doi: 10.3969/j.issn.1007-3701.2014.04.005

广西大瑶山古罗碱性辉长岩体 LA-ICP-MS 锆石 U-Pb 年龄、 岩石学、地球化学及其构造意义

许 华,黄炳诚,倪战旭,韩淑朋,黄 英,龚 云

XU Hua, HUANG Bing-Cheng, NI Zhan-Xu, HAN Shu-Peng, HUANG Ying, GONG Yun

(广西壮族自治区区域地质调查研究院,桂林 541003,广西) (Guangxi institute of regional geological Survey, Guilin 541003, guangxi, China)

摘要:古罗碱性辉长岩体包括古罗、黄羌冲两个侵入体,主要由辉长岩、石英辉长岩(或石英闪长岩)组成。岩石以富碱、富集 大离子亲石元素(LILE)、轻稀土元素(LREE)和高场强元素(HFSE),无 Nb、Ta 异常,是典型的板内钾玄岩。对古罗辉长岩 体进行了高精度的 LA-ICP-MS 锆石 U-Pb 定年,获得石英辉长岩的 ²⁰⁶Pb/²⁸U 加权平均年龄为 165.63 ± 0.95 Ma。研究认为 古罗碱性辉长岩体形成于中侏罗世,属典型的板内钾玄岩,形成于大陆地壳伸展拉张减薄的构造背景,为燕山期早期华南 后造山阶段的地质记录。

关键词:岩石地球化学;LA-ICP-MS 锆石 U-Pb 年龄;碱性辉长岩体;广西大瑶山 中图分类法:P588.12+4;P597+3 文献标识码:A

文章编号: 1007-3701(2014)04-342-10

Xu H, Huang B C, Ni Z X, Han S P, Huang Y and Gong Y. Zircon LA-ICP-MS U-Pb age, petrography, geochemistry and tectonic implications of the Guluo alkaline gabbroic rock in the Dayaoshan, Guangxi. Geology and Mineral Resources of South China, 2014, 30(4):342–351.

Abstract: Guluo alkaline gabbroic magmatic rocks including Guluo and Huangqiangchong intrusive rocks are comprising of gabbro, quartz-gabbro (or quartz-diorite). These rocks are enriched in alkalies, LILE, LREE and HFSE, characteristed by no Nb and Ta anomalies, which indicates belongs to typical intrapate-shoshonite series. Zircon LA-ICP-MS U-Pb dating of Guluo alkaline gabbroic rocks yields the ²⁰⁶Pb/²³⁸U age of 165.63 ± 0.95 Ma. The geochronology data suggests that Guluo alkaline gabbroic rocks as typical intrapate-shoshonite series was formed in the Middle Jurassic Period, and indicated that the magma was generated in the tectonic settings of continental crust extension and thinning, which records post-orogenesis event of South China in the Early Yanshannian period.

Key words: petrogeochemistry; zircon LA-ICP-MS U-Pb ages; alkaline gabbroic rock; Dayaoshan

钾玄质岩石是一类富碱高钾岩浆岩,一般发育 境¹¹。因此,钾玄质岩石在成因岩石学和区域构造演 于大洋岛弧,形成时间较晚,空间上远离海沟;也大 化(特别是古构造重建)研究中具有特殊意义。最 量形成于大陆弧、后碰撞弧环境和极少数的板内环 近,李献华等四在桂东南地区进行中生代岩浆岩研

收稿日期:2014-08-18;修回日期:2014-09-30.

基金项目:中国地质调查局地质矿产调查评价专项(编号:1212011120815).

第一作者:许华(1969—),男,硕士,高级工程师,从事区域地质调查工作,E-mail;xuhua88131@163.com.

究中,发现沿十万大山盆地两侧及其北东延伸区分 布的中生代二长岩、正长岩以及与之共生的富碱性 花岗岩岩体属板内型钾玄质系列岩石,这些岩体构 成了一北东向展布的钾玄质侵入岩带。

古罗碱性辉长岩体位于该钾玄质侵入岩带的 北东段(图 1b)。以往对该岩体的认识由于缺乏岩石 学、岩石地球化学方面的资料对比,仅简单将其归 为石英闪长岩体^[3-6],在岩石类型认识方面存在较大 的偏差。岩体的形成时代也因缺乏精确的年龄资料 而存较大的争议^[3-6]。

