2010年3月	GEOLOGY AND RESOURCES	Mar. 2010
第19卷第9期	地质与资源	Vol. 19 No. 1

文章编号:1671-1947 (2010)01-0001-08

中图分类号 :Q914.3 ;Q914.5

文献标识码 :A

吉林南部义和盆地早侏罗世几种苏铁类化石及其古气候意义

孙春林 李 涛 孙跃武 陈跃军 李春田 赵国伟

(东北亚生物演化与环境教育部重点实验室,吉林长春130026;

吉林大学古生物学与地层学研究中心, 吉林 长春 130026)

孙春林,男,1953年12月生,现任吉林大学教授,博士生导师,古生物学与地层学研究中心主任,东北亚国际地学研究 与教学中心理事长,中国古生物学会、中国地质学会理事.1976年毕业于长春地质学院地质学专业,留校任教;1978—1981 年和1986—1989年间分别在长春地质学院攻读古生物学与地层学专业硕士、博士研究生,获理学硕士和博士学位.1995年 晋升为教授,1997年被遴选为博士生指导教师.2006—2007年作为高级研究学者在美国哈佛大学和佛罗里达大学开展古植 物学合作研究.上世纪80年代以来,主要从事古生物学与地层学方面的教学与科研工作,主要研究方向是中生代植物与相 关陆相地层,曾承担国家和省部级科研项目七项,发表研究论文50余篇,科研专著2部.其中,中国环太平洋带北段晚三叠 世地层古生物及古地理研究成果获1995年国家教委科技进步二等奖,冀北辽西早、中侏罗世植物古生态及聚煤环境研究成 果获1998年国土资源部科技进步三等奖.通信地址长春市西民主大街6号吉林大学古生物学与地层学研究中心,邮政编 码130026,E-mail//clsun@jlu.edu.cn

摘 要:报道了吉林南部早侏罗世义和植物群中的苏铁类化石 3 属 7 种,即 Pterophyllum baotoum Zhang, Pterophyllum exhibens Li, Pterophyllum cf. tietzei Schenk, Pterophyllum sp., Nilssonia inouyei Yokyama, Nilssonia orientalis Heer, Cycadolepis corrugata Zeiller.同时,讨论了苏铁类化石的古气候意义,认为吉林南部早侏罗世时期位于濒古太平洋带,气候温暖潮湿,有利于苏铁类繁茂生长.

关键词 洁林南部 早侏罗世 苏铁类 沽气候

1 研究背景

义和盆地位于吉林省临江市东北部(图1),是一 个小型早侏罗世含煤沉积盆地,含煤地层为下侏罗 统义和组,含较丰富的植物化石.这套地层最早由森 田义人(1942)划分为上、下煤层.吉林煤田 102 队 (1957)将上含煤层命名为烟筒山层.吉林煤田 105 队(1960)将烟筒山层改称烟筒山组,时代划归晚侏罗 世.吉林省地层表编写组(1976)将此套煤系划归石人 组,时代也是晚侏罗世^[1].吉林地质局通化地质大队 (1976)在开展 1:5 万桦树幅区域地质调查时,在义和 村附近发现早侏罗世化石,建立义和组.吉林省地质 矿产局采用义和组一名代表吉林南部的早侏罗世沉 积^[2-3].

义和组主要由砾岩、砂岩、粉砂岩、泥岩和不稳定的煤层、煤线组成,在义和村东河床南北两岸出露较好.据笔者野外地质调查和吉林省地质矿产局^[3]资料, 义和组大致可以划分为4个岩性段:第一段为砂岩、 粉砂岩段,主要由灰黑色中薄层岩屑砂岩、黄灰色薄 收稿日期 2009-12-02;修回日期 2010-01-14.张哲编辑.

基金项目:高等学校博士学科点项科研基金(项目编号2005018306)资助.

