岩体接触带	脉状	花岗岩、碳酸盐岩	征,一般 K ₂ O >
10	洞子沟	兴隆	Ag – Cu – Au	大型	次级拆离带	脉状	碳酸盐岩变质岩	Na ₂ O(质 量 分
11	蘑菇峪	冀北	Ag – Cu – Zn	小型	岩体接触带	似层状	斑岩、夕卡岩	数,%),Fe ₂ O ₃ >
12	二八地	冀北	Ag – Cu	小型	隆起外缘	脉状	钾长花岗岩	FeO(质 量 分
13	大湾	涞源	Ag – Zn – Mo	超大	次级拆离带	脉状	碳酸盐岩	数,%);矿化上
14	丰宁银矿	丰宁	Ag – Au	大型	火山机构	脉状	次火山岩	富下贫,高氧逸
15	姑子沟	承德	Ag - Pb - Zn	中型	韧性剪切带	脉状	火山岩系地层	度,低 pH 值,多
16	小扣花营	围场	Ag - Pb - Zn	中型	断陷盆地	脉带状	火山岩系地层	含 Mn、CaF2 及卤
17	兰阎	康保	Ag - Pb - Zn	中型	断陷盆地	脉带状	钾长花岗岩	素
18	烟筒山	承德	Ag - Pb - Zn	中型	断陷盆地	脉带状	火山岩系地层	
19	八家子	建昌	Ag - Pb - Zn	超大	岩体接触带	似层状	碳酸盐岩、夕卡岩	
20	柴屯	辽西	Ag – Mn	小型	剪切带	脉状	次火山流纹斑岩	
21	上碌碡湾	康保	Ag - Pb - S	小型	断陷盆地	脉状	闪长斑岩	
22	东山	冀北	Ag - Pb - Zn	中型	断陷盆地	脉状	火山岩系地层	
23	红石砬	阜新	Ag – Au	小型	剪切破碎带	脉状	钾长花岗岩	
24	朱家洼	冀北	Ag – Au	小型	隆起外缘断裂	脉状	火山岩系地层	
25	胥家窑	冀北	Ag – Mn	小型	隆起外缘断裂	脉状	火山岩系地层	
26	双井子	丰宁	Ag – Au	小型	隆起外缘断裂	脉带状	火山凝灰岩	
27	刘营	冀北	Ag - Pb - Zn	小型	隆起外缘断裂	脉带状	花岗斑岩	
28	贾家营	冀北	Ag – Zn – Mo	小型	隆拗过渡带	热液脉	花岗闪长斑岩	
29	黑沟门	承德	Ag – Pb – Zn	小型	隆起外缘断裂	热液脉	花岗 – 流纹斑岩	

资料来源:据文献[1~4].

\mathbf{O}	1
×	
o	т.
	8

此推测,本区银矿成矿作用与中生代火山-次火山的 喷发(侵入)岩浆活动有着十分密切的联系.

2.2 关于含矿岩石年龄

由于矿化赋存于某个花岗岩单元中,特别是斑岩 型矿化,尽管没有晚期单元或脉岩侵入作为时间的限 制,但根据成矿一般稍晚于所赋存的花岗岩单元形成 时间的特征,该类花岗岩单元形成时间大致可代表成 矿时代.为此,本文将所收集的28个含矿母岩年龄数 据(表2),与区内415个中生代岩浆岩年龄资料进行 了对比分析(图1).文中所采用的年龄数据,虽然绝大 多数是用K-Ar法测得的,年龄往往偏新,但是在探讨 本区银矿床是否为中生代燕山期成矿年龄这一点上仍 有价值.由图1可以看出,含矿母岩的年龄段与区内 415个不含矿的中生代岩浆岩年龄基本一致.区内银 矿床的成矿年龄集中在195~100 Ma之间,主要是早 侏罗世和晚侏罗—早白垩世,而以晚侏罗—早白垩世 最为突出,成矿作用是连续的,成矿年龄频数集中,从 而证明成矿时代为中生代燕山期.

