第 29 卷第 1 期

2020年2月

Vol. 29 No. 1 Feb. 2020

文章编号:1671-1947(2020)01-0007-14

中图分类号:P586;P588.2

文献标志码:A

马尔科夫链分析在东海陆架盆地花港组沉积微相分析中的应用

胡求红1,张昌民1,侯国伟2,朱 锐1,陈 哲1

1. 长江大学 地球科学学院,湖北 武汉 430100; 2. 中海石油(中国)有限公司上海分公司,上海 200335

摘 要:通过对东海陆架盆地某凹陷取心井岩心仔细观察和描述,采用双属性划分标准,在研究区花港组岩心中识别出了 28 种岩 石相类型.其中砾岩相 5 种,砂岩相 15 种,细粒岩相 8 种.针对 22 口取心井岩心详细划分沉积微相和岩石相,共取得 2227 个岩石 相数据.针对研究区发育的湖泊、三角洲、河流 3 种沉积体系,运用马尔科夫链分析不同沉积微相类型中岩石相沉积序列模式,建 立了不同沉积微相类型可能的岩石相组合规律及岩石相定量组合概率,为后期研究相同或相似类型的沉积相提供地质知识库,并 为沉积相的识别提供定量的基础.

关键词:岩石相;沉积微相;马尔科夫链;转移概率;垂向剖面

APPLICATION OF MARKOV CHAIN ANALYSIS IN THE MICROFACIES RECOGNITION OF HUAGANG FORMATION IN THE EAST CHINA SEA SHELF BASION

HU Qiu-hong¹, ZHANG Chang-min¹, HOU Guo-wei², ZHU Rui¹, CHEN Zhe¹

1. Earth Sciences, Yangtze University, Wuhan 430100, China; 2. Shanghai Branch of CNOOC Ltd., Shanghai 200335, China

Abstract: With attentive observation and description for the cores from a depression of East China Sea shelf basin, 28 lithofacies types are identified from the cores of Huagang Formation in the study area, including 5 for conglomerate, 15 for sandstone and 8 for fine-grained rock. By the analysis for the cores from 22 wells, 2227 numbers of lithofacies and microfacies data are obtained. Three sedimentary systems, i.e. lakes, deltas and rivers, are developed in this area, dominated by lacustrine sediments. The Markov chain analysis is used to analyze the sequence patterns of lithofacies in different sedimentary microfacies and establish the possible lithofacies assemblages and quantitative lithofacies assemblage probability. The results will provide a geological database for further study of the same or similar types of sedimentary facies and a quantitative basis for the identification of sedimentary facies.

Key words: lithofacies; sedimentary microfacies; Markov chain; transition probability; vertical section

0 引言

马尔科夫链是俄国著名数学家马尔科夫(1906 年)研究并提出一个应用数学方法就可以解释自然变 化的一般规律模型,后人以他名字命名该模型,即马尔 科夫链(Markov Chain),依据研究对象的转移概率矩 阵来分析预测波动较大的随机过程,曾广泛应用于地

收稿日期:2019-09-02;修回日期:2019-10-22.编辑:张哲.

基金项目:国家"十三五"重大科技专项"深层优势储层形成条件及地质预测技术"(编号 2016ZX05027-002-007).

作者简介:胡求红(1994—),男,硕士研究生,沉积学与石油地质方向,通信地址 湖北省武汉市蔡甸区大学路 111 号,E-mial//2297346799@qq.com 通信作者:侯国伟(1975—),男,博士,高级工程师,主要从事海上油气勘探研究工作,通信地址 上海市长宁区通协路 388 号中海油大厦,E-mail// hougw@cnooc.com.en

质学、水资源科学、大气科学等各个领域[1-3]. 多年来, 沉积模型和定量地层学备受数学地质界关注[4].用数 学方法定量研究沉积学已逐渐成为地质学家研究的 热点问题. 基于地质统计学的变差函数模型难以较好 地表征复杂空间的连续性,主要原因在于不能整合地 质类型的比例、互相转换的迁移趋势及平均长度等地 质统计信息,而基于马尔科夫链的地质统计模型能够 准确描述各种地质体的空间展布特征[5-6],因而在沉积 学领域得到广泛应用. 郭光裕应用马尔科夫链转移概 率分别对宽沟南、北地层剖面进行马尔科夫概型分 析,对于沉积相判断取得较好效果[7].张有生等采用 马尔科夫链描述煤层垂向非均质性特征取得较好成 果[8]. 刘振峰等应用马尔科夫链模型进行二维储层岩 相空间分布随机模拟^[9]. 郭飞等在地质属性建模中采 用马尔科夫链模拟地质区域环境,用转移概率描述区 域变量空间变化的指示变量,能够方便地进行属性建 模[10]. 周斌等采用马尔科夫链分析建立湖北刘家场地 区奥陶系地层沉积序列概率模式及定量分析沉积相 模式[11]

东海陆架盆地是一个重要的含油气盆地,研究区 位于盆地中部.多年来,花港组是一个重要含油气目 的层,也是东海陆架盆地主力储层.但是目前地质研 究对于研究区沉积微相类型认识不清,由于沉积微相 类型识别存在随意性和不确定性,定量分析较为困难. 本文以岩心观察为基础,在岩石相类型识别的基础 上,用马尔科夫链分析定量识别花港组沉积微相类 型,为后续沉积相分析提供基础.本研究采用的定量 相模型通过转移概率统计,描述了不同沉积微相的岩 石相垂向上定量变化趋势及不同沉积微相类型可能 的岩石相组合规律,其中考虑了不同井的岩石相之间 的转换及相同岩石相之间的转换(如:中型交错层理 砂岩相由于纹层方向的改变,将其记录为两个相同的 中型交错层理砂岩相代码),并总结不同沉积微相发 育的理想岩石相组合序列^[12].

1 区域地质概况

东海陆架盆地地处欧亚板块东部边缘,东西宽 250~300 km,南北长约 1500 km,面积约 26.7×10⁴ km², 整体呈 NNE 向展布,是我国东部海域最大的中新生 代叠合含油气盆地之一.研究区位于东海陆架盆地 东北部,东西宽约 110 km,南北长约 440 km,面积 5.9×10⁴ km²,东临钓鱼岛隆褶带,西接渔山隆起,北接 福江凹陷,南连钓北凹陷.在构造上具有东西分带、南 北分块的特征.由西往东依次可分为西部斜坡带、中 央反转构造带、东部断阶带(图 1).研究区经历了 4次 重要的构造运动,分别是瓯江运动、玉泉运动、花港运 动和龙井运动.在早期断陷、中期拗陷和晚期区域沉 降三大沉积阶段的基础上,形成了具有东断西超特征 的断陷盆地,其中在断陷和拗陷期沉积的新生代地层 是油气勘探的主要方向.研究区以新生代碎屑岩沉积 为主,自下而上发育了始新统平湖组,渐新统花港组, 中新统龙井组、玉泉组和柳浪组,上新统三潭组以及第 四系东海群.本次研究目的层位为花港组(图 2).