层粉砂岩夹土黄色泥岩透镜体组成,局部夹有煤线和 不稳定煤层,反映了河漫沼泽环境.与下伏地层上三叠 统长白组流纹岩在区域上呈角度不整合接触,在本剖 面上呈断层接触.由于断层影响,该段岩层较为破碎. 厚度大于 10 m. 第二段为砾岩夹砂岩段,主要由黄褐 色厚层复成分砾岩夹黄灰色中厚层岩屑粗一细砂岩和 黄褐色厚层含砾粗砂岩组成.砾石成分主要为安山岩、 流纹岩、英安岩、石英岩等,磨圆度较好,在含砾砂岩和 砂岩中发育有大型斜层理和交错层理,反映了河床沉 积环境.厚度352 m.第三段为砂岩、粉砂岩夹煤线段, 主要由灰黑色、灰黄色中薄层中一细粒岩屑砂岩、灰黑 色薄层粉砂岩、黄绿色薄层泥岩夹数层3~10 cm厚的 不稳定煤线组成,显示了河漫沼泽环境特点.厚度73 mm.本文研究的植物化石主要采自本段.第四段为砾 岩、砂岩段,主要岩性为黄褐色厚层复成分砾岩夹厚一 中厚层岩屑砂岩和砂岩透镜体.该段出露不完整,其上 被第四系覆盖,厚度大于25 m.

刘茂强^[4]研究了通化地质大队在义和村附近 采获的植物化石,计有 19 属,23 种:*Equisetum laterale* Phillips, *Neocalamite scarrerei* (Zeiller) Halle, *Annulariopsis* sp., *Marattiopsis hoerensis* (Schimper), *Coniopteris* spp., *Cladophlebis* cf. *nebbensis* (Brongniart) Nathorst, *Cl. Sulktensis* var. *crassa* Brick, *Cl.* sp.,

Pterophyllum propinquum Goeppert, Tyrmia? aequalis Liu et Mi, Anomozamites sp., Nilssonia orientalis Heer, N. cf. ihouyei Yokoyama, N. sp., Ctenis chinensis Hsu, C. sp., Ginkgo digitata (Brongniart) Heer, Baiera cf. concinna (Heer) Kawasaki, Glossophyllum? sp., Phoeniopsis sp., Storgaardia pityophylloides Liu et Mi, Podozamites sp., Carpolithus sp., Taeniopteris cf. tenuinervis Bruan, 认为 义和组植物群时代为早侏罗世.为了全面深入研究吉 林南部早侏罗世植物群组成、性质及古气候特征,建立 早侏罗世植物组合序列,为早侏罗世地层细化标准和 环太平洋带地质发展史研究进一步提供实际资料. 我 们对吉林南部具有代表性的早侏罗世义和盆地进行了 详细的野外地质调查工作,采获大量保存较好的植物 印痕化石.

2 材料与方法

本文报道的几种 Pterophyllum 均产自吉林南部临 江市闹枝镇义和村附近河边天然露头(41°56′46.86″ N, 127°03′55.58″E, elev. 550 m)义和组灰黄色中薄层粉砂 岩中. 由于含化石岩层受断层影响,挤压较强烈,所采 集的化石均未保存较好的角质层. 在研究过程中曾对 保存极少的表皮进行了处理,但由于炭化较强,未获得 可用的化石表皮构造信息. 化石图影采用 Nikon D200 相机拍照. 3 系统描述

苏铁纲 Cycadopsida 本内苏铁目 Bennettiales

侧羽叶属 Genus Pterophyllm Brongniart, 1828 包头侧羽叶 Pterophyllum baotoum Zhang (图版 I-1 2 3)

Pterophyllum baotoum Chang 张志诚[5]190-191 图版 94 图 1~5 图版 95 图 1

描述:羽叶整体形态不明,最大的一块羽叶标本保存长度110 mm,宽度50~60 mm,向羽叶下部逐渐变窄,向上部变宽,羽叶顶端收缩成钝圆.羽轴直,在羽叶下部宽2.5~3 mm,向上逐渐变细,近顶端仅1 mm宽,表面具有横皱纹.裂片位于羽轴两侧,对生或亚对生,与羽轴成50~80°角,排列紧密.裂片最宽处位于基部,沿羽轴微微扩张,向顶端逐渐变窄,微弯曲成细长镰刀形,顶端钝尖.裂片最大保存长度27~35 mm,向羽叶下部和顶端逐渐变短,最大宽度位于裂片下部,3~4 mm.叶脉清晰,沿基部伸出,不分叉或偶尔在裂片下部分叉一次,每一裂片有叶脉7~8条,平行裂片上下边伸达裂片前缘.