在钦杭成矿带(西段)基础地质矿产调查1: 25万贵县幅(F49C001002)区调修测工作中,笔者 对古罗碱性辉长岩体进行了详细的野外调查,从岩 石学、地球化学、同位素年代学等方面进行了研究, 进而探讨其形成时代、岩石成因和构造背景。这些 新资料对于更好地揭示华南中生代的地球动力学 环境及其构造演化过程具有重要意义。

1区域地质背景

古罗辉长岩体构造位置位于钦杭结合带西段 大瑶山隆起中南部,大黎断裂北东段的南侧(图 1a)。 岩体侵入寒武系碎屑岩中,地表出露有古罗、黄羌冲 2个辉长岩体,分布于藤县大黎镇黎田村古罗 – 黄 羌冲一带,两侵入体相邻产出,面积约 0.26 km²。

岩体侵入寒武系黄洞口组浅变质砂泥岩,外接 触围岩强烈热接触变质,形成宽约几十米~百余米 不等的角岩化带,由含堇青黑云长英角岩、斑点状 黑云堇青钾长角岩、绢云母化角岩等组成,往外热 接触变质逐渐减弱。

两侵入体岩性基本相似,主要由暗灰色中 - 细 辉长岩、石英辉长岩(或石英闪长岩)组成。岩石成 分及结构上往往呈渐变过渡关系,局部由于快速的 分离结晶作用,暗色矿物(辉石、角闪石)及浅色矿

图1古罗碱性辉长岩体地质简图(图1b据李献华等,1999¹²修编)

Fig. 1 Simplified geological map of Guluo alkaline gabbroic rocks

1-黄洞口组第三段;2-黄洞口组第二段;3-黄洞口组第一段;4-小内冲组;5-培地组;6-正圆岭组;7-中侏罗世辉长岩;8-早白垩世花岗 闪长岩;9-地质界线;10-地层产状;11-逆断层;12-平移断层;13-区域性大断裂;14-角岩化;15-硅化;16-同位素采样点;17-同位素年龄. 韵律层构造形成有韵律旋回(图 2)。

2 岩石学特征

变辉长岩:暗灰色,具辉长结构,块状构造。主 要矿物为辉石 15%,普通角闪石 40%,斜长石 35%, 及其他副矿物。斜长石呈半自形短柱状,粒度在0.2 ~0.5 mm 左右,具聚片双晶,部分蚀变绢云母化;辉 石多为半自形,短柱状,粒度在 0.1~0.4 mm,部分具 有两组近垂直的解理;普通角闪石呈半自形~自 形,粒度大约在 0.6~1 mm,多色性明显,部分可见 角闪石式解理,部分见一组解理,表面浑浊,可见环 带结构和简单双晶。普通角闪石数量较多,可能部分 为辉石角闪石化而来,可能还有其他闪石类矿物。

条带状变辉长岩:浅灰色,具辉长结构,条带状 构造。主要矿物为辉石10%,普通角闪石45%,斜长 石 35%,及其他副矿物。辉石多为半自形,短柱状, 粒度在 0.1~0.4 mm, 部分具有两组近垂直的解理; 普通角闪石呈半自形~自形,粒度在 0.6~1 mm,多 色性明显,可见环带结构和简单双晶,部分可见角 闪石式解理;斜长石呈半自形短柱状,粒度在 0.2~

物(斜长石、石英)相对聚集相间分布呈暗浅条带状 0.5 mm 左右。镜下显示条带状构造,暗浅矿物分布 呈条带状,一层为暗色矿物较多的带,主要为辉石, 角闪石等组成,斜长石含量较少,浅色层反之。

> 石英辉长岩:浅灰色,中-细粒半自形晶结构, 块状构造。主要矿物成分:斜长石(An47)61%,黑云 母12%,石英7%,普通角闪石3-5%,普通辉石 2%;次生矿物及副矿物:绿泥石 3%~5%,斜黝帘 石 2%~3%,磷灰石 1%~2%,钛铁矿 1%~2%,碳 酸盐 1%,褐铁矿 < 1%,黄铁矿 < 1%,锆石 < 1%。斜 长石呈半自形柱状,环带可见,中心多绢云母化、帘 石化,粒径多在 0.4~1.6 mm 之间。石英呈他形粒状 分布于较自形的斜长石粒间,多泥化,粒径多在0.2 ~1.2 mm 之间。普通角闪石呈半自形柱状,横切面呈 六边形的似菱形, 部分颗粒有绿泥石化, 粒径多在 0.2~0.8 mm 之间。黑云母较自形,多绿泥石化,有的 已完全被绿泥石取代,粒径多在 0.4~2 mm 之间,个 别颗粒粒径可达6mm。