2.3 矿化蚀变年龄

选择与热液矿床成矿年龄比较接近的蚀变围岩, 如硅化、钾化及绢云母化等岩石,测定其 K – Ar 年龄可 以有效反映成矿热液活动时期,估测出成矿年龄.例 如,丰宁银矿冰长石-玉髓矿脉 K – Ar 年龄为 120.66±3.16 Ma;青羊沟银矿床蚀变绢云母 K – Ar 年 龄为 192.5 Ma;姑子沟、双井子、小扣花营、相广、蔡家 营等矿区与成矿密切相关的蚀变岩石的 K – Ar 或锆石 U – Pb 年龄分别为 118 Ma、102 Ma、121~134 Ma、118 Ma 和 120~141 Ma 等.成矿热液活动均发生在侏罗 纪末期—白垩纪早期构造 – 岩浆活动过程中,因此这 也从侧面上反映出本区银矿床的成矿作用发生在中生

Table 2 K-Ar	ages of ore-hosting rocl	ks in Yanshan area
矿床名称	岩石类型	年龄
洼子店	二长花岗岩	105
钢屯	细粒花岗岩	106
三义庄	流纹斑岩	113
肖家营	细粒闪长岩	113
石槽	花岗斑岩	116
相广	花岗斑岩	118
新台门	花岗斑岩	120
二道沟	花岗闪长岩	121
辛坊	花岗闪长岩	125
大庄科	石英二长岩	126
460 矿	次流纹岩	126
寿王坟	花岗闪长岩	127
烟筒山	花岗岩	129
小寺沟	花岗闪长岩	129
水关口	花岗岩	129(U-Pb)
杨家杖子#	细粒花岗岩	133
蔡家营	石英斑岩	134
峪耳崖	花岗岩	136
茅山	花岗岩	138
贾家营	流纹斑岩	139
盘道沟	细粒花岗岩	142
丰宁银矿 *	粗粒花岗岩	153
兰家沟	细粒花岗岩	154(Rb-Sr)
东五家子	花岗岩	155
蘑菇峪	石英斑岩	156
松南	花岗闪长岩	177
八家子	二长花岗岩	183(U-Pb)
松北	花岗岩	193

表 2 燕山地区部分含矿母岩 K - Ar 年龄^[3]

资料来源:*据华北有色514队,1990;#据裴荣富等,2003.

图 1 燕山地区各岩体 K - Ar 年龄分布特征图

Fig. 1 Distribution of K-Ar ages of rock bodies in Yanshan area 1—区内岩浆岩(magmatic rocks); 2—含矿岩石(ore-bearing rocks); 415 个花岗岩资料据文献[3] 3 成矿物质来源

3.1 硫同位素地球化学

目前,矿床硫同位素(δ^{34} S)的组成特征被广泛应用 于内生金属矿床的成因研究中.因其在判别矿床成矿 物质来源上有着十分重要的价值,也是矿床地球化学 研究方法中最重要的手段之一.燕山地区 20 个银多 金属矿床硫化物硫同位素测定数据 425 件(表 3)统计 表明,区内各矿床矿石硫化物中重硫(34 S)的分馏富集 大体符合巴欣斯基 δ^{34} S(%)值黄铁矿 > 闪锌矿 > 黄 铜矿 > 方铅矿的硫同位素热力学平衡分馏规律,离差 在 1.90%~16.5%之间,即各矿床中各自硫化物大体 共生于同一成矿地质环境,硫同位素均基本达到热力 学平衡分馏条件. δ^{34} S值的变化范围为 – 14.40%~ 11.80%,绝大多数(80%以上)为正值,众值(约95%) 集中于 – 4%~+8%之间(图 2),偏离陨石硫(–1.20 %~+1.30%)不远,反映硫源以深源硫为主,并受浅 源硫的混染,即硫源具有多来源之特点.

3.2 铅同位素地球化学

地质学研究中利用铅同位素组成来计算成岩成矿 时代,早已为广大地学工作者所熟知,这也是放射性同 位素研究所必须涉及的问题.但近二三十年来,铅同 位素在地质学研究中的运用结果统计表明,在矿床地 球化学方面所给出的确定性含义远远大于其在年代学 领域给出的不确定性含义.也就是说,矿床中的铅同 位素组成不但可用来测定成矿时代,而且更主要的是 它还可以用来探索成矿物质的来源,阐明矿床形成以 后的历史.矿体周围铅同位素的变化还可为找矿和勘 探提供重要的信息.

本次工作共收集到燕山地区各类银多金属矿床矿 石铅同位素数据 140 件,其平均值见表 4. 所得数据投 到构造铅演化模式图(图 3)中.