讨论比较:15 块羽叶化石标本均为印痕. 在形态 上以裂片排列紧密,微弯曲成细长镰刀形,基部略扩 张,叶脉基本不分叉等特点,与产于内蒙古石拐盆地中 侏罗统召沟组的模式标本基本相同. 略有差别的是模 式标本羽轴上具有纵纹,每一裂片有脉 8~12条.当 前标本裂片形态及叶脉数目、羽轴上具有横皱纹等特 点与青海柴达木盆地中侏罗统大煤沟组的 Pterophyllum szei Li 较小羽叶的标本(李佩娟等⁶⁾⁸²⁻⁸³,图版 58, 图 3,3a /图版 59 /图 1a /图版 60 ,图 1~3)可以比较,但 后者羽叶形态大小变化较大,裂片排列较松,叶脉不 分叉或分叉一次.当前标本与产于同一地点,定名为 Pterophyllum exhibens Li 的标本有较明显的区别,后者 裂片排列疏松,呈舌形,顶端钝圆.

标本编号 YH1-001 ,YH1-002 ,YH1-003 ,YH1-004 , YH1-005 ,YH1-006

明显侧羽叶 Pterophyllum exhibens Li (图版 I-4 5 7 8)

1964. Pterophyllum exhibens Li,李佩娟^[7]12] 图版 10 图 1~5 图版 11 图 1~3 插图 4.

1986. Pterophyllum exhibens, 叶美娜^{[8]45},图版 28,图 6c.

描述: 羽叶整体形态不明, 保存长度 80 mm 以上,

最大宽度 50~60 mm, 向羽叶下部逐渐变窄, 向上部 可能变宽. 羽轴直,宽 1.5~2 mm, 表面具有清晰的横 皱纹和细纵纹. 裂片位于羽轴两侧,对生或互生, 与羽 轴成 70~80°角,排列疏松, 间距 2~3 mm. 裂片在近 基部略收缩,然后沿羽轴扩张,形成顶端近圆形的细长 舌形裂片. 裂片长 25~30 mm, 近基部最窄, 2~3 mm, 近顶端最宽, 4~5 mm. 叶脉清晰, 沿基部伸出, 在近基 部有叶脉 5~7条, 不分叉或在裂片中下部分叉一次, 平行伸达裂片前缘. 裂片最宽处有脉 9~12条.

讨论比较 9 块羽叶化石标本均为印痕,在形态 上以裂片为细长舌形,在基部沿羽轴扩张,向前略收 缩又扩张 顶端钝圆 裂片排列疏松 叶脉明显等特 征与李佩娟描述于四川广元晚三叠世须家河组植物 群的本种模式标本基本一致 ;与叶美娜描述于四川达 县上三叠统须家河组的本种标本也相同. 与当前标本 比较近似的种是内蒙古石拐盆地中侏罗统召沟组的 Pterophyllum baotoum Chang (张志诚^{[5]190-191},图版 94, 图 1~5 图版 95 图 1). 后者裂片基部沿羽轴略扩张, 向前渐渐收缩,顶端尖或钝尖,叶脉不分叉与前者不 同. 当前标本的裂片形态和羽轴上具有横皱纹等特 点与 Prosviriakova 描述于前苏联东里海中侏罗统 Dzharsui 组的 Pterophyllum braunianum(Goep.) Schenk (Z. P. Prosviriakova^{[9] 88-89} Pl. 14, Figs. 1-4) 也比较相 似 但后者裂片基部沿羽轴略扩张后逐渐向前收缩 排 列也较紧密. 叶脉分叉一次,每一裂片有脉7~8条.

标本编号:YH2-001,YH2-004,YH2-006

梯茲侧羽叶(相似种) Pterophyllum cf. P. tietzei Schenk (图版 - 6,11)

描述:仅保存几枚裂片的标本.裂片较大,排列疏松,长40mm,宽7~8mm,两侧边近于平行,在前部逐渐收缩,形态呈剑形.基部下侧略下延,在裂片前部,下侧边逐渐向顶端收缩,顶端钝圆.叶脉细密,但 很清晰,基部下侧叶脉以锐角伸出后向前直伸,其余的叶脉与羽轴成直角伸出,与裂片侧边平行,相交于 裂片前端.叶脉多不分叉,少数在靠近基部分叉一次,每一裂片有脉 25~28条.