> 石英闪长岩:浅灰色,中-细粒半自形晶结构, 块状构造。主要矿物成分:斜长石(An 62~50)43~ 47%、普通角闪石 30%~32%、黑云母 10%~15%、 石英6%~7%;副矿物:磷灰石、磁铁矿、钛铁矿、锆 石、榍石、金红石等。次生矿物:绿泥石、斜黝帘石、

图2 野外露头宏观及微观照片图版 Fig. 2 Macroscopic and microscopic examination of the field outcrops (a)变辉长岩:(b)条带状变辉长岩:(c)变辉长岩(单偏光):(d)条带状变辉长岩(正交偏光)

粘土矿物等。斜长石呈半自形柱状,晶体长多在 0.5~1 mm间,杂乱分布,其间分布着少量他形石 英。普通角闪石柱体大小在1~5 mm以上,多数在 2 mm以上。黑云母鳞片大小也多在2~5 mm。少量 细小的斜长石被暗色矿物包裹。普通角闪石和黑云 母部份被绿泥石取代。斜长石:具环带构造,中心部 份往往被斜黝帘石、粘土矿物交代,有的晶粒内包 嵌有更基性的斜长石。普通角闪石数量较多,可能 部分为辉石退变质角闪石化而来,可能还有其他闪 石类矿物。

3 岩石地球化学特征

笔者选取古罗辉长岩体代表性岩石类型进行 了岩石地球化学测试。主、微量元素及稀土元素分 析均由武汉综合岩矿测试中心完成。文中图件采用 GeoKit软件(路远发,2004)制作¹⁷。

3.1 主量元素特征

岩石主量元素氧化物百分含量及相关特征参数列于表 1。古罗、黄羌冲两侵入体的氧化物含量 基本相当,SiO₂含量 45.86% ~ 48.61%。岩石富碱、 富钛铁,全碱(Na₂O+K₂O)4.74% ~ 5.53%,TiO₂含量 1.58% ~ 2.51%,全铁 FeO*8.55% ~ 13.99%,Na₂O > K₂O。镁值(Mg#)27.96 ~ 44.97,岩浆结晶分异程度 中等偏高。里特曼指数(σ)4.0 ~ 5.58,为里特曼碱 性岩系。铝饱和指数(A/CNK)0.77 ~ 0.89,为准铝 质。CIPW 标准矿物主要为正常类型的 Or+Ab+An+Di+Hy+Ol 和 Q+Or+Ab+An+Di+Hy 组 合,以前者为主。在SiO₂-(Na₂O+K₂O)(TAS)图解 (图 3)中,4个样品均落于碱性岩系列,分别落于碱 性辉长岩区和二长辉长岩。在SiO₂-K₂O 图解(图 4) 中,样品落于钾玄岩系列。

3.2 稀土元素特征

岩石稀土元素含量列于表 2。稀土总量(Σ REE)212.14×10⁻⁶~266.91×10⁻⁶,含量变化不大;轻 稀土富集,δEu值0.87~1.08,以弱Eu负异常为 主,其中12GL02号样(条带状变辉长岩)具弱Eu正 异常可能与岩石浅色部分的富铕长石堆晶有关。轻 稀土分馏程度高,轻、重稀土比值(LREE/HREE)为 8.29~10.99。其稀土配分曲线为轻稀土富集型(图 5),古罗、黄羌冲两侵入体的岩石稀土配分曲线基本 协调,模式相似,表明其来自于相同的岩浆源岩。

图3古罗辉长岩体TAS图解(底图资料据文献®)

Fig. 3 TAS diagram of the Guluo gabbroic rocks

Ir. Irvine分界线,上方为碱性,下方为亚碱性.1-橄榄辉长岩; 2a-碱性辉长岩;2b-亚碱性辉长岩;3-辉长闪长岩;4-闪长岩;5-花 岗闪长岩;6-花岗岩;7-硅英岩;8-二长辉长岩;9-二长闪长岩;10-二长岩;11-石英二长岩;12-正长岩;13-副长石辉长岩;14-副长石 二长闪长岩;15-副长石二长正长岩;16-副长正长岩;17-副长深成 岩;18-宽方钠岩/磷霞岩/粗白榴岩.