由表 4 及图 3 可知本区矿床矿石铅同位素组成变 化:²⁰⁶Pb/²⁰⁴Pb 位于 15.63~17.15 之间,²⁰⁷Pb/²⁰⁴Pb 位 于 14.9~15.40 之间,²⁰⁸Pb/²⁰⁴Pb 位于 35.59~37.90 之间,变化范围比较小.各类银矿床矿石铅同位素的 投点位置绝大部分落在下地壳与上地幔之间,局部落 在造山带附近,但距离上地壳较远.表明矿石铅铅源 较深,并具有壳 – 幔混合铅的特点.

3.3 氢、氧同位素地球化学

3.3.1 矿床矿物氧同位素特征

表 3 燕山地区银 – 多金属矿床硫同位素组成特征

序号	矿床名称	矿 种	样品数/个	δ ³⁴ S 变化范围/‰	平均值/‰	离差/‰	资料来源
1	蔡家营	Ag – Pb – Zn	66	- 1.90 ~ + 10.5	+ 6. 70	10.31	1
2	水关口	Ag	6	-0.83 ~ +4.26	+ 3. 50	5.09	文献[5]
3	彭家沟	Ag	2	+ 4. 20 ~ + 8. 10	+ 5. 25	2.05	
4	兰 阎	Ag - Pb - Zn	2	- 10. 50 ~ - 0. 50	- 5. 50	-	河北地质三队
5	万全寺	Ag	15	-4.30 ~ +7.30	+ 3. 13	11.60	文献[5]
6	相广	Ag – Mn	3	$+0.10 \sim +4.80$	+ 2. 28	4.70	2
7	韩家沟	Ag	26	- 14. 40 ~ - 0. 65	- 10. 01	3.08	文献[5]
8	常庄子	Ag – Au	4	$+1.50 \sim +3.00$	+ 2. 10	-	河北地质三队
9	蘑菇峪	Ag – Cu – Zn	2	+ 5. 50 ~ + 8. 20	+ 6.80	-	文献[10]
10	营房 – 牛圈	Ag – Au	24	+ 2. 90 ~ + 5. 20	+ 4. 25	1.90	天津地矿所
11	姑子沟	Ag - Pb - Zn	48	$-6.00 \sim +8.00$	+ 3.90	4.43	文献[3]
12	北岔沟门	Ag - Pb - Zn	8	$+0.20 \sim +5.20$	+ 2. 94	-	文献[10]
13	上碌碡湾	Ag - Pb - S	5	-4.30 ~ +1.30	- 0. 58	-	文献[10]
14	小扣花营	Ag - Pb - Zn	45	-0.13 ~ -10.14	- 3. 20	-	
15	八家子	Ag - Pb - Zn	103	$-8.20 \sim +6.70$	+ 2. 90	5.51	文献[3]
16	大 湾	Ag – Zn – Mo	35	$-8.40 \sim +9.00$	- 3. 20	2.97	4
17	洞子沟	Ag – Cu – Au	6	- 1.49 ~ +4.90	-0.70	2.34	2
18	火石沟	Ag	4	+ 5.00 ~ + 11.80	+ 8.78	3.11	3
19	青羊沟	Ag	18	- 12.96 ~ + 3.54	- 8. 92	16.50	文献[5]
20	柴屯	Ag	3	+ 6. 4 ~ + 6. 9	+ 6. 7	-	文献[3]

Table 3 S isotopic composition of the Ag-polymetal deposits in Yanshan area

注: ①王金锁. 冀北西部银矿成矿地质条件及找矿方向,1992. ②有色普查大队. 河北省兴隆县洞子沟矿区详查报告,1996. ③李红阳. 冀西北银多 金属矿化集中区控矿因素,矿床类型与成矿预测,1994. ④太行山科研队. 太行山构造岩浆带对金属矿的控制研究,1994.

a—矿床序号 (series number of deposit); b—样品数 (amount of samples); △ (c) —样品均值 (average value of samples); 水平线为硫同位素变化范围 (Horizontal line represents the δ³⁴S range.)