图 1 研究区构造背景 Fig. 1 Tectonic setting of the study area 1—构造界线(tectonic boundary);2—断层(fault)

长期以来,对花港组沉积相分析存在不同的认识. 王果寿等认为花港组以湖泊、三角洲、河流沉积体系为 主,并可明显两分,下段为海侵湖相,上段为淡水湖及 曲流河泛滥平原的间互沉积^[13];胡明毅等认为花港组

界	系	统	组	段	代号	地层厚度/m	年龄/ Ma	地震 反射 界面	主要岩性	沉积相	构造 运动	构造 阶段
	第四系	更新统	东海群		Qd	250~500	2.6	то	灰色黏土、粉砂	浅海	冲绳海槽	区域
		上新统	三潭组		$N_2 s$	200~900	2.0	T10	灰色泥岩与 细粉砂岩互层	海陆过渡	运列	沉降期
	新		柳 浪 组	上段 下段	$N_1^3 l$	100~800	5.5	110	灰色砂砾岩、灰 色泥岩,夹煤层	河流		
	近系	中新统	玉泉组	上段 中段 下段	$N_1^2 y$	100~1500	13	T12	灰色细粉砂岩、 黄灰绿色泥岩	湖泊-河流	龙开运动	拗
新			龙 井 组	上段 下段	$N_1^{-1}l$	500~1800	16.4	T16	灰色泥岩、 粉砂岩和细砂岩	湖泊-河流 三角洲	龙港运动	陷期
		渐新	花 港	上段	E_3h	500~3000	23.3	120	灰色泥岩、浅灰色 细粉砂岩互层, 夹薄层煤层	湖泊-河流	化他趋势	
生	古	统	组	下段					灰色泥岩、灰白色 粉砂岩和细砂岩	河流- 三角洲		
			गर	上段			32	T30	灰白色粉砂岩、 灰色泥岩、 粉砂质泥岩		玉泉运动	
界	近	始	平 湖	中段	$E_2 p$	600~5000		T24	灰色、深灰色泥岩, 粉砂质泥岩夹 浅灰色粉细砂岩	受潮汐影 响的三角 洲、潮坪		
	Ŧ	新	纽	下段			43	134 T40	灰色泥岩、粉砂质 泥岩,夹灰白色粉细 砂岩和煤		平湖运动	断
	杀	统	宝石组		E_2bs	300~5000	15		灰色、深灰色泥岩 夹灰白色粉砂岩、 粉-细砂岩	滨−浅海		陷
			八角亭组		$E_2 b$	300~2500	49	T50	砂岩、泥岩、粉砂质 泥岩互层,局部 凝灰岩、安山岩			期
		古新统	?		E ₁	300~2200	56.5	T80	未钻遇		瓯江运动	
中生	白垩系	上白垩统	石门潭组		K ₂ s	>300	65	T100	凝灰岩、安山岩、 安山质角砾岩		雁汤运动	
界	下白一保	日垩统 :罗系					96		未钻遇		基隆运动	
		基	底					Τg				

图 2 研究区地层构造柱状图

Fig. 2 Stratigraphic and tectonic column of the study area

主要发育河流、三角洲、湖泊和扇三角洲4种相类型, 河流和三角洲位于凹陷西部,扇三角洲位于凹陷东部 边缘,凹陷中央发育滨浅湖相沉积^[14];刘金水等认为 花港组发育河流-湖泊-三角洲沉积体系,花港组上段 为三角洲前缘沉积,花港组下段为三角洲平原沉积^[15]; 蔡佳等认为花港组为一套厚度巨大的湖相砂泥岩地 层,发育湖泊、三角洲、河流3种沉积体系^[16].亟需通 过定量方式来判别研究区沉积微相类型,为沉积相研 究提供支撑.

2 马尔科夫链分析

2.1 方法介绍

马尔科夫链是数学中具有马尔科夫性质的离散时 间的随机过程.该过程中,在给定当前知识或信息的 情况下,过去(即以前的历史状态)对于预测未来(即当前以后的未来状态)是无关的,这一方法在计算机、通信、机械、电器等多个领域都有极其重要的应用^[17].采 用马尔科夫链分析研究区不同沉积微相类型,可以建 立不同沉积微相类型的岩石相组合规律及岩石相定量 组合概率,为后续沉积微相识别提供判别标准及沉积 相研究提供数据库.

其数学表达式为:

 $\Pr{X_n=k \mid X_0=h, \dots, X_{n-1}=j}=\Pr{X_n=k \mid X_{n-1}=j}$ 式中 Pr 为概率, X_0, X_{n-1}, X_n 为马尔科夫链上第 1、第 n 及第 n+1 个位置的状态, k, h, j 为其状态的取值.

基于马尔科夫链模型的储层随机建模采用转移概 率,比起变差函数更容易做地质上的相关解释.赵玉 琛用马尔科夫链模拟宁芜地区两条地层剖面,体现在 岩性状态-厚度的模拟转移链上,编制模拟剖面图^[18]. 应用马尔科夫链产生的转移概率模型与基于变差函数 的地质统计模型相比,马尔科夫链的转移概率模型能 更好地反映复杂空间的连续性变化及岩石相在垂向的 分布特征^[19].在地质研究过程中,将地层剖面视为不 同岩石相叠置组合的序列,对于不同沉积微相而言,不 同部位所发育的岩石相有其规律性,因而不同的沉积 微相的沉积过程都符合马尔科夫性.

2.2 应用马尔科夫链识别沉积微相步骤

(1)根据在岩心库观察的岩心资料并结合测井曲 线资料做沉积微相分析,并区分不同的岩石相.根据 岩心资料共识别出 28 种岩石相.

(2)做出不同沉积微相下岩石相的转移频数矩阵.

(3)岩石相转移频数矩阵中各元素除以该元素所 在行的和,可以得到向上转移概率矩阵 *P_i*,并制作向 上转移累积概率矩阵模型:

 $P_{ij} = a_{ij} / \sum a_{ij}; \sum a_{ij} = a_{i1} + a_{i2} + \dots + a_{in}$

(4)进一步求得岩相转移差值矩阵 K_{ii}:

 $K_{ij}=P_{ij}-n_j/(N-n_i)$

n_i为转移频数矩阵第 i 行和,n_j为转移频数矩阵第 j 列和,N 为转移状态总数.

(5)由岩相转移差值矩阵建立相变进程关系图.

3 岩石相

岩石相是表示在某种特定条件下所形成的岩石特 征的总和,是分析沉积动力的重要条件,也是分析建筑 结构要素的基本条件. 在对研究区花港组岩心开展精 细观察的基础上发现,研究区以砂岩为主,其次为砾岩 及泥岩. 研究区内泥岩主要为灰色-黑色的还原色, 极少见泥岩呈现氧化色,表明花港组以水下还原环境 为主.砂岩中沉积构造类型多样,本文采用双属性标 准划分岩石相^[20-21],根据粒度范围分为砾岩相(G)、砂 岩相(S)和细粒岩相(F). 命名方式采用岩性代码加沉 积构造代码,代码标准为 Ab,其中 A 代表岩性,b 代表 沉积构造. 在三大类岩性识别的基础上, 进一步对岩 性亚粒进行区分. 将研究区发育的岩性主要划分为6 类,分别为:G-砾岩;S1-砂岩(包括极粗砂岩、粗砂 岩、中砂岩、细砂岩、极细砂岩);S2-含砾砂岩;S3-含 泥砾砂岩:F-细粒岩(包括粉砂岩、泥质粉砂岩、泥 岩、粉砂质泥岩).此外,根据层系规模进行细分,砂岩 中的交错层理可以细分为小型(层系厚度小干3 cm), 中型(层系厚度为 3~10 cm),大型(层系厚度为 10~30 cm),特大型(层系厚度大于 30 cm).从形态来讲,交错 层理可细分为板状、槽状、楔状等. 在花港组共识别出 28种岩石相类型.其中砾岩相5种,砂岩相15种,细 粒岩相8种.