图4 古罗辉长岩体SiO₂-K₂O图解 (底图资料据文献^{10]};虚线据文献^{110]})

3.3 微量元素特征

岩石微量元素含量列于表 3。岩石 w、Sn、Zn 等 有色金属元素以及 F、Cl 挥发份元素含量略高。在 微量元素 MORB 标准化蛛网图(图 6)中,表现为板

	0	00.	.34	.28	.58			iCe	.95	.93	.98	.95				Hf	5.36	8.62	2.62	6.78
	NKC	.83 4	.87 5	.89 4	.77 5	·号加*者		ðEu ð	0.87 0	0.89 0	1.08 0	0.90 0				Ba	857	527	514	793
	[g# A/]	.97 0	.71 0	.96 0	.24 0	比值;样品		√Yb _N	1.15	4.99	6.03	4.94				Zr	192	201	99.3	267
	tal	58 44	70 28	71 27	23 37	[量百分] [1]		EE La ₁	-	7 1.	9	8				A	1.04	1.30	1.10	1.16
	² To	1 99.	5 99.	7 99.	2 99.)₂ – 43)重		L/HR	8.29	10.3	10.9	10.2				Sn	3.20	1.96	1.38	3.22
	CO	0.2	0.7	0.7	0.6	0)2/(SiC		<i><u>SREE</u></i>	266.91	244.70	212.14	245.00				>	339	257	208	424
S	H ₂ O	2.21	2.46	2.49	1.80	K20+Na ₂		×	37.4	27.4	25.6	27.6			ks	Sr	703	1034	1212	862
oic rocl	P ₂ O ₅	1.02	1.13	0.92	0.88		.ocks	Lu	0.48	0.34	0.29	0.37			oic rocl	īz	14.9	11.6	12.3	38.2
o gabbr	K ₂ O	2.04	1.72	1.75	2.05	ē指数(σ	·表* bbroic 1	Yb	3.31	2.38	2.02	2.47		* 業	o gabbr	n	1.44	1.50	1.47	1.67
e Guluc	Na ₂ O	2.70	3.54	3.68	2.73		· 孙结果 ıluo gal	Lm	.54	.38	.32	.40		·析结果	e Gulue	ЧЦ	5.83	6.51	5.35	6.27
ns of th	CaO	6.91	8.50	8.38	7.90	子数比值	×10)5) f the G	Er) 68.	.80 (.44 (.83 (×10-0)分	ns of th	Pb	5.81	12.2	.67	5.26
npositio	MgO	5.67	2.26	1.86	4.55	+Ca0)分	土兀素(itions of	lo	.41 3	.04	.89 2	.05 2		量元素(npositio	Ta	3.23 (2.37	1.83	3.35 (
%) con	MnO	0.18	0.16	0.13	0.17	20+Na ₂ 0	石体稀 composi	y I	56 1	82 1	87 0	69 1		岩 夜後 	0-°) con	Nb	41.7	36.5	31.9	46.5
nent(wt	FeO	8.13	7.15	5.75	10.87	-Al₂O₃/(K	· 岁群大 (×10-°),	l d	38 7.	06 5.	87 4.	03 5.		- 罗辉卡	nent(×1	Rb	, 9.66	78.8	68.4	74.9
ijor eler	e2O3	4.72	3.18	3.11	3.12	KNC)	表2 百 法 REE	L p	16 1.	72 1.	0 0.	88 1.		表3 古	ace eler	Ga	26.5	26.6	25.8	27.8
le 1 Ma	1 ₂ O ₃ F	5.95	0.15	0.68	6.17	〕和度(A	Table 2	1 C	5 10.	7 7.	0.	0 7.8			le 3 Tr	Zn	111	87	72	123
Tab	iO ₂ A	28 1	.84 2	.58 21	51 1	L值;铝值		E	0 3.0	0 2.4	3 2.4	3 2.5			Tabl	Cu	36.5	86.3	75.5	72.4
	02 T	.56 2	.86 1	.61 1	.86 2	分子数t		Sm	11.0	9.0	7.2	8.8				Co	9.1	26.1	51.6	5.4 1
	Si	2 47	3 46	2* 48	1 45)+ Fe0*)		PN	55.1	51.6	40.3	47.5				C.	11.4	37.0 2	16.6 2	110 5
	样号	2244-	2244-	12GL0	2245-	JgO/(Mg(Pr	13.5	12.8	10.2	12.2	f海①.			Sc	34.3	11.6	99.6	25.3
	5称	长岩	公告	兴岩	光岩	100ľ		Ce	104	97.7	89.3	101	者引自勞			Be	1.95	2.04	1.17	1.77 2
	岩石4	石英辉	变辉t	变辉t	变辉t	值(Mg#)-		La	51.4	49.7	45.0	51.4	品号加*			E	17.9	12.2	3.91	13.8
	侵入体	古罗	古罗	古罗	黄羌冲	* * 注:镁(样品号	2244-2	2244-3	12GL02*	2245-1	*注:样			样品号	2244-2	2244-3	12GL02* 3	2245-1

