陈建文, 骆迪, 袁勇, 等. 全球海洋地质碳封存典型案例对中国的启示 [J]. 海洋地质前沿, 2025, 41(3): 1-13. CHEN Jianwen, LUO Di, YUAN Yong, et al. Typical cases of global marine geological carbon storage and its implications for China[J]. Marine Geology Frontiers, 2025, 41(3): 1-13.

全球海洋地质碳封存典型案例对中国的启示

陈建文^{1,2,3,4,5},骆迪^{1,2,3,4,5},袁勇^{1,2,3,4,5},李清^{1,2,3,4,5},赵化淋^{1,2,3,4,5},王建强^{1,2,3,4,5},孙晶^{1,2,3,4,5} (1中国地质调查局青岛海洋地质研究所,青岛 266237; 2 青岛海洋科技中心海洋矿产资源评价与探测技术功能实验室,青岛 266237; 3 海洋地质碳封存山东省工程研究中心,青岛 266237; 4 青岛市海洋地质碳封存重点实验室,青岛 266237; 5 青岛市海洋地质碳封存工程研究中心,青岛 266237)

摘 要:海洋地质碳封存作为二氧化碳捕集、利用与封存(CCUS)的应用场景之一,是沿海 地区实现碳减排的有效途径。本文通过全球海洋地质碳封存典型案例的解剖认为,中国海洋 地质碳封存潜力大,下一步示范工程选址应重视目标级和场地级封存潜力评价,针对不同条 件开展分类选址,并将地质风险监测贯穿示范工程始终。结合中国海域不同盆地 CO₂ 地质封 存源汇匹配性和施工条件提出:海上油气田 CO₂ 伴生气咸水层封存项目是优先示范项目,CO₂ 驱油气与封存协同项目具有现实应用价值,枯竭油气藏封存项目是示范工程的重要选择,全 链条规模化海上咸水层封存项目是未来发展方向。

关键词:海洋地质;碳封存;咸水层;枯竭油气藏;CCUS 中图分类号:P744.4,P736 文献标识码:A DOI:10.16028/j.1009-2722.2025.023

0 引言

二氧化碳(CO₂)捕集、利用与封存(CCUS)是 全球气候目标实现不可或缺的减排技术组合^[1-2],已 经成为中国碳中和技术体系的重要组成部分,它不 仅是化石能源近零排放的唯一技术选择,也是未来 支撑碳循环利用的主要技术手段^[3-4]。海洋地质碳 封存是将工业碳排放源或油气开发过程中捕集的 CO₂,以超临界态注入到海底咸水层、废弃或开发 中油气藏等地质体中,实现与大气长期隔离的过 程^[5]。作为 CCUS 的应用场景之一,海洋地质碳封 存是沿海地区实现碳减排的有效途径^[6]。与陆地封 存相比,海洋地质碳封存远离人类居住区且有海水

收稿日期: 2025-01-22

资助项目:山东省重点研发计划(科技示范工程)项目(2024SFGC0302); 中国地质调查局项目(DD202503023, DD20240087, DD20230401, DD20221723, DD20190818, DD20160152);自然资源部科技战略研究项目 (2023-ZL-18)

第一作者:陈建文(1965—),男,博士,研究员,主要从事海洋油气资源调查评价以及碳封存方面的研究工作.E-mail:jwchen2012@126.com

*通讯作者: 骆迪(1982—), 女, 博士, 副研究员, 主要从事海洋地质碳封 存以及天然气水合物方面的研究工作. E-mail: luodi0927@sina.com 覆盖,具有"安全性高、环境风险小"的特点,受到 欧美等国家和地区的高度重视^[5]。目前,全球已有 的海洋地质碳封存项目按源汇匹配性和工程条件 总体可分为伴生气封存、驱油封存、枯竭油气藏封 存和全链条咸水层封存 4 种类型,这些项目的实践 活动对中国海洋地质碳封存具有重要借鉴意义。

1 国内外现状

1.1 国外现状

截止到 2024 年底, 全球海洋地质碳封存项目 共 27个(图 1,表 1), 其中: 已完成 9个、正在实施 4个、规划建设中 14个。正在实施的 4个项目分 布在挪威、澳大利亚、巴西和中国, 每年可封存 CO₂约 590×10⁴ t^[7:8]。14个规划建设项目中有 9个 位于欧洲, 其他 5个分别位于美国、澳大利亚、马来 西亚和中国。根据理论研究和工程项目现状, 将全 球海洋地质碳封存划分为基础研究、潜力评价、工 程示范和商业应用 4 个阶段^[9], 其中, 挪威、巴西、 澳大利亚处于商业应用阶段, 欧盟、英国、美国、日 本处于工程示范阶段, 中国处于潜力评价早期和工