3.1 砾岩相

砾岩相划分为块状层理复成分砾岩相(G1m)、叠 瓦状构造复成分砾岩相(G1i)、交错层理复成分砾岩相 (G1x)、块状层理泥砾岩相(G2m)、交错层理泥砾岩相 (G2x)5类岩相(表1).

3.2 砂岩相

砂岩相划分为块状层理砂岩相(S1m)、特大型板 状交错层理砂岩相(S1pg)、大型板状交错层理砂岩相 (S1pl)、中型板状交错层理砂岩相(S1pm)、小型板状交 错层理砂岩相(S1ps)、大型槽状交错层理砂岩相 (S1tl)、流水沙纹层理砂岩相(S1rc)、浪成沙纹层理砂 岩相(s1rw)、浪成低角度交错层理砂岩相(S1lw)、平行 层理砂岩相(S1h)、疏松沉积物变形构造砂岩相(S1d)、 交错层理含砾砂岩相(S2x)、块状层理含砾砂岩相 (S2m)、交错层理含泥砾砂岩相(S3x)、块状层理含泥 砾砂岩相(S3m)15 类岩石相(表 2).

3.3 细粒岩相

细粒岩相划分为块状层理细粒岩相(Fm)、疏松沉 积物变形构造细粒岩相(Fd)、水平层理细粒岩相 (Fh)、韵律层理细粒岩相(Frh)、生物扰动构造细粒岩 相(Fb)、流水沙纹层理细粒岩相(Frc)、浪成沙纹层理 细粒岩相(Frw)、粒序层理细粒岩相(Fg)8类岩石相 (表3).

4 主要沉积微相类型

根据岩心资料识别出多种沉积微相,此次主要以 水下分流河道微相、河口坝微相、滞留间湾微相、滩坝

	表1	砾岩相类型划分	
Table 1	Cong	lomerate lithofacies types	

岩石相代码	岩石相名称	成因解释
G1m	块状层理复成分砾岩相	距离物源较近、强水动力条件下快速堆积特征,为河床底部滞留沉积
G1i	叠瓦状构造复成分砾岩相	河床底部滞留沉积或纵向沙坝沉积
G1x	交错层理复成分砾岩相	河道或沙坝沉积
G2m	块状层理泥砾岩相	河道两侧堤岸垮塌后在原地堆积形成或短距离搬运沉积形成,发育于河道近端环境中
G2x	交错层理泥砾岩相	河道两翼堤岸垮塌经一定距离搬运沉积形成,发育于河道远端环境中

表 2 砂岩相类型划分

 Table 2
 Sandstone lithofacies types

岩石相代码	岩石相名称	成因解释
S1m	块状层理砂岩相	沉积速率非常快,发育在决口扇、沙坝、河道等环境
S1pg	特大型板状交错层理砂岩相	流水作用控制的下部流动机制产物,由砂坝迁移形成,为河道或沙坝沉积
S1pl	大型板状交错层理砂岩相	流水作用控制下的下部流动机制产物,为沙丘、沙垄迁移形成,发育在河道、沙坝沉积
S1pm	中型板状交错层理砂岩相	流水作用控制下的下部流动机制产物,为沙波迁移形成,出现在河道、沙坝沉积
S1ps	小型板状交错层理砂岩相	流水作用控制下的下部流动机制产物,为小型沙纹迁移形成,发育在河道、沙坝沉积
S1tl	大型槽状交错层理砂岩相	流水成因的下部流动机制产物,为沙丘迁移产物,多出现在沙坝或河道沉积下部
S1rc	流水沙纹层理砂岩相	流水成因的下部流动机制产物,为小型沙纹、沙波迁移产物,多出现在沙坝或河道顶部
S1rw	浪成沙纹层理砂岩相	小型浪成沙波迁移形成,多出现在滨岸、河口坝、湖泊等环境
S1lw	浪成低角度交错层理砂岩相	波浪成因的交错层理,一般出现在湖泊、滩坝、滨岸、沙坝等环境
S1h	平行层理砂岩相	流水成因、强水动力条件下的沉积产物,多出现在沙坝、河道沉积上部
S1d	疏松沉积物变形构造砂岩相	沉积速率较快,发育于三角洲前缘、重力流环境
S2x	交错层理含砾砂岩相	砾石含量少,定向排列形成交错层理,河道或沙坝沉积
S2m	块状层理含砾砂岩相	砾石含量少,无明显沉积构造,河道近端沉积
S3x	交错层理含泥砾砂岩相	一般发育在河道环境中,随着搬运距离增大,泥砾含量有变小趋势
S3m	块状层理含泥砾砂岩相	原地堆积或经短距离搬运沉积而成,泥砾含量的大小与搬运距离有关

表 3 细粒岩相类型划分 Table 3 Fine-grained rock lithofacies types

岩石相代码	岩石相名称	成因解释
Fm	块状层理细粒岩相	沼泽、决口扇、溢岸沉积、洪水沉积、重力流沉积
Fd	疏松沉积物变形构造细粒岩相	三角洲前缘垮塌、重力流沉积
Fh	水平层理细粒岩相	岸后沼泽或湖泊、前三角洲、半深湖-深湖
Frh	韵律层理细粒岩相	支流间湾、前三角洲、异重流沉积、潮汐沉积或季节性沉积
Fb	生物扰动构造细粒岩相	岸后湖泊、滩坝、滨岸、三角洲、潟湖、陆棚、潮上带等环境
Frc	流水沙纹层理细粒岩相	决口扇、溢岸沉积、洪水沉积
Frw	浪成沙纹层理细粒岩相	潟湖、湖湾、远砂坝、席状砂
Fg	粒序层理细粒岩相	异重流沉积

微相4种沉积微相进行马尔科夫链分析,根据转移频 数矩阵得出转移概率模型,并统计出岩石相向上转移 差值矩阵,根据转移差值矩阵中正数的关系得出不同 沉积微相的岩石相相变进程转换,总结最理想的岩石 相叠置样式.

4.1 水下分流河道微相

水下分流河道是辫状河道延伸到水下的部分,其 沉积特征与辫状河道有相似之处. 主要以砂岩沉积为 主,也可见含砾砂岩及砾岩,底部可见冲刷面,砂岩中 发育大量交错层理,其次为平行层理、块状层理、波状 层理. 研究区内水下分流河道岩石成分主要为长石岩 屑质石英砂岩,成熟度较高,反映沉积物经历了一定距 离搬运的特征. 从岩心上识别出水下分流河道微相内 不同的岩石相,建立岩石相向上转移概率模型(图 3A),并根据岩石相向上转移矩阵计算得出岩石相向 上转移差值矩阵(表 4),通过采用向上转移出现次数 较多的两个相邻岩石相为基础得到岩石相转换关系 图. 花港组水下分流河道微相的岩石相在垂向上具有 从 $G1x \rightarrow G1m \rightarrow S1m \rightarrow S1ps \rightarrow S1pl \rightarrow S1pm \rightarrow S1pg \rightarrow$ S1lw→S1rw→S1h→Fd 不规则的岩性正韵律剖面特 征,自下而上表现为层理规模变小,具有多个旋回性, 顶部常见沙纹层理及细粒薄层,反映向上水动力逐渐 减弱特征(图4).