346

表1 古罗辉长岩体主量元素(wt%)分析结果表*

内(裂谷)拉斑质—碱性玄武岩的"双隆起"型式,除 Y、Yb、Sc、Cr外,所有元素都富集,富集程度由 Sr→ Ba逐渐增强及由 Th→Ti逐渐减弱,其中由于 Zr 负 异常,既显示了 Rb、Ba、Th、Ta、Nb 强富集,也显示 Hf、Sm 弱富集的"双隆起"特征。

4 锆石 U-Pb 年龄

4.1 样品采集和测试方法

在古罗辉长岩体中,选取主要岩性进行锆石分 选和年龄测试。样品(2244-2)采自古罗村西侧的新

(N-MORB标准数据据文献[11])

Fig. 6 PM-normalized trace element spidergrams of the Guluo gabbroic rocks

鲜基岩,岩性为中-细粒石英辉长岩。锆石样品用 常规的重选和磁选,将其从全岩中分离,最后在双 目镜下挑纯。

样品制靶和锆石阴极发光、背散射照像在中国 地质科学院矿产资源研究所电子探针实验室完成。 研究了锆石颗粒的显微结构,确定待测锆石部位。

样品中锆石呈浅玫瑰色、浅褐色,绝大部分晶 形完好,短柱状~长柱状,粒径 120~250 μm,长 宽比3:1~2:1。在背散射照像和阴极发光图像 (图7)中,大部分颗粒具有较清晰的振荡环带结 构,属于典型的岩浆结晶锆石。

图7古罗辉长岩体锆石Cl图像、测试点位及年龄

Fig. 7 Cathodoluminescene images, analytical spots and ages of the Guluo gabbroic rocks