比较与讨论:虽然当前标本仅保存了几枚裂片, 但裂片大小、形态、排列疏松、基部下延和叶脉细密 等特征与常见于我国晚三叠世、早侏罗世的归于 Pterophyllum tietzei Schenk 的标本(斯行健等^{[10]159},图 版 60 图 1 ;叶美娜等^{[8]47} 图版 29 图 3 ;图版 30 图 2) 十分近似.由于当前标本保存不完整 ,暂定为相似 种.当前标本的裂片大小、形态及叶脉特点等与 *Pterophyllum propinquum* Goeppert 也较近似,但后者裂 片两侧边近于平直,基部上下部略微扩张,叶脉与裂片 侧边平行,基本不分叉.

标本编号:YH3-001,YH3-002

侧羽叶 Pterophyllum sp. (图版 -1 2 3)

描述 羽叶整体形态不明,标本保存长 55 mm,宽 80 mm. 羽轴平直,宽 3 mm,表面具微弱纵纹.裂片位 于羽轴两侧,亚对生,与轴成 80°角,排列紧密.裂片 最大保存长度 40 mm,顶端形态不明,最宽处位于基 部,宽 9~10 mm,沿羽轴不扩张,两侧边近平行,在 前部逐渐收缩.叶脉清晰,自裂片基部伸出,不分叉 或在裂片下部偶尔分叉一次,每一裂片有叶脉 25~31 条.

讨论比较 :5 块保存不很完整的标本均为印痕化 石. 在形态上以裂片相对较大 基部沿羽轴不扩张,两侧 边近平行,叶脉比较密集为特征,与归于 Pterophyllum propinquum Goeppert 的我国辽宁本溪田师傅早、中侏 罗世的标本最为近似(斯行健等^{[10]157},图版 63,图 3), 但是由于当前标本羽叶保存过于破碎,裂片整体形态 不明,不能给予种名.当前标本与产于同一地点的定为 Pterophyllum cf. P. tietzei Schenk 的标本可以比较,但 后者裂片呈略向上弯曲的剑形,基部下部下延.

标本编号:YH4-001,YH4-002,YH4-003

苏铁鳞片属 Cycadolepis Saporta, 1874 褶皱苏铁鳞片 Cycadolepis corrugata Zeiller (图版 -5,7)

描述 两块鳞片标本,宽披针形,一块长大于45mm, 下部最宽20mm;另一块标本长20mm,宽10mm.向顶 端和基部收缩,顶端渐尖,基部保存不完整.鳞片中部表 面具有细密的纵纹和横纹,而鳞片两侧和上下部表面仅 发育细密皱纹,使表面呈鱼鳞状.

讨论与比较:当前标本鳞片大小变化较大,可能代 表不同发育阶段的鳞片,以表面中部发育细密的纵纹 和横纹,鳞片两侧和上下部表面仅发育细密皱纹为特 征,与 Zeiller^[11]描述于越南鸿基植物群的 *Cycadolepis*

3

corrugata Zeiller (Zeiller^{[11]200}, Pl. 44, Fig. 1; Pl. 50, Figs. 1-4) 基本一致.

标本编号:YH7-001,YH7-002

蕉羽叶目 Nilssoniales 蕉羽叶属 *Nilssonia* Brongniart 1825 井上蕉羽叶 *Nilssonia inouyei* Yokoyama (图版 -4,9,10)

1905. Nilssonia inouyei Yokoyama^{[12]9}, Pl. 1, Fig. 4.

1911. Nilssonia inouyei, Thomas^{[13]40}, Pl. 6, Figs. 4, 5.

1966. Nilssonia inouyei, Prosviriakova^{[9]95}, Pl. 18, Figs. 1-3

1981. Nilssonia cf. inouyei, 刘茂强、米家榕[4]25 ,图版 3 ,图 12.

描述:叶全缘,带状,长100~120 mm,最宽处位于 叶的中上部,17~18 mm,向顶端和基部均匀收缩,顶 端钝尖,基部具叶柄,长8 mm,宽2~2.5 mm.中轴在 叶的下部1.5 mm 左右,向叶的上部逐渐变细,近顶端 0.8 mm 左右,叶脉自中轴腹面伸出,与轴成近直角,大 多简单或少数在靠近侧脉下部分叉一次,伸达叶缘.叶 缘附近每厘米有脉23 条左右.