4.2 河口坝微相

河口坝沉积以细砂岩为主,自下而上呈现反韵律 特征.河口坝沉积物受到波浪往复冲刷及簸选作用, 泥质含量极少,砂质纯净、分选好.交错层理发育,见 大量浪成沙纹层理.在细粒岩相 Fm、Fd、Frh、Frc、Frw 之上均为砂岩相,反映河口坝沉积为经典的反粒序沉 积(图 3B).河口坝微相岩石相总体上具有从 Frw→ S1rw→S1pl→S1h→S1lw→S1pg→S1m,底部为细粒岩 沉积,顶部为规模较大的交错层理砂岩,自下而上表现 反韵律特征(图 5).河口坝砾岩相含量极少(表 5),且 块状层理复成分砾岩相仅出现于特大型板状交错层理 砂岩相之上,这也反映了河口坝经典的反粒序特征,且 表明在块状层理复成分砾岩相出水动力有所增强,此 外,相变转换关系图整体上反映向上水动力在不断增强.

4.3 支流间湾微相

支流间湾是水下分流河道向海(湖)推进时,在分 流河道间相对凹陷的海湾地区形成的细粒沉积物,与 海连通,以泥质、粉砂质沉积为主,泥岩多为暗色,反映 水下还原环境,粉砂岩为洪水时期河床漫溢所形成,常 为黏土夹层或呈薄透镜状(图 3C).研究区支流间湾微 相不太发育,识别的岩石相较少.选用出现次数较多 的 Fh、Frh、Frw、Fm、Fd 五种岩石相通过岩石相向上转 移差值矩阵得到支流间湾微相岩石相相变转换关系图 (表 6),支流间湾微相岩石相总体上具有从 Fh→Frh→ Frw→Fm→Fd,整体上以细粒岩相为主,可见韵律层 理及生物扰动构造,岩心上可观察到生物介壳和虫孔 (图 6).

4.4 滩坝微相

滩坝是滨浅湖处受波浪冲洗与改造形成的沉积 体,以细砂岩为主,泥质含量少,分选好,自下而上发育 反旋回.滩坝受波浪和流水作用共同影响,形成大量 浪成低角度交错层理(又称冲洗交错层理,是波浪在滩 面上来回冲刷形成的一种低角度楔状交错层理,纹层 倾角一般小于10°),以及浪成沙纹层理.滩坝以砂岩 相为主,向上转移为细粒岩相概率极小(图 3D).滩坝 微相中几乎不含砾岩相或含砾岩相极少(表 7).滩坝 微相岩石相总体上具有从 Frw→S1pm→S1pl→S1h→ S1m→S1rw 的反韵律特征,底部为细粒岩沉积,顶部表 现为平行层理和沙纹层理,反映向上水动力在不断增 强(图 7).

不同的沉积微相发育不同的岩石相类型及岩石相 序列.采用A井对研究结果进行检验(图8).图8内 岩石相编码列红色网格代表的垂向序列与马尔科夫链 生成的不同沉积微相岩石相垂向序列顺序相同;白色 网格为两个岩石相相互多次叠置出现,表明A井发育 的水下分流河道微相、河口坝微相、支流间湾微相垂向 岩石相序列与采用马尔科夫链生成的结果相比较为一 致.证明采用马尔科夫链分析不同沉积微相类型岩石 相序列是一种行之有效的方法.

5 结论

(1)与基于地质统计学的变差函数相比,马尔科夫 链转移概率矩阵能够较好地表现不同岩石相类型垂向 上的变化趋势.运用马尔科夫链分析可以更精确地表 征不同沉积微相类型下不同岩石相类型垂向的定量变 化趋势及可能的岩石相组合规律,为沉积相研究提供 有利支撑.

图 3 四种沉积微相岩石相向上定量转移概率累积百分比

Fig. 3 The probability cumulative percentage of up-gradient transition for sedimentary micro-lithofacies A—水下分流河道微相 (underwater distributary facies);B—河口坝微相 (mouth bar facies);C—支流间湾微相 (intertributary bay facies);D—潍坝微相 (beach bar facies);1—S1pl;2—S1h;3—S1pm;4—S1pg;5—S1m;6—S1ps;7—S1rc;8—Fm;9 -S1d;10—S1tl;11—S1lw;12—S1rw;13—S2x;14—Frh; 15—Fg;16—S3m;17—Frw;18—S2m;19—Frc;20—Fb;21—G2x;22—S3x;23—G1x;24—Fh;25—Gli,26—G1m;27—Fd

14

2020年

表 4 水下分流河道微相岩石相向上转移差值矩阵 Table 4 Transition difference matrix of underwater distributary channel

······································	able 4 Transition difference matrix of underwater distributa	y channe
--	--	----------