表 4	燕山地区银多金属矿床矿石铅同位素数据统计表	

序号	矿床名称	矿 种	样品数/个	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁴ Pb	²⁰⁸ Pb/ ²⁰⁴ Pb	资料来源
1	常庄子	Ag	2	16.34	15.19	36.22	河北地质三队
2	水关口	Ag	2	16.31	15.25	36.51	河北地质三队
3	上碌碡湾	Ag - Pb - S	2	16.06	14.90	36.14	河北地质三队
4	彭家沟	Ag	3	16.90	15.16	37.02	河北地质三队
5	兰阎	Ag - Pb - Zn	2	16.674	15.385	37.900	文献[3]
6	上井沟	Ag	2	17.10	15.13	37.15	河北地质三队
7	相广	Ag – Mn	6	16.97	15.54	37.22	河北地质三队
8	梁家沟	Ag	5	17.01	15.52	37.14	冶金 516 队
9	青羊沟	Ag – Cu – Zn	4	16.76	15.34	36.97	冶金 516 队
10	蔡家营	Ag - Pb - Zn	7	16.80	15.42	37.55	冶金 516 队
11	洞子沟	Ag – Cu – Au	6	15.626	15.096	35.594	冶金 516 队
12	大 湾	Ag – Zn – Mo	17	16.625	15.262	36.874	冶金 516 队
13	八家子	Ag - Pb - Zn	53	16.274	15.233	36.459	冶金 516 队
14	营房 – 牛圈	Ag – Au	6	17.07	15.40	37.67	
15	姑子沟	Ag - Pb - Zn	9	16.370	15.198	36.430	文献[3]
16	小扣花营	Ag - Pb - Zn	1	17.154	15.346	37.394	文献[3]
17	东 山	Ag	1	16.386	15.230	36.555	文献[3]
18	刘家营	Ag - Pb - Zn	2	16.376	15.224	36.726	文献[3]
19	满汗土	Ag - Pb - Zn	9	17.034	15.342	37.297	文献[3]
20	窑沟脑	Ag – Pb – Zn	1	16.585	15.283	36.758	文献[3]

注:①同表3注.

(after References [11] and [12])

NCM—华北上地幔(North China upper mantle); LUC—低级上地壳(low grade upper crust); LLC—低级下地壳(low grade lower crust); CHLC—地壳型高级 下地壳(crust-type high grade lower crust); MHLC—地幔型高级下地壳(mantle-type high grade lower crust); 1~20—矿床序号(series number of deposit)

为了进一步确定银矿成矿作用与中生代陆相火山 -次火山岩的成因关系,本文收集到燕山地区15个银 -多金属矿床矿石及脉石矿物氢氧同位素数据共71 件(表5),并将部分矿床矿物氧同位素(δ¹⁸O)丰度与陈 骏等^[13]给出的火成岩氧同位素值(+5%o~+5‰)作图 进行对比(图4).

由表 5 及图 4 可知, δ^{18} O 值变化范围为 - 2.51‰ ~ +18.7‰ 表现出较宽的变化区间.但众值区为 +4‰ ~ +14‰,并分别在 +4‰、+7‰和 +12‰附近出现峰值 区.说明,①区内各矿床矿物氧同位素组成与中生代 火成岩 δ^{18} O 基本一致;②多峰的出现,反映氧同位素 富集原因具有一定的复杂性(可能多种来源):③峰值 区具有与地幔岩石氧同位素值(+5‰ ~ +6‰)和地壳 重熔花岗岩氧同位素值(+10‰ ~ +13‰)相似的双重 特点.

3.3.2 成矿热液氢、氧同位素特征

水是内生矿床成矿热液中的主要组成部分,因此,研究水的氢、氧同位素组成特征是探讨热液成矿作用及矿床成因的重要内容之一.由表 5 知,区内部分银矿床热液 $\delta^{18}O_{H,0}$ 值变化范围为 – 8.29‰ ~ +7.13‰, δ D 值变化范围为 – 56.09‰ ~ – 116.9‰之间,如热液矿床水 δ D – $\delta^{18}O_*$ 组成体系图(图 5).