											,						
测点	Pb^*	²³² Th	²³⁸ U	T.N. /T T	²⁰⁷ Pb/	²⁰⁶ Pb	²⁰⁷ Pb/	/ ²³⁵ U	²⁰⁶ Pb/	²³⁸ U	207 Pb/ 206	6Pb	²⁰⁷ Pb/ ²³⁵	,n	$^{206}Pb/^{238}$	D	地名中
编号	$\times 10^{-6}$	×10 ⁻⁶	×10 ⁻⁶	1II.O	测量值	lσ	测量值	lσ	测量值	lσ	年龄/Ma	Ισ	年龄/Ma	lσ	年龄/Ma	lσ	又(中)日
2244-01	47.20	188.68	139.67	1.35	0.0534	0.0005	0.1911	0.0073	0.0259	0.0008	346.4	20.4	177.6	6.2	165.1	4.8	92%
2244-02*	2.57	22.15	27.49	0.81	0.0701	0.0089	0.2229	0.0261	0.0232	0.0009	931.5	258.3	204.3	21.7	147.8	5.9	67%
2244-03*	43.95	97.86	82.84	1.18	0.0658	0.0030	0.2359	0.0121	0.0257	0.0002	1200.0	95.5	215.1	10.0	163.6	1.1	72%
2244-04	93.28	257.99	199.04	1.30	0.0534	0.0024	0.1924	0.0100	0.0260	0.0002	346.4	100.0	178.6	8.5	165.3	1.0	92%
2244-05*	2.22	62.08	47.11	1.32	0.0557	0.0040	0.2226	0.0272	0.0287	0.0019	438.9	159.2	204.1	22.6	182.3	12.0	88%
2244-06*	80.91	153.85	129.84	1.18	0.0675	0.0096	0.2447	0.0378	0.0260	0.0005	853.7	300.0	222.3	30.8	165.2	3.3	70%
2244-07	96.41	259.94	121.44	2.14	0.0499	0.0006	0.1795	0.0038	0.0261	0.0005	190.8	25.9	167.6	3.3	166.4	3.2	%66
2244-08	77.49	93.70	71.75	1.31	0.0507	0.0018	0.1831	0.0121	0.0259	0.0012	233.4	81.5	170.7	10.4	165.1	7.4	96%
2244-09	86.37	181.80	138.24	1.32	0.0496	0.0019	0.1778	0.0098	0.0259	0.0010	176.0	87.0	166.2	8.5	165.0	9.9	%66
2244-10*	45.50	15.14	20.72	0.73	0.0711	0.0040	0.2425	0.0144	0.0248	0.0007	961.1	114.8	220.4	11.8	157.9	4.7	966%
2244-11*	63.74	46.32	42.69	1.08	0.0594	0.0025	0.2080	0.0089	0.0255	0.0005	588.9	123.1	191.9	7.5	162.4	2.9	83%
2244-12*	36.48	54.38	50.43	1.08	0.0624	0.0026	0.2158	0.0105	0.0250	0.0004	687.1	87.0	198.4	8.8	158.9	2.4	77%
2244-13*	7.62	8.40	9.78	0.86	0.2445	0.0115	1.4357	0.1232	0.0362	0.0012	3149.1	74.7	903.9	51.4	229.3	7.5	-20%
2244-14	40.33	102.94	96.58	1.07	0.0535	0.0013	0.1921	0.0049	0.0261	0.0004	350.1	53.7	178.5	4.2	166.1	2.5	92%
2244-15	48.45	31.07	28.42	1.09	0.0552	0.0021	0.1977	0.0075	0.0260	0.0004	420.4	78.7	183.1	6.3	165.7	2.7	%06
2244-16	80.60	199.41	174.55	1.14	0.0498	0.0005	0.1802	0.0022	0.0262	0.0002	187.1	24.1	168.3	1.9	166.9	1.0	%66
2244-17	40.02	122.15	101.95	1.20	0.0514	0.0017	0.1846	0.0069	0.0260	0.0003	261.2	77.8	172.0	5.9	165.5	2.1	96%
2244-18	20.18	48.52	66.01	0.73	0.0527	0.0016	0.1908	0.0066	0.0262	0.0003	322.3	73.1	177.3	5.7	166.9	1.9	93%
2244-19	37.56	162.27	123.86	1.31	0.0515	0.0010	0.1844	0.0035	0.0260	0.0002	264.9	42.6	171.8	3.0	165.3	1.3	96%
2244-20	56.95	163.68	131.25	1.25	0.0504	0.0008	0.1796	0.0032	0.0258	0.0002	216.7	30.5	167.7	2.7	164.2	1.2	97%

注:加""号的测点未在U-Pb谐和图中显示及不参加平均值计算;Pb*为总铅含量.

LA-MC-ICP-MS 锆石 U-Pb 定年测试在中国 地质科学院矿产资源研究所 MC-ICP-MS 实验室 完成,测试仪器为 Finnigan Neptune 型 MC-ICP-MS 及与之配套的 Newwave U-Pb 213 激光剥蚀系统。 锆石测定点的 Pb 同位素比值、U-Pb 表面年龄等数 据处理采用 ICPMSDatacal 6.4 程序计算,锆石年龄 谐和图用 Isoplot 3.0 程序获得,仪器工作条件、分析 精度和分析方法见文献[12-14]。

4.2 测试结果

测试时避开包裹体及裂纹,选择环带结构清晰的 20 个代表性锆石颗粒进行 U-Pb 年龄测定,各测点的测试结果列于(表 2)。其中 Pb 含量(20.18~96.41)×10⁻⁶,U 含量(28.42~199.04)×10⁻⁶,Th 含量(31.07~259.94)×10⁻⁶,Th/U 比值 0.73~2.14,为 典型的岩浆锆石比值。其 ²⁰⁶Pb/²³⁸U 年龄范围集中于(164~166)Ma,在一致曲线图(图 8)中,除 2-3、5-6、10-13 号测点的 ²⁰⁶Pb/²³⁸U 年龄较分散、谐和度较低而不参加平均值计算外,其余 12 个测点的 ²⁰⁶Pb/²³⁸U 年龄 加权 平均值为 165.63±0.95 Ma(MSWD=0.35),置信度为 97%,代表了该辉长岩体的形成时代。