讨论与比较:当前标本叶片大小、形态及向两端 均匀收缩,顶端钝尖,叶脉每厘米20~22条等特点 与产于日本的本种模式标本基本一致.当前标本与 归于 Nilssonia vittaeformis Prynada 的 Mangyshlaka 侏 罗纪植物群的标本(Prosviriakova^{[9]94}, Pl.17, Figs. 5-7) 可以比较,但后者叶片顶端钝圆,有微缺,叶脉也较密 集,每厘米达30条.当前标本与Yokoyama^[12]描述于日 本 Nagato 和 Bitchu 地区中生代的 Nilssonia ozoana Yokoyama 也较为近似,但后者叶脉略疏松,与中轴不成 直角.刘茂强等^[4]归于本种相似种的,与当前标本同一 产地的标本保存不太完整,结合当前标本的研究,归于 本种似无疑问.

标本编号:YH5-001,YH5-002

东方蕉羽叶 Nilssonia orientalis Heer

(图版 -6,9图版 -8)

- 1878. Nilssonia orientalis Heer, Heer^{[14]18}, Pl. 4, Figs. 5-9.
- 1907. Nilssonia orientalis, Seward^{[15]12}, Pl. 2, Fig. 21.

1911. Nilssonia orientalis, Thomas^{[13]56}, Pl. 7, Fig. 1.

- 1963. Nilssonia orientalis, 斯行健、李星学等[10]185 图版 56, 图 3 A.
- 1980. Nilssonia orientali s, 吴顺卿等[16]107, 图版 24 图 1 2;图版 25 5 6.

1996. Nilssonia orientalis, 米家榕等[17]110 图版 14 图 18.

描述:叶带状,长度不明,保存长度90mm,宽18~

23 mm,中轴宽1 mm 左右,腹面下凹,背面突起,叶脉 细密,自羽轴腹面伸出,与羽轴成80~90°角,不分叉 或极少数分叉一次.叶脉在近叶缘处微向前弯,每厘米 有脉22~24条.

讨论与比较:当前标本叶部形态及叶脉特征与 Heer^[14]建立于前苏联 Lena 河下游早白垩世的本种的 模式标本基本一致. 归于本种的标本后来陆续发现于 北半球晚三叠世一早白垩世地层中. 以往归于本种的 标本,叶部形态、大小及叶脉密度变化较大. Harris^[18] 认为此种代表一个表皮构造不明的集合种. 此种以叶 片全缘,顶端常见"V"字形缺刻,叶脉细密,简单或很 少分叉一次为特征. 当前标本虽未保存叶片顶端,但其 他特征与模式标本一致,归于本种似无疑问.

标本编号:YH6-001,YH6-002,YH6-003,YH6-004

4 苏铁类的古气候意义

现代苏铁类植物大约 305 种[19] ,被归入到 11 个 属 3个(狭义的)科中, 仅分布在热带、亚热带地区. 其 中苏铁科(Cycadaceae)主要分布在亚洲、澳洲的热带、 亚热带地区,非洲仅存一种.其他2个科---蕨铁科 (Stangeriaceae)和泽米科(Zamiaceae)主要分布在非 洲、澳洲、中美洲、南美洲和美国东南部热带、亚热带地 区^[20]. 根据"将今论古"的原则和苏铁类特有的地理分 布,苏铁类植物在中生代植物群中的丰度可以成为分 析古植物地理区划和古气候的重要标志.苏铁类植物 (Cycadophytes)是中生代最为繁盛的裸子植物之一,通 常认为包括苏铁目 (Cycadales)、本内苏铁目 (Bennettitales)和尼尔桑目(Nilssoniales)^[10 21],后两目 均已灭绝,尼尔桑目的角质层构造特征与苏铁目十分 近似, 有的学者将种子蕨类包括在苏铁纲中^[22], 苏铁 类植物中,大多数种类的叶部印痕和压型化石为一次 羽状复叶,有些种类叶全缘.羽片长度变化较大,从几 厘米到超过1m,一般为革质,具有较厚的角质层,与 现生苏铁类羽叶形态特征一致或近似,总体上代表了 热带、亚热带潮湿气候条件下生长的植物叶相特征. 中 生代苏铁类化石复原研究表明,一些种类羽叶簇生于 块状茎或不分叉的桶状茎干上部 ,生长于热带、亚热带 潮湿地带;一些种类羽叶簇生于较细茎干的顶部或不 同部位,生长地域可能较为干旱.大量的植物化石资料 表明,中生代苏铁类较现代苏铁类的分布要广泛得多, 但在不同的气候带的植物群中,苏铁类的丰度有较大 差别 ,为我们分析古气候提供了依据.