各矿床在图 5 上的投点位置基本上处在原生岩浆 水的左下方,总趋势位于偏离原生岩浆水不远的雨水 热液区.造成这种现象的原因,不外乎有以下 2 点:-是在岩浆水中混入大气降水(地下水),使岩浆水贫 D、 贫¹⁸O;二是大气降水中混入岩浆水,使大气降水富 D、 富¹⁸O.需要说明的是,大湾、姑子沟、小扣花营、满汗 土、栾木厂、小银岭等矿床 δ¹⁸O_{HO} 值出现负值,推测可 能与大量地下水混入有关.总之,燕山地区银多金属 矿床成矿热液的主体或组成的总趋势,是以岩浆水和 大气降水的混合水为特征.显然,热源是来自中生代

图 4 燕山地区银 – 多金属矿床矿物氧同位素丰度

Fig. 4Abundance of O isotope of the Ag-polymetal deposits in Yanshan area1—石英(quartz); 2—重晶石(barite); 3—菱锰矿(rhodochrosite) 4—方解石(calcite)

表 5 燕山地区部分银矿床氢、氧同位素组成特征

Table 5	H and O i	isotopic compositions	s of some Ag	deposits in	Yanshan area
---------	-----------	-----------------------	--------------	-------------	--------------

序号	矿床名称	测定矿物	样品数/个	计算温度/℃	$\delta^{^{18}}\mathrm{O}$	$\delta^{ m ^{18}O_{H20}}$	$\delta \mathrm{D}$	资料来源
1	火石沟	石英	3	-	18.77	-	-	1)
2	蔡家营 *	石英	6	292 ~ 295	13.73	4.08	- 94. 0	文献[6]
3	相广	石英	3	-	-1.45 ~ -2.51	-	-	华勘地研所
4	大湾 *	石英	2	-	2.86	- 5.6	- 101. 72	5
5	营房 – 牛圈	石英(玉髓)	7	150 ~ 280	-	1.31 ~ 4.15	- 98. 7 ~ - 116. 9	本文
6	姑子沟	方解石、石英	11	245 ~ 334	3.9~13.95	-0.1 ~ +1.9	- 61 ~ - 86	文献[3]
7	八家子 *	石英	21	283 ~ 409	10.1 ~14.1	5. 29 ~ 7. 13	- 84. 30	文献[7]
8	小扣花营	重晶石	1	240	2.48	- 1. 7	-	文献[3]
9	满汗土	菱锰矿、石英	5	$260\sim 270$	4.01~4.67	-1.8 ~ -2.8	-	文献[3]
10	洞子沟 *	石英	3	230 ~ 310	11.25	3.66~6.86	- 88. 67	文献[5]
11	韩家沟	石英	1	-	11.74	5.71	- 115.0	文献[5]
12	红石砬子	石英	4	256	-	3.0~4.8	- 85 ~ - 61	文献[5]
13	支家地 *	石英	2	130 ~ 335	-	5.5	- 83	文献[5]
14	栾木厂	石英	1	-	-	- 8.29	- 77. 04	文献[8]
15	小银岭	石英	1	-	-	- 5. 99	- 56. 09	文献[8]

注: *部分样品取其平均值. 同位素为 SMOW 数据,单位‰. ①同表 3 注. ⑤涂勘. 河北大湾矿床的稳定同位素特征与成因探讨. 见:全国第二届 同位素地球化学学术讨论文摘要集,1986.

陆相火山 - 次火山(浅成侵入)岩浆.

4 结论

通过以上论述,笔者总结出如下几点意见以供探 讨.

(1) 燕山地区银矿以火山 – 次火山热液型银矿床 为主,中生代燕山期陆相火山岩、次火山岩和火山断陷 盆地控制了矿床的空间分布,矿床主要产在火山沉积 盆地与构造岩浆岩带的过渡带上. (2)银矿床的成矿年龄为 195~100 Ma,而以晚侏 罗世至早白垩世(145~100 Ma)最为集中.

(3) 成矿物质主要来源于深部幔 – 壳相互作用形成的熔融体,并混有少量因天水淋滤萃取而注入的基底和盖层物质,而不是主要来源于基底变质岩系.

(4) 成矿热水溶液中水的来源以浅部天水为主,是 天水与岩浆水的混合热液.热源主要来自中生代的岩 浆活动.