5 讨论

5.1 岩石成因及其构造背景

岩石主微量元素特征分析表明:岩石富碱、富

图8古罗辉长岩体锆石U-Pb年龄谐和图

Fig. 8 Zircon U-Pb concordia diagram of Guluo gabbroic rocks

钛铁, 富集大离子亲石元素(LIL)和轻稀土元素(LREE),无 Nb、Ta 异常,属钾玄岩系列;在微量元素 MORB标准化蛛网图上显示为典型的板内碱性 玄武岩的"双隆起"特征。

结合玄武质岩石构造环境判别图解,在 2Nb-Zr/4-Y图(图 9a),样品落于A1区(板内碱性 玄武岩)及A2区(板内碱性玄武岩和板内拉斑玄 武岩);而在Hf/3-Th-Nb/16图(图 9b),样品投点则 落于WPAB区(板内碱性玄武岩)。

李献华等四根据产生于岛弧和板内环境的钾玄

图9 古罗辉长岩体构造环境判别图(a,b)

Fig. 9 Discrimination plots for the magmatic origin (a, b)

(图9a底图资料据文献[16];图9b底图资料据文献[17])

A1:WPAB,A2:WPAB+WPT,C:WPT+VAB,B:E-MORB,D:N-MORB+VAB;IAT-岛弧拉斑玄武岩,CAB-火山弧钙碱性玄武岩,N-MORB-正常型洋中脊玄武岩,E-MORB-富集型洋中脊玄武岩,WPAB-板内碱性玄武岩,WPT-板内拉班玄武岩.

质岩石的微量元素特征指出桂东南钾玄质侵入岩 富集大离子亲石元素(LILE)和轻稀土元素 (LREE),无Nb、Ta异常,是典型的板内钾玄岩。古 罗、黄羌冲辉长岩体与桂东南北东向钾玄质侵入岩 带中的马山碱性杂岩体、罗容碱性杂岩体以及牛 庙、同安岩体等均具非常相似的岩石地球化学特 征,而且在时间上、空间上具密切的联系,表明它们 具有相同的构造背景和成因机制。

综上分析表明:古罗、黄羌冲辉长岩属典型的 板内钾玄岩,岩浆物质来源主要为经过交代和富集 的具 OIB 型微量元素特征的岩石圈地幔和下地壳 ^[18],形成于中生代软流圈地幔上涌和岩石圈伸展减 薄的构造背景。

5.2 岩体形成时代

古罗、黄羌冲辉长岩体侵入寒武系碎屑岩中, 1:20万桂平幅区域地质测量报告¹⁹将其归为加里 东期石英闪长岩体;广西区域地质志¹⁴认为属燕山早 期第三次侵入形成的同熔型中酸性侵入岩;1999年 及2006年版1:50万广西壮族自治区数字地质图 ¹⁵⁻⁶均将其归为中侏罗世石英闪长岩。以上划分均据 区域地质资料,并无实测年龄数据的支持。

本次工作首次对古罗辉长岩体进行了高精度的 LA-ICP-MS 锆石 U-Pb 定年,获得古罗岩体石 英辉长岩的 U-Pb 年龄加权平均值为 165.63 ± 0.95 Ma。这一测年数据与罗容杂岩体的辉石二长岩 163.40 ± 0.40 Ma(LA-ICP-MS 锆石 U-Pb 法)^[19];马山杂岩体石英正长岩 155 Ma (黑云母 K-Ar 法)^[20];桂平西山岩体二长花岗岩 169 ~ 170 Ma(黑云母 K-Ar 法)^[21];平乐牛庙岩体辉石闪长岩 163 ± 4 Ma、同安岩体石英二长岩 160 ± 4 Ma (SHRIMP 锆石 U-Pb 法)^[22]等的测年数据基本吻合。因此,将古罗、黄 羌冲辉长体的形成时代确定为中侏罗世(165 Ma)。

这一系列测年数据表明:中晚侏罗世是华南地 区发生强烈岩浆活动的主要时段,在华南后造山阶 段大陆地壳伸展拉张减薄的构造环境下,软流圈地 幔沿超壳深断裂上涌或底侵形成一系列富碱质的 基性 - 中酸性侵入体。

6 结论

(1)古罗、黄羌冲碱性辉长岩体的形成于中侏 罗世(165 Ma)。 (2)古罗、黄羌冲碱性辉长岩体属典型的板内 钾玄岩,形成于大陆地壳伸展拉张减薄的构造背 景,为燕山期早期华南后造山阶段的地质记录。

感谢武汉地质调查中心赵小明博士、龙文国研 究员和徐德明研究员对本项目的支持;本文成文过 程中得到了中国地质科学院矿产资源所覃小锋博 士和陈懋弘博士指导,在此谨致谢忱。

注释:

①王新宇.广西金刚石成矿条件及选区研究[R].广西壮族自治区地质勘查总院,2013.