欧亚大陆早、中侏罗世陆相地层发育 形成了大量

的含煤沉积盆地 其中含丰富的植物化石 为古植物学 者研究古气候提供了重要的实际材料. 利用古植物信 息系统论述全球侏罗一白垩纪植物地理区划和气候 的应为前苏联古植物学者 Vakhrameev^[23-25]. 他根据欧 亚大陆丰富的植物化石资料 (包括了部分孢粉化石资 料)将早、中侏罗世划分了2个不同气候条件下的植 物区 ,即西伯利亚区和欧洲-中国区. 西伯利亚区包括 了乌拉尔大部、哈萨克、蒙古、西伯利亚、中国西部、北 部和东北部. 早、中侏罗世植物群的总体特征是以银杏 类、茨康类、松柏类和蕨类为主,在早侏罗世植物群中, 本内苏铁目、苏铁目化石稀少,代表了暖温带气候条 件. 欧洲-中国区大致包括了欧洲西部、南部、前苏联 欧洲部分的南部、中亚和中国南部至太平洋沿岸 总体 为亚热带气候,可划分为欧洲省、中亚省和东亚省.欧 洲-中国区植物群的总体特征是除了发现大量的双扇 蕨科等喜湿热的植物化石外 本内苏铁目、苏铁目十分 丰富,其中本内苏铁目的一些分子如 Zamites, Sphenozamites, Otozamites, Dictyozamites, Pseudocycas, Ptilophyllum 等可视为亚热带、热带气候的指示植物. 其他的本内苏铁目分子,如 Pterophyllum, Amonozamites, Nilssoniopteris 等的丰度也较西伯利亚 区大得多.

在我国地质发展史上,中生代是一个重大变革时 期.明显的变革之一是由于晚三叠世印支运动的影响, 我国大陆基本上结束了"南海北陆"的构造格局,华南 板块、华北板块构成一体,陆地面积增大,成为欧亚大 陆的重要组成部分.在早、中侏罗世,广泛发育陆相含 煤沉积盆地,含丰富的煤炭资源和植物化石.与此同 时,大致以大兴安岭一太行山一武陵山为界,出现了东 西分异的构造格局.东部环太平洋带构造活动强烈,岩 浆活动频繁,以小型含煤沉积盆地为主,西部则以比较 稳定的大型陆相含煤沉积盆地为主.

根据丰富的古植物学研究资料分析,我国早、中侏 罗世可以划分为 2 个植物地理区系,即大体上以昆 仑一秦岭一大别山为界,以北称北方植物地理区系,以 南称南方植物地理区系,分别以 Coniopteris-Phoenicopsis 植物群和 Dictyophyllum-Clathropteris 植物 群作为代表^[26-27].北方植物地理区系位于 Vakhrameev 的西伯利亚区内,南方植物地理区系位于 Vakhrameev 的西伯利亚区内,南方植物地理区系位于欧洲-中国 区内的东亚省.周志炎^[28-29]将侏罗纪划分为滨海植物 区和大陆植物区.前者相当于欧洲-中国区,后者基本 上属于西伯利亚区.孙春林^[30]在综合考虑不同地点的 植物群组成特征、特征性属种、古纬度、古地理格局和