转移美信	S1nl	S1h	\$1nm	S1ng	S1m	Sine	S1re	Fm	S1d	S1+l	S11w	S1m	$S2_{x}$	Frb
校 砂 左 但	2 0202	9 2166	0.1607	31pg	12 2004	0.0291	0.0161	F III	4 1144	0.0006	0.0477	0.0084	0 0770	0.0045
GIM	3.9292	8.2100	-0.1697	4.0951	12.3994	-0.0381	-0.0101	-0.0084	4.1144	-0.0006	-0.0477	-0.0084	8.2778	-0.0045
GII	-0.2341	-0.1151	-0.16/3	-0.0706	-0.0992	-0.03/5	-0.0159	-0.0083	-0.0515	-0.0006	-0.04/1	-0.0083	99.9453	-0.0045
GIX	-0.2351	-0.115/	-0.1681	-0.0709	11.0114	-0.03//	-0.0160	-0.0083	22.1705	-0.0006	22.1749	-0.0083	11.0562	-0.0045
G2m	-0.2341	-0.1151	-0.16/3	-0.0706	-0.0992	-0.03/5	-0.0159	-0.0083	-0.0515	-0.0006	-0.04/1	-0.0083	49.9453	-0.0045
G2x	-0.2344	-0.1153	49.8325	-0.0707	-0.0994	-0.0376	-0.0159	-0.0083	24.9484	-0.0006	-0.0471	-0.0083	-0.0548	-0.0045
S1m	19.0264	17.0153	12.6718	4.9218	11.3186	3.5298	0.6967	2.8480	7.8001	-0.0007	7.0907	1.4194	2.7965	-0.0049
S1pg	21.2678	15.0663	8.6812	11.3166	15.0834	2.4914	1.2488	2.5228	3.7422	-0.0007	5.0128	-0.0089	5.0046	-0.0048
S1pl	30.5287	6.9335	20.1990	8.6581	6.1209	5.7845	2.0626	0.4059	4.5163	-0.0008	3.2721	-0.0108	5.7621	0.8275
S1pm	25.8071	3.6667	34.0391	4.2634	10.2075	8.6508	-0.0190	0.5336	2.6558	0.5427	1.5742	-0.0099	3.1955	-0.0053
S1ps	21.1857	10.5948	30.1835	3.4982	10.6113	10.6753	3.5549	-0.0086	-0.0535	-0.0007	7.0940	-0.0086	1.7289	-0.0046
S1tl	99.7656	-0.1153	-0.1675	-0.0707	-0.0994	-0.0376	-0.0159	-0.0083	-0.0516	-0.0006	-0.0471	-0.0083	-0.0548	-0.0045
S1rc	15.5519	15.6726	31.4092	5.1915	10.4256	5.2251	10.5102	-0.0084	-0.0523	-0.0006	5.2154	-0.0084	-0.0555	-0.0045
S1rw	-0.2359	14.1697	-0.1686	14.2146	21.3286	-0.0378	-0.0160	-0.0083	28.5195	-0.0006	-0.0474	7.1345	7.0877	7.1384
S1lw	6.6041	35.4959	1.1946	2.6658	9.4851	2.7004	1.3532	-0.0087	9.5351	-0.0007	2.6904	4.1009	1.3126	2.7351
S1h	17.3028	7.3022	7.2432	9.3796	16.1040	3.3359	2.6847	0.6663	14.1309	-0.0007	10.7576	1.3420	1.2895	-0.0050
S1d	7.5459	33.6451	2.4214	5.1205	14.1813	2.5579	2.5807	-0.0087	2.5432	-0.0007	10.3401	5.1861	-0.0576	1.2940
S2x	13.7062	-0.1216	5.6372	6.9021	5.7091	1.1231	1.1460	-0.0087	2.2711	-0.0007	1.1131	1.1541	31.3376	-0.0047
S2m	3.7585	9.8812	3.8274	1.9272	11.8976	-0.0387	-0.0164	-0.0085	-0.0531	-0.0007	9.9514	-0.0085	37.9436	-0.0046
S3x	-0.2350	-0.1156	12.3321	-0.0709	12.4004	-0.0377	-0.0160	-0.0083	12.4483	-0.0006	-0.0473	-0.0083	-0.0549	-0.0045
S3m	16.4302	10.9948	-0.1690	5.4842	16.5664	11.0732	-0.0161	-0.0084	22.1702	-0.0006	-0.0476	-0.0084	-0.0553	-0.0045
Fm	17.9459	-0.1160	8.9223	9.0198	45.3545	-0.0378	-0.0160	9.0826	-0.0519	-0.0006	-0.0474	-0.0083	-0.0551	-0.0045
Fd	-0.2341	-0.1151	-0.1673	-0.0706	-0.0992	-0.0375	-0.0159	-0.0083	-0.0515	-0.0006	49.9529	-0.0083	-0.0547	-0.0045
Fh	-0.2344	49.8847	-0.1675	-0.0707	-0.0994	-0.0376	-0.0159	-0.0083	24.9484	-0.0006	-0.0471	-0.0083	-0.0548	-0.0045
Frh	-0.2348	-0.1155	-0.1678	14.2149	-0.0996	-0.0377	-0.0160	-0.0083	14.2340	-0.0006	57.0956	-0.0083	14.2308	-0.0045
Fb	-0.2350	12.3844	-0.1679	-0.0709	24.9004	-0.0377	-0.0160	-0.0083	-0.0517	-0.0006	37.4527	-0.0083	-0.0549	-0.0045
Frc	-0.2345	19.8846	-0.1676	-0.0707	-0.0994	-0.0376	-0.0159	-0.0083	-0.0516	-0.0006	39.9528	-0.0083	-0.0548	-0.0045
Frw	-0.2341	49.8849	-0.1673	-0.0706	-0.0992	-0.0375	-0.0159	-0.0083	49.9485	-0.0006	-0.0471	-0.0083	-0.0547	-0.0045
Fg	-0.2339	-0.1151	-0.1672	-0.0706	-0.0992	-0.0375	-0.0159	-0.0083	-0.0515	-0.0006	-0.0470	-0.0083	-0.0547	99.9955
转移差值	Fg	S3m	Frw	S2m	Fre	Fb	G2x	S3x	G1x	Fh	G1i	G1m	Fd	G2m
G1m	-0.0006	8.3217	-0.0013	16.6344	-0.0032	4.1609	-0.0026	-0.0052	-0.0058	-0.0019	-0.0013	24.9858	4.1654	-0.0006
G1i	-0.0006	-0.0115	-0.0013	-0.0318	-0.0032	-0.0057	-0.0025	-0.0051	-0.0057	-0.0019	-0.0013	-0.0140	-0.0013	-0.0006
G1x	-0.0006	-0.0115	-0.0013	-0.0319	11.1079	-0.0058	-0.0026	-0.0051	-0.0058	-0.0019	-0.0013	22.2082	-0.0013	-0.0006
G2m	-0.0006	-0.0115	-0.0013	-0.0318	-0.0032	-0.0057	-0.0025	-0.0051	-0.0057	-0.0019	-0.0013	49.9860	-0.0013	-0.0006
G2x	-0.0006	-0.0115	-0.0013	24.9682	-0.0032	-0.0057	-0.0025	-0.0051	-0.0057	-0.0019	-0.0013	-0.0140	-0.0013	-0.0006
S1m	-0.0007	2.8445	-0.0014	0.6790	-0.0035	-0.0063	0.7115	0.7086	-0.0063	-0.0021	-0.0014	2.8416	-0.0014	-0.0007
S1pg	-0.0007	-0.0123	-0.0014	3.7633	-0.0034	-0.0061	-0.0027	-0.0055	1.2597	-0.0020	-0.0014	2.5166	-0.0014	-0.0007
S1pl	-0.0008	1.2351	-0.0017	0.7919	-0.0041	0.4092	0.4134	0.4100	0.4092	-0.0025	-0.0017	-0.0182	-0.0017	-0.0008
S1pm	-0.0008	1.0733	-0.0015	1.0489	-0.0038	-0.0068	0.5404	-0.0061	0.5366	-0.0023	-0.0015	0.5267	-0.0015	-0.0008
S1ps	-0.0007	-0.0119	-0.0013	-0.0330	-0.0033	-0.0059	-0.0026	-0.0053	-0.0059	-0.0020	-0.0013	-0.0145	-0.0013	-0.0007
S1tl	-0.0006	-0.0115	-0.0013	-0.0318	-0.0032	-0.0057	-0.0025	-0.0051	-0.0057	-0.0019	-0.0013	-0.0140	-0.0013	-0.0006
S1rc	-0.0006	-0.0116	-0.0013	-0.0323	-0.0032	-0.0058	-0.0026	-0.0052	-0.0058	-0.0019	-0.0013	-0.0142	-0.0013	-0.0006
S1rw	-0.0006	-0.0115	-0.0013	-0.0321	-0.0032	-0.0058	-0.0026	-0.0051	-0.0058	-0.0019	-0.0013	-0.0141	-0.0013	-0.0006
S1lw	-0.0007	1.3579	1.3685	6.8160	2.7364	1.3639	-0.0027	-0.0053	1.3639	1.3679	-0.0013	2.7251	-0.0013	-0.0007
S1h	-0.0007	-0.0129	-0.0014	2.6667	-0.0036	0.6692	-0.0029	0.6699	-0.0065	1.3492	-0.0014	1.3355	0.6742	-0.0007
S1d	-0.0007	2.5854	1.2974	1.2652	-0.0033	3.8901	-0.0027	-0.0054	1.2927	-0.0020	-0.0013	1.2840	-0.0013	-0.0007
S2x	-0.0007	1.1507	-0.0013	19.7338	-0.0034	-0.0060	1.1601	-0.0054	3.4823	-0.0020	2.3242	1.1480	-0.0013	-0.0007
S2m	-0.0007	-0.0118	-0.0013	17.9672	-0.0033	-0.0059	-0.0026	-0.0052	-0.0059	-0.0020	-0.0013	-0.0144	-0.0013	1.9993
S3x	-0.0006	24.9885	-0.0013	-0.0319	-0.0032	-0.0057	-0.0026	37.4949	-0.0057	-0.0019	-0.0013	-0.0140	-0.0013	-0.0006
S3m	5.5549	-0.0116	-0.0013	-0.0321	-0.0032	-0.0058	-0.0026	11.1060	-0.0058	-0.0019	-0.0013	-0.0141	-0.0013	-0.0006
Fm	-0.0006	-0.0115	-0.0013	9.0589	-0.0032	-0.0058	-0.0026	-0.0051	-0.0058	-0.0019	-0.0013	-0.0141	-0.0013	-0.0006
Fd	-0.0006	-0.0115	-0.0013	-0.0318	-0.0032	-0.0057	-0.0025	-0.0051	49.9943	-0.0019	-0.0013	-0.0140	-0.0013	-0.0006
Fh	-0.0006	24.9885	-0.0013	-0.0318	-0.0032	-0.0057	-0.0025	-0.0051	-0.0057	-0.0019	-0.0013	-0.0140	-0.0013	-0.0006
Frh	-0.0006	-0.0115	-0.0013	-0.0319	-0.0032	-0.0057	-0.0026	-0.0051	-0.0057	-0.0019	-0.0013	-0.0140	-0.0013	-0.0006
Fb	-0.0006	-0.0115	-0.0013	-0.0319	24.9968	-0.0057	-0.0026	-0.0051	-0.0057	-0.0019	-0.0013	-0.0140	-0.0013	-0.0006
Frc	-0.0006	-0.0115	-0.0013	-0.0319	-0.0032	39.9943	-0.0025	-0.0051	-0.0057	-0.0019	-0.0013	-0.0140	-0.0013	-0.0006
Frw	-0.0006	-0.0115	-0.0013	-0.0318	-0.0032	-0.0057	-0.0025	-0.0051	-0.0057	-0.0019	-0.0013	-0.0140	-0.0013	-0.0006
Fg	-0.0006	-0.0114	-0.0013	-0.0318	-0.0032	-0.0057	-0.0025	-0.0051	-0.0057	-0.0019	-0.0013	-0.0140	-0.0013	-0.0006