参考文献:

- Muller D, Groves D I. Potassic Igneous Rocks and Associated Gold-copper Mineralization[J].Berlin: Springer-Verlag, 1995. 1–144.
- [2] 李献华,周汉文,刘颖,李寄嵎,孙敏,陈正宏.桂东南钾 玄质侵入岩带及其岩石学和地球化学特征[J].科学通报, 1999,44(18):1992-1998.
- [3] 广西壮族自治区地质矿产局.1:20万桂平幅区域地质测 量报告书[M],南宁:广西壮族自治区地质矿产局.1963.
- [4] 广西壮族自治区地质矿产局. 广西壮族自治区区域地质 志[M]. 北京:地质出版社,1985.
- [5] 广西壮族自治区地质矿产勘查开发局. 广西壮族自治区 数字地质图及说明书(1:50万)[M].南宁:广西壮族自治区 地质矿产局.1999,1-126.
- [6] 广西壮族自治区地质矿产勘查开发局. 广西壮族自治区 数字地质图及说明书(1:50万)[M].南宁:广西壮族自治区 地质矿产局.2006:1-126.
- [7] 路远发.GeoKit: 一个用VBA构建的地球化学工具软件包 [J].地球化学,2004,33(5):459-464.
- [8] Eric A K M.Naming materials in the magma/igneous rock system[J].Earth Science Reviews.1994, 37:215-224.
- [9] Peccerillo R, Taylor S R. Geochemistry Of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey
 [J].Contribution to Mineralogy and Petrology, 1976, 58: 63-81.
- [10] Middlemost E A K.Magmas and Magmatie Rocks [M]. London: Longman, 1985:1–266.
- [11] Sun S S, McDonough W F. Chemical and isotopic systemat-

ics of oceanic basalts:Implications for mantle composmon and processes [J]. Geological Society of London, Special Publication, 1989, 42: 313–345.

- [12] Liu Y S, Hu Z C, Gao S, Gunther D, Xu J, Gao C G and Chen H H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257: 34–43.
- [13] Yuan H L, Gao S, Dai M N, Zong C L, Gunther D, Fontaine G H, Liu X M and Diwu C R. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiplecollector ICP-MS[J]. Chemical Geology, 2008, 247(1-2): 100-118.
- [14] Yuan H L, Gao S, Liu X M, Li H M, Gunther D and Wu F Y. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry [J]. Geostandards and Geoanalytical Research, 2007, 28(3): 353–370.
- [15] Loiselle M C, Wones D R. Characteristics and origin of anorogenic granites [J].Geological Society of America, Abstracts with Programs, 1979, 11: 468.
- [16] Meschede M. A method of discriminating between different

types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram[J]. Chemical Geology, 1986, 56: 207-218.

- [17] Wood D A. The application of a Th Hf Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province [J]. Earth and Planetary Science Letters, 1980, 50: 11–30.
- [18] Rogers N W, James D, Kelly S P. The generation of potassic lavas from the eastern Vinmga Province, Rwanda [J]. Journal of Petrology, 1998, 39:1223-1247.
- [19] 黄炳诚,许华,潘艺文,黄英,倪占旭,钟辉运.钦杭结合带西段罗容杂岩体岩石学、地球化学及年代学[J].华南地质与矿产,2012,28(4):321-330.
- [20] 地矿部南岭项目花岗岩专题组. 南岭花岗岩地质及其成 因和成矿作用[M]. 北京:地质出版社, 1998.
- [21] 广西壮族自治区地质矿产局.1:5万桂平地区区域地质 调查报告[R].1994.
- [22] 朱金初,谢才富,张佩华,杨策,顾晟彦.桂东北牛庙闪长 岩和同安石英二长岩:岩石学、锆石SHRIMP U-Pb定年 学和地球化学[J].岩石学报,2005,21(3):665-676.