历史继承性等因素的基础上,将欧亚大陆早侏罗世植 物区系划分为西方植物区、南方植物区、北方植物区和 远北植物区.西方植物区大致相当于欧洲-中国区的 欧洲省,南方植物区相当于欧洲-中国区的一部分,值 得提及的是, Vakhrameev 在进行植物地理分区时,由 于中国资料相对缺乏,仅笼统地将中国北方划归西伯 利亚区. 通过对早侏罗世植物群资料分析, 我国北方和 位于西伯利亚区的广大区域,实际上可以分成2个植 物区.大致南以昆仑一秦岭一大别山为界 北以天山一 阴山及其东延部分为界,东濒古太平洋,西南濒特提斯 洋的区域 称为北方植物区.该区气候温暖潮湿 发育 含煤沉积 植物繁茂 植物群组特征是以银杏类、松柏 类和以 Cladophlebis 为常见的蕨类为主,低洼地带和 濒洋地区通常发现有较多的双扇蕨科和苏铁类植物化 石 应为暖温带潮湿气候环境为主. 天山一阴山及其东 延部分以北地区 称为远北区 ,气候较北方植物区相对 温凉,植物群组成特征也以银杏类、松柏类和以 Cladophlebis 为常见的蕨类为主,但是显著的差别是双 扇蕨科、苏铁类分子稀少或不见,应为温带.按照这 个划分方案,本文研究的吉林南部早侏罗世义和植 物群位于西伯利亚区的北方植物区内,植物群的组 成特征反映了北方植物群的特征,但苏铁类化石具 有较高的丰度和频度,明显区别于西伯利亚区内远 北区植物群. 与我国南方植物区(或欧洲-中国区的 东亚省)相比 缺少 Zamites, Otozamites, Dictyozamites, Ptilophyllum 等代表性分子,显示出明显的差别.综上 所述, 吉林南部早侏罗世义和植物群与北方植物区的 同期植物群相比 苏铁类化石较为丰富 同时发现有双 扇蕨科分子 Clathropteris 等 具有可采煤层 似应代表 了一个北方植物区濒太平洋带的暖温带植物群.可以 推测,该区当时由于受古太平洋暖流的影响,气候温暖 潮湿 使苏铁类等喜湿热环境的植物得以繁茂生长.

参考文献:

- [1]吉林省地层表编写组.东北区域地层表·吉林省分册[M]. 北京 地 质出版社,1975.
- [2]吉林省地质矿产局.吉林省区域地质志[M].北京 地质出版社, 1988:1-698.
- [3]吉林省地质矿产局.吉林省岩石地层[M]. 武汉:中国地质大学出版 社,1997:1-324.
- [4]刘茂强 米家榕. 吉林临江附近早侏罗世植物群及下伏火山岩地质 时代讨论[J]. 长春地质学院学报 ,1981(3):18-29.
- [5]张志诚. 华北地区古生物图册·内蒙古分册(2)[M]. 北京:地质出版社,1976:190-191.

- [6]李佩娟,何元良,吴向午,等.青海柴达木盆地东北缘早、中侏罗世地 层及植物群[M].南京,南京大学出版社,1988:1-141.
- [7]李佩娟.四川广元须家河组植物化石[A]//中国科学院南京地质古 生物研究所集刊 3:101-178.
- [8]叶美娜,刘兴义,黄国清,等.川东北晚三叠世及早侏罗世植物[M]. 合肥:安徽科学技术出版社,1986:1-141.
- [9]Prosviriakova Z P. Jurassic flora of Mangyshlaka and its stratigraphic significance [M]. Moscow: Science Press, 1966 :1-163 (in Russian).
- [10]斯行健,李星学,等.中国中生代植物[M].北京:科学出版社, 1963:1-429.
- [11]Zeiller R. Flore fossile gites de chabon du Tonkin [M]. Paris: Edude gites mineraux de la France, 1903: 1–328.
- [12]Yokoyama M. Mesozoic plants from Nagato and Bitch [A] //Coll Sci Univ Japan ,1905 , 20(5).
- [13]Thomas H H. The Jurassic flora of Kamenka in the district of Isium [A] //Mem Com Geol. St-Petershbourg, N. S., 1911, 71.
- [14]Heer O. Beitrage zur Fossilen Flora Sibiriens und des Amurlandes [A] // FI Foss Arctica , 5(2). Mem Acad Imp Sci. St-Petersbourg. 1878 Ser.7 ,25(6).
- [15]Seward A C. Jurassic plants from Caucasia and Turkestan [A] //Mem Com Geol. St-Petersbourg, N. S., 1907, 38.
- [16]吴舜卿,叶美娜,历宝贤.鄂西香溪群——晚三叠世及早侏罗世植物化石[A]//中国科学院南京地质古生物研究所集刊,1980,14: 64-131.
- [17]米家榕,孙春林,孙跃武,等.冀北辽西早、中侏罗世植物古生态学 及聚煤环境[M].北京地质出版社,1996:1-169.