图 4 水下分流河道微相岩石相相变转换关系及沉积模式

Fig. 4 Lithofacies transition of underwater distributary channel and depositional sequence

1—变形层理 (细粒岩)(deformation bedding in fine-grained rock);2—交错层理 (砾岩)(cross bedding in conglomerate);3—块状层理 (砾岩)(massive bedding in conglomerate);4—块状层理(砂岩)(massive bedding in sandstone);5—交错层理(砂岩)(cross bedding in sandstone);6—平行层理(砂岩) (parallel bedding in sandstone)

图 5 河口坝微相岩石相相变转换关系及沉积模式

Fig. 5 Lithofacies transition of mouth bar and depositional sequence

1—沙纹层理(细粒岩)(ripple bedding in fine-grained rock);2—沙纹层理(砂岩)(ripple bedding in sandstone);3—块状层理(砂岩)(massive bedding in sandstone);4—交错层理(砂岩)(cross bedding in sandstone);5—平行层理(砂岩)(parallel bedding in sandstone)

(2)采用岩性加沉积构造双属性标准划分岩石相, 研究区发育砾岩相、砂岩相、细粒岩相三大类岩石相, 共识别出 28 种岩石相类型.其中其中砾岩相 5 种,砂 岩相 15 种,细粒岩相 8 种.

(3)建立了研究区花港组4种不同沉积微相的岩石相向上转移概率累积百分比模型,可以作为地下储层预测和指导的参考.通过马尔科夫链分析得出,水下分流河道微相在垂向上具有从G1x→G1m→S1m→

S1ps→S1pl→S1pm→S1pg→S1lw→S1rw→S1h→Fd不 规则的岩性正韵律剖面特征,河口坝微相岩石相总体 上具有从 Frw→S1rw→S1pl→S1h→S1lw→S1pg→S1m 的反粒序特征,支流间湾微相岩石相总体上具有从 Fh→Frh→Frw→Fm→Fd 细粒沉积为主的特征,滩坝微 相岩石相总体上具有从 Frw→S1pm→S1pl→S1h→ S1m→S1rw 以细砂岩为主的反韵律特征.

上转移差值矩阵	
臣 「	
岩石	
微相:	
山辺	
凤	
表	

Transition difference matrix of mouth bar

Table 5

-0.0116-0.0118-0.0119-0.0110-0.0110-0.0111-0.0116-0.0111-0.0110-0.0110-0.0114-0.0115-0.0135-0.0110-0.0110-0.0111-0.01309.0786 Fm -0.0110-0.0116-0.0114-0.0115-0.0119-0.0110-0.0111 -0.0130-0.0118-0.0111-0.0116-0.0123-0.0110-0.0110-0.0110-0.0110-0.01115.5420 \mathbf{Frc} -0.0233-0.0235-0.023012.4762 -0.0270-0.0220-0.0222-0.0220-0.0220-0.0222-0.0227-0.0222-0.0247-0.0220-0.02206.6407 -0.0233-0.0220Frw -0.0698 -0.0682-0.0690-0.0714-0.0659-0.0667 -0.0659 -0.0659-0.065914.2151 33.2636 5.4745 9.0168 -0.0659-0.0667-0.0659-0.06676.5887 Slrc -0.0116-0.0110-0.0116-0.0118-0.0114-0.0111-0.0119-0.0111-0.0110-0.0110-0.0115-0.0135-0.0123-0.0110-0.0110-0.0110-0.01116.6537 Frh -0.0698 -0.070619.9310 -0.0659-0.0682-0.066712.4286 -0.0659-0.0659-0.0667-0.0659-0.0667-0.06985.4745 9.0168 -0.06596.5887 99.9341 S11w -0.0116-0.0110-0.0110-0.0116-0.0114-0.0119-0.0110-0.0110-0.0111-0.0118-0.0111-0.0115-0.0135-0.0123-0.0110-0.0110-0.01116.6537 52x-0.0110-0.0116-0.0118-0.0114-0.0115-0.0119-0.0110-0.0111-0.0110-0.0130-0.0111-0.01160686.66 -0.0110-0.0110-0.0111-0.0135-0.0123S2m-0.0330-0.039014.2504 24.9659 -0.0333-0.0345-0.0357-0.0330-0.0349-0.0405-0.0370-0.0333-0.0330-0.0330-0.0333-0.034999.9670 -0.0330 $\mathrm{S1\,pm}$ -0.0238-0.0233-0.0222-0.0235-0.0227-0.0222-0.0230-0.0247-0.0220-0.0220-0.0222-0.0220-0.0220-0.0220-0.0233-0.02206.6407 5.5285 $\mathrm{S1ps}$ -0.1319-0.1395-0.1319-0.1319-0.1319-0.1333-0.131914.1445 -0.136419.8621 24.8571 33.1712 -0.1481-0.131949.8667 -0.1395-0.13336.5108 $\operatorname{S1d}$ -0.0549-0.0649-0.0581-0.0588-0.0568-0.0556-0.057512.4405 18.1201 -0.0549-0.0549-0.0556-0.0549-0.055616.6085 5.4880-0.0549-0.0549 $\mathrm{S1pg}$ -0.0110-0.0110-0.0118-0.0114-0.0115-0.0119-0.0116-0.0110-0.0111-0.011016.6550 -0.0135-0.0123-0.0110-0.0110-0.0111-0.0130-0.0111G1m12.3452 99.8571 -0.168849.8488 -0.152924.8523 33.1822 22.0465 -0.1429-0.1429-0.1444-0.1429-0.1444-0.1494-0.1429-0.1429-0.14448.9304 $\mathrm{S1m}$ -0.0110-0.0119-0.0116-0.0111-0.0114-0.0110-0.0110-0.0118-0.0111-0.0115-0.0116-0.0135-0.0123-0.0110-0.0110-0.0110-0.01116.6537 Fd 12.2619 45.2076 16.4341 -0.219833.0736 -0.2273-0.0889 49.7778 -0.2198-0.219899.7778 -0.2198-0.219816.4341 -0.0941 14.0504 5.2853-0.2198-0.222239.7701 S1h-0.0920-0.0930-0.0988-0.0930-0.0952 -0.0879-0.0879-0.087913.2294 -0.0909 11.0030 -0.0889-0.087999.9111 99.9121 99.9121 $\mathrm{S}1\mathrm{rw}$ 16.5736 42.7630 -0.0879-0.0879-0.103949.9091 12.4048 -0.1081-0.088919.9080 -0.0930-0.0988-0.0879-0.0879-0.0879-0.0889-0.0879 -0.0889 $\operatorname{S1pl}$ 转移差值 $\mathrm{S1\,pm}$ G1m $\mathrm{S1m}$ $\mathrm{S1pg}$ Slpl S1ps $\mathrm{S}1\mathrm{rc}$ S1rwS11wS1h $\operatorname{S1d}$ S2mFrh S2xFm Frw Fd $\mathbf{F}\mathbf{r}$