因此,燕山地区银成矿作用总体可概括为,携带有

第3期

图 5 燕山地区银 – 多金属矿床热液 δD – δ¹⁸O »组成特征

矿床名称(deposits):1—蔡家营(Caijiaying); 2—大湾(Dawan); 3—营房 - 牛圈(Yingfang-Niujuan);4—姑子沟(Guzigou);5—八家子(Bajiazi);
6—洞子沟(Dongzigou);7—韩家沟(Hanjiagou);8—红石砬子 (Hongshilazi);9—支家地(Zhijiadi);10—栾木厂(Luanmuchang);11—小 银岭(xiaoyingling)

大量成矿物质的原始岩浆水受深部热源驱动,上升与 浅部淋滤有少量盖层物质的巨量地下水混合,并于合 适的容矿空间定位,在相应的物理化学条件下沉淀成 矿. 源和深部过程探讨[J]. 地质学报 2003 77(3) 379-385.

- [2]章百明,马国玺,等.河北主要成矿区带与岩浆作用有关的矿床成 矿系列及成矿模式[J].华北地质矿产杂志,1996,11(3)351--369.
- [3] 权恒,韩庆云,艾永富,等.燕辽地区多金属、金、银成矿与远景[M]. 北京 地质出版社,1992.1—122.
- [4]黄崇轲 朱裕生 ,等.中国银矿床及其时空分布[M].北京 地震出版社 ,2002.4—100.
- [5]宋瑞先 王有志. 河北金矿地质[M]. 北京:地质出版社,1994. 49—226.
- [6]黄典豪.蔡家营铅 锌 银矿床[M].北京:地质出版社,1992. 99—102.
- [7] 苏淇,魏菊英.辽宁八家子铅锌矿床围岩白云岩的氧碳同位素组成 [J].北京大学学报(自然科学版),1988,24(6):738—745.
- [8] 胡祥昭, 彭恩生, 朱余德, 等.河北洞子沟银(铜金) 矿床成矿地质特 征及成因探讨[J].大地构造和成矿学, 1999, 23(2):152-159.
- [9]李兆龙, 张连营, 樊秉鸿, 等. 山西支家地铜矿地质特征及矿床成 因[J]. 矿床地质, 1992, 11(4) 315—324.
- [10] 毛德宝, 钟长汀, 陈志宏, 等.华北地块北缘中段铅锌银矿床成矿作 用讨论[J].前寒武纪研究进展, 2002, 25(2):105—112.
- [11] Doe B R ,Zartman R E. Plumbotectonics 1 ,the Phanerozoic [A]. In: Barnes H L , ed. Geochemistry of Hydrothermal Ore Deposits 2nd ed[C] , New York. Holt ,Rinehart and Winston ,1979 22—70.
- [12]张理刚,等.东亚岩石圈块体地质:上地幔、基底和花岗岩同位素 地球化学及其动力学[M].北京科学出版社,1995.252.
- [13]陈骏,王鹤年. 地球化学[M]. 北京 科学出版社 2004.118—120.
- [14]Heald P ,et al. Comparative anatomy of volcanic-hosted epithermal deposits :acid-sulfate and adularia-sericite types[J]. Eco Geol ,1987 ,82 (1): 1-26.
- [15]裴荣富,梅燕雄,等. 金属成矿省演化与成矿年代学[M]. 北京: 地质出版社,2003.6—176.

DISCUSSION ON THE METALLOGENETIC EPOCH AND ORE-FORMING MATTER SOURCE OF THE SILVER DEPOSITS IN YANSHAN AREA

LI Jiu-ming, GONG En-pu, YAO Yu-zeng, YU Hai-gang

(School of Resources and Civil Engineering, Northeastern University, Shenyang 110004, China)

Abstract: The statistics and analysis on K-Ar ages and sulfur, lead and hydrogen-oxygen isotope data show that, the terrestrial volcanic-subvolcanic silver deposits in Yanshan area are obviously different from those in the eastern circum-Pacific belt. The metallogenetic epoch of the silver deposits in Yanshan area ranges from 195 to 100 Ma. The ore-forming matters are mainly deep-sourced, with addition of fundamental and cover material. The hydrothermal ore-forming solution is dominated by magmatic water mixed with meteoric water.

Key words: volcanic-subvolcanic silver deposit; metallogenetic epoch; isotope; source ore-forming matter

作者简介:李久明(1972—),男,工程师,东北大学资源与土木工程学院矿产普查与勘探专业在读博士研究生,通讯地址 沈阳市和平区文化路3号,邮政编码110004.

参考文献:

[1] 王宝德,牛树银,等.冀北地区中生代金、银多金属矿床成矿物质来