- [18]Harris T M.The Yorkshire Jurassic flora. II. Caytoniales, Cycadales and Pteridosperms [M]. London: Brit Mus (at. Hist.), 1964:1–191.
- [19]Hill K D, Stevenson D W, Osborne R. The world list of Cycads [J]. Bot Rev 2004,70(2):274–298.
- [20]陈家瑞. 现代苏铁的分类和分布[J]. 植物杂志 ,1996(2) :4.
- [21]Taylor T N, Taylor E L. The biology and evolution of fossil plants[M]. New Jersey : Prentice-Hall ,1993 :1-982.
- [22]Meyen S V. Fundamentals of palaeobotany [M]. London :Chapman and Hall ,1987 :1-432.
- [23]VakhrameevVA Jurassic and earlyCretaceous floras and paleogeographic provinces [M]. Moscow :Nauka ,1964 :1 - 261 (in Russian).
- [24]Vakhrameev V A. Jurassic and Cretaceous floras and climates of the earth [M]. Moscow :Nauka ,1988 :1-214 (in Russian).
- [25]Vakhrameev V A. Jurassic and Cretaceous floras and climates of the earth [M]. Cambridge: Cambridge Univ Press ,1991 : 1-318.
- [26]斯行健. 陕北中生代延长层植物群[A]//中国古生物志,139册,新 甲种. 1956(5):1-217.
- [27]斯行健,周志炎.中国中生代陆相地层[M].北京:科学出版社 1962:1-180.
- [28]周志炎.湘西南早侏罗世早期植物化石[A]//中国古生物志,165 册新甲种.1984(7):1-85.
- [29]周志炎. 侏罗纪植物群[A]// 李星学 编. 中国地质时期植物群. 广州: 广东科技出版社, 1995 260-309.
- [30]孙春林. 欧亚大陆早侏罗世植物区系分区[J]. 长春地质学院学报: 博士论文集,1992:178-187.

EARLY JURASSIC FOSSIL CYCADS FROM YIHE BASIN IN SOUTHERN JILIN PROVINCE: Paleoclimatic significance

SUN Chun-lin, LI Tao, SUN Yue-wu, CHEN Yue-jun, LI Chun-tian, ZHAO Guo-wei

(Key-Lab for Evolution of Past Life and Environment in Northeast Asia, Ministry of Education, Changchun 130026, China; Research Center of Paleontology and Stratigraphy, Jilin University, Changchun 130026, China)

Abstract: Abundant fossil cycad leaves preserved as impression are collected from the Early Jurassic Yihe Formation in Southern Jilin Province, China. In this paper, three genera belonging to seven species are recognized based upon leaf morphology, i. e. *Pterophyllum baotoum* Zhang, *Pterophyllum exhibens* Li, *Pterophyllum* cf. *tietzei* Schenk, *Pterophyllum* sp., *Nilssonia inouyei* Yokoyama, *Nilssonia orientalis* Heer and *Cycadolepis corrugata* Zeiller. The occurrence of these species in the Early Jurassic of Southern Jilin significantly infers that they grew in an area with a warm and humid climate in the warm temperate zone close to Paleopacific Ocean.

Key words :Southern Jilin Province; Early Jurassic; cycads; paleoclimate

1,2,3 Pterophyllum baotoum Zhang 1一示保存比较完整的羽叶标本,向上弯曲的镰刀形裂片排列较为紧密;2一示羽叶中部部分;3一示羽叶顶部形态 4,5,7,8 Pterophyllum exhibens Li 4一示裂片呈舌形,顶端钝圆;5,7,8一示羽叶中部或中下部,舌形裂片排列疏松,基部略收缩 6,9 Nilssonia orientalis Heer 示两块保存不完整的叶片腹面印痕标本,叶脉明显自羽轴伸出 图版中图影的标尺每格均为1 mm. 标本保存在吉林大学古生物学与地层学研究中心.

图版Ⅱ

1,2,3 Pterophyllum sp.
三块保存不完整的羽叶印痕标本
4,9,10 Nilssonia inouyei Yokoyama
4—示叶片基部形态及叶柄;9,10—示两块完整的叶片标本,局部可见叶脉自羽轴上伸出
5,7 Cycadolepis corrugata Zeiller
5—一块较大的鳞片标本,表面具清晰的纵纹、横纹;7—一块较小的鳞片标本
6,11 Pterophyllum cf. P. tietzei Schenk
示裂片形态和清晰的叶脉标本
8 Nilssonia orientalis Heer
图版中图影的标尺每格均为 1 mm.标本保存在吉林大学古生物学与地层学研究中心.