资

源

与

地

质

2020年

表 6 支流间湾微相岩石相向上转移差值矩阵 Table 6 Transition difference matrix of intertributary bay

转移差值	Fd	Fg	Frh	Fm	Fh	Frw	Fb	S1rc	S1d	S1lw	S2m	S1m	S3x	S1h	
S1m	-0.0556	-0.0139	-0.0972	24.6761	-0.0972	-0.1111	-0.0556	24.9577	-0.1111	0.0000	24.9859	24.9296	-0.0139	0.0000	
S1rc	49.9437	-0.0139	-0.0972	-0.3194	-0.0972	-0.1111	-0.0556	-0.0417	-0.1111	0.0000	-0.0139	-0.0694	49.9859	0.0000	
S1lw	-0.0556	-0.0139	-0.0972	-0.3194	-0.0972	-0.1111	99.9437	-0.0417	-0.1111	0.0000	-0.0139	-0.0694	-0.0139	0.0000	
S1h	-0.0556	-0.0139	-0.0972	99.6761	-0.0972	-0.1111	-0.0556	-0.0417	-0.1111	0.0000	-0.0139	-0.0694	-0.0139	0.0000	
S1d	-0.0556	-0.0139	-0.0972	-0.3194	-0.0972	-0.1111	-0.0556	11.0689	88.7639	0.0000	-0.0139	-0.0694	-0.0139	0.0000	
S3x	-0.0556	-0.0139	-0.0972	-0.3194	-0.0972	-0.1111	-0.0556	99.9577	-0.1111	0.0000	-0.0139	-0.0694	-0.0139	0.0000	
Fm	4.2915	-0.0139	4.2492	64.8139	4.2492	8.5814	-0.0556	-0.0417	-0.1111	0.0000	-0.0139	12.9710	-0.0139	0.0000	
Fd	-0.0556	-0.0139	-0.0972	49.6714	24.9014	-0.1111	24.9437	-0.0417	-0.1111	0.0000	-0.0139	-0.0694	-0.0139	0.0000	
Fh	-0.0556	-0.0139	28.4714	13.9618	28.4714	14.1730	-0.0556	-0.0417	-0.1111	0.0000	-0.0139	14.2153	-0.0139	0.0000	
Frh	14.2294	14.2716	14.1871	-0.3194	14.1871	42.7412	-0.0556	-0.0417	-0.1111	0.0000	-0.0139	-0.0694	-0.0139	0.0000	
Fb	-0.0556	-0.0139	24.9014	-0.3194	-0.0972	24.8873	49.9429	-0.0417	-0.1111	0.0000	-0.0139	-0.0694	-0.0139	0.0000	
Frw	-0.0556	-0.0139	24.9000	37.1667	24.9000	12.3873	-0.0556	-0.0417	-0.1111	0.0000	-0.0139	-0.0694	-0.0139	0.0000	
Fg	99.9437	-0.0139	-0.0972	-0.3194	-0.0972	-0.1111	-0.0556	-0.0417	-0.1111	0.0000	-0.0139	-0.0694	-0.0139	0.0000	

图 6 支流间湾微相细粒岩相相变转换关系及沉积模式

Fig. 6 Lithofacies transition of intertributary bay find-grained rock and depositional sequence

1—变形层理(deformation bedding);2—沙纹层理(ripple bedding);3—块状层理(massive bedding);4—韵律层理(rhythmic bedding);5—平行层理 (parallel bedding)

17

坝微相岩石相向上转移差值矩阵	sition difference matrix of beach bar
、 滩坝缆	Transiti
東	5
11174	Table

L

多差值	Stpl	$\mathrm{S1pm}$	$\mathrm{S1pg}$	$\mathrm{S1m}$	$\mathrm{S2x}$	S1d	G1x	Frh	Fm	S3m	Frw	S1rw	Fb	Fd	Frc	Fh	F B	$\rm S1rc$	$\operatorname{S1h}$	$\mathrm{S1ps}$
х	-0.2222	-0.2167	-0.0778	-0.1778	-0.0056	99.9778	-0.0056	-0.0111	-0.0056	-0.0056	-0.0833	-0.0167	-0.0278	-0.0222	-0.0222	-0.0167	-0.0111	-0.0222	-0.0222	-0.0111
н	17.9115	23.9789	5.9660	-0.2162	3.0235	3.0033	-0.0068	-0.0135	3.0235	-0.0068	15.0502	3.0100	6.0268	-0.0270	3.0033	3.0100	-0.0135	3.0033	3.0033	6.0471
pg	26.4257	33.0984	26.5823	6.4739	-0.0060	-0.0241	-0.0060	-0.0120	-0.0060	-0.0060	-0.0904	-0.0181	-0.0301	-0.0241	-0.0241	-0.0181	-0.0120	6.6426	-0.0241	-0.0120
Ъl	28.6676	23.4115	13.0600	18.1973	-0.0070	2.6036	-0.0070	-0.0140	-0.0070	-0.0070	-0.1049	-0.0210	-0.0350	2.6036	-0.0280	-0.0210	-0.0140	5.2352	5.2352	-0.0140
mq	25.3593	33.0587	7.5937	25.4157	-0.0070	2.5359	-0.0070	-0.0141	-0.0070	-0.0070	2.4585	-0.0211	-0.0352	-0.0282	-0.0282	-0.0211	2.5500	-0.0282	-0.0282	-0.0141
sd	-0.2235	-0.2179	-0.0782	-0.1788	-0.0056	-0.0223	-0.0056	-0.0112	-0.0056	-0.0056	-0.0838	-0.0168	-0.0279	49.9777	-0.0223	-0.0168	-0.0112	-0.0223	49.9777	-0.0112
rc	33.1086	33.1142	-0.0787	33.1536	-0.0056	-0.0225	-0.0056	-0.0112	-0.0056	-0.0056	-0.0843	-0.0169	-0.0281	-0.0225	-0.0225	-0.0169	-0.0112	-0.0225	-0.0225	-0.0112
ΓW	33.1086	-0.2191	-0.0787	-0.1798	-0.0056	-0.0225	-0.0056	-0.0112	-0.0056	-0.0056	33.2491	33.3165	-0.0281	-0.0225	-0.0225	-0.0169	-0.0112	-0.0225	-0.0225	-0.0112
1h	59.7727	-0.2216	-0.0795	39.8182	-0.0057	-0.0227	-0.0057	-0.0114	-0.0057	-0.0057	-0.0852	-0.0170	-0.0284	-0.0227	-0.0227	-0.0170	-0.0114	-0.0227	-0.0227	-0.0114
ld	33.1086	-0.2191	-0.0787	33.1536	-0.0056	-0.0225	-0.0056	-0.0112	-0.0056	-0.0056	-0.0843	-0.0169	33.3052	-0.0225	-0.0225	-0.0169	-0.0112	-0.0225	-0.0225	-0.0112
2x	99.7778	-0.2167	-0.0778	-0.1778	-0.0056	-0.0222	-0.0056	-0.0111	-0.0056	-0.0056	-0.0833	-0.0167	-0.0278	-0.0222	-0.0222	-0.0167	-0.0111	-0.0222	-0.0222	-0.0111
3m	-0.2222	-0.2167	-0.0778	99.8222	-0.0056	-0.0222	-0.0056	-0.0111	-0.0056	-0.0056	-0.0833	-0.0167	-0.0278	-0.0222	-0.0222	-0.0167	-0.0111	-0.0222	-0.0222	-0.0111
в	-0.2222	-0.2167	-0.0778	-0.1778	-0.0056	-0.0222	-0.0056	99.9889	-0.0056	-0.0056	-0.0833	-0.0167	-0.0278	-0.0222	-0.0222	-0.0167	-0.0111	-0.0222	-0.0222	-0.0111
q	24.7740	-0.2203	-0.0791	-0.1808	-0.0056	-0.0226	-0.0056	-0.0113	-0.0056	-0.0056	24.9153	-0.0169	24.9718	-0.0226	24.9774	-0.0169	-0.0113	-0.0226	-0.0226	-0.0113
ų	-0.2260	49.7797	-0.0791	-0.1808	-0.0056	-0.0226	-0.0056	-0.0113	-0.0056	-0.0056	-0.0847	-0.0169	-0.0282	-0.0226	24.9774	-0.0169	24.9887	-0.0226	-0.0226	-0.0113
rh	-0.2235	-0.2179	-0.0782	49.8212	-0.0056	-0.0223	49.9944	-0.0112	-0.0056	-0.0056	-0.0838	-0.0168	-0.0279	-0.0223	-0.0223	-0.0168	-0.0112	-0.0223	-0.0223	-0.0112
p.	-0.2273	-0.2216	-0.0795	59.8182	-0.0057	-0.0227	-0.0057	-0.0114	-0.0057	-0.0057	19.9148	19.9830	-0.0284	-0.0227	-0.0227	-0.0170	-0.0114	-0.0227	-0.0227	-0.0114
g	24.7740	-0.2203	-0.0791	-0.1808	-0.0056	-0.0226	-0.0056	-0.0113	-0.0056	-0.0056	24.9153	-0.0169	-0.0282	24.9774	-0.0226	24.9831	-0.0113	-0.0226	-0.0226	-0.0113
M	-0.2410	6.4317	-0.0843	33.1406	-0.0060	-0.0241	-0.0060	6.6546	-0.0060	6.6606	26.5763	-0.0181	6.6365	6.6426	6.6426	-0.0181	-0.0120	-0.0241	-0.0241	-0.0120
þ	-0.2235	-0.2179	-0.0782	-0.1788	-0.0056	-0.0223	-0.0056	-0.0112	-0.0056	-0.0056	49.9162	-0.0168	-0.0279	-0.0223	-0.0223	49.9832	-0.0112	-0.0223	-0.0223	-0.0112

地 质 与 资

源

18

1—沙纹层理(细粒岩)(ripple bedding in fine-grained rock);2—沙纹层理(砂岩)(ripple bedding in sandstone);3—块状层理(砂岩)(massive bedding in sandstone);5—平行层理(砂岩)(parallel bedding in sandstone)

参考文献:

- [1]陆大金. 随机过程及其应用[M]. 北京:清华大学出版社,1986.
- [2]Freedman D. Markov chains[M]. New York: Springer-Verlag, 1983.
- [3]李军,杨晓娟,张晓龙,等. 基于三维马尔可夫链模型的岩性随机模 拟[J]. 石油学报,2012,33(5):846-853.
- [4]苑清扬. 沉积模型和定量地层学的评述[J]. 世界地质,1986(3):12-19.
- [5]刘振峰,郝天珧,杨长春. 沉积模型和储层随机建模[J]. 地球物理学进展,2003,18(3):519-523.
- [6]刘振峰,郝天珧,杨长春. 基于 Markov 链模型的储层岩相随机模拟 [J]. 地球物理学进展,2003,18(4):666-669.
- [7]郭光裕. 马尔科夫概型分析及其在地质研究中的应用[J]. 地质与勘 探,1992,28(8):29-34.
- [8]张有生,秦勇,陈家良.煤层显微序列数学模拟及其在煤储层物性评价中初步应用[J]. 沉积学报,1998,16(4):118-123.
- [9]刘振峰,郝天珧,方辉.用 Markov 链模型随机模拟储层岩相空间展 布[J].石油学报,2005,26(5):57-60.
- [10]郭飞,葛成,韩宇.嵌入式马尔科夫链的地质属性建模与应用[J]. 地理与地理信息科学,2012,28(1):47-50.
- [11]周斌,汤军,周金应,等. 湖北刘家场地区奥陶系地层沉积相及马尔 科夫链分析[J]. 地质学刊,2013,37(4):621-625.
- [12]Colombera L, Mountney N P, McCaffrey W D. A quantitative approach to fluvial facies models: Methods and example results[J]. Sedimentology, 2013,60(6):1526–1558.

- [13] 王果寿,周卓明,肖朝辉,等. 西湖凹陷春晓区带下第三系平湖组、 花港组沉积特征[J]. 石油与天然气地质,2002,23(3):257-261, 265.
- [14]胡明毅,柯岭,梁建设.西湖凹陷花港组沉积相特征及相模式[J]. 石油天然气学报,2010,32(5):1-5.
- [15]刘金水,曹冰,徐志星,等. 西湖凹陷某构造花港组沉积相及致密砂 岩储层特征[J]. 成都理工大学学报(自然科学版),2012,39(2); 130-136.
- [16]蔡佳,祁鹏,宋双. 东海盆地西湖凹陷花港组下段沉积相分析[J]. 海洋地质与第四纪地质,2017,37(2):56-65.
- [17]李军,熊利平,张立勤,等. 基于 Markov 链模型的相控随机建模[J]. 地球物理学进展,2010,25(1):298-302.
- [18]赵玉琛.应用马尔科夫链对宁芜一些地层剖面的计算模拟和分析 [J].江苏地质,1991(3):169-174.
- [19]Chessa A G. A Markov chain model for subsurface characterization: Theory and applications [J]. Mathematical Geology, 2006,38 (4): 503-505.
- [20]Miall A D. Lithofacies types and vertical profile models in braided river deposits: A summary [M]//Miall A D. Fluvial Sedimentology, Memoir 5. Calgary: Canadian Society of Petroleum Geologists, 1978: 597-604.
- [21]张昌民,王绪龙,朱锐,等. 准噶尔盆地玛湖凹陷百口泉组岩石相划 分[J]. 新疆石油地质,2016,37(5):606-614.

图 8 A 井取心段岩心柱状图

Fig. 8 Lithological column of core from well A

1—沙纹层理(细粒岩)(ripple bedding in fine-grained rock);2—平行层理(细粒岩)(parallel bedding in fine-grained rock);3—交错层理(砂岩)(cross bedding in sandstone);4—块状层理(砂岩)(massive bedding in sandstone);5—变形层理(细粒岩)(deformation bedding in fine-grained rock)