表1 全球主要海洋地质碳封存示范工程一览表

	Table 1	Major globa	l pilot pro	jects marine	CO_2 geo	logical storage
--	---------	-------------	-------------	--------------	------------	-----------------

序号	项目名称 -	示范内容		而同時代	抽構ルエルト	
		CO ₂ 源	封存/利用方式	规划/投运年份	规候((力t/a)	2024年状态
1	中国EP15-1	海上伴生气	咸水层	2021年启动, 2023年灌注	约30	运行中
2	挪威Sleipner	海上伴生气	咸水层	1996年投运	100	运行中
3	挪威Snøhvit	海上伴生气	咸水层	2008年投运	70	已结束
4	挪威Northern Lights	陆上工业气	咸水层		150~500	规划中
5	巴西Lula	海上伴生气	CO ₂ -EOR驱油	2011年投运	300	运行中
6	荷兰Porthos	陆上工业气	枯竭气藏		250	规划中
7	荷兰K12-B	海上伴生气	枯竭油气层	2004—2017年	2	已结束
8	荷兰ATHOS	陆上工业气	枯竭气藏	2030年建成	750	规划中
9	英国Net Zero Teesside	陆上工业气	咸水层/枯竭油气藏	2026年投运	1 000	规划中
10	英国Acom	陆上工业气	枯竭油气藏		500	规划中
11	英国亨伯Viking	陆上工业气	枯竭气田	2027年投运	1 000	规划中
12	英国东海岸CCS集群	陆上工业气	海底咸水层	2027年投运	2 300	规划中
13	英国HyNet集群	陆上工业气	海底咸水层		1 000	规划中
14	英国Peterhead	陆上工业气	枯竭气藏		100	已暂停
15	英国White Rose	陆上工业气	海底咸水层	2013—2015年	200	已终止
16	英国Don Valley	陆上工业气	海底咸水层	2015年	500	已终止
17	美国休斯顿 Ship Channel	陆上工业气	海底咸水层		$5\ 000{\sim}10\ 000$	规划中
18	美国得克萨斯州CCS项目	陆上工业气	海底咸水层		600~3 500	规划中
19	澳大利亚Gorgon	海上伴生气	近枯竭气藏	2004、2005年两次试验	160	运行中
20	澳大利亚CarbonNet	陆上工业气	海底咸水层	2030年投运	500	规划中
21	马来西亚Kasawari	陆上工业气	海底油田		330	规划中
22	日本Tomakomai	陆上工业气	海底咸水层	2016—2019年	10	已结束
23	中国大亚湾CCS/CCUS集群项目	陆上工业气	海底咸水层	2022年6月启动	300~1 000	规划中
24	丹麦Greensand		枯竭油气田		150	规划中
25	英国QICS		海底咸水层	2010—2013年		已终止
26	英国ETI MMV		海底咸水层	2014—2018年		已终止
27	英国STEMM-CCS		海底咸水层	2016—2020年		已终止

注:CCS代表CO2捕集与封存;CCUS代表CO2捕集、利用与封存。

程示范试验阶段(图2)。

1.1.1 基础研究阶段

自 20 世纪 80 年代 CO2 地质封存概念被首次 提出以来,北美、欧盟、挪威、英国、澳大利亚等国 家和地区学者开展了大量的 CO, 地质封存基础理 论研究,主要取得4个方面成果:①明确咸水层、不 可采煤层、枯竭油气藏、基性-超基性岩等多种适 合 CO₂ 地质封存的主要介质类型^[10],揭示构造地 层封存、水动力封存、溶解封存、束缚封存和矿化 封存 5 种咸水层 CO₂ 地质封存机理^[11],查明不同 封存机理的作用时间尺度^[10-11];②形成 3 种 CO₂ 地 质封存潜力分类方法^[10, 12-15],建立 CO₂ 地质封存潜 力评价等级金字塔模型^[10-11];③建立体积法和机理 法 2 种 CO₂ 地质封存容量计算方法^[14-16], 厘清 CO₂ 地质封存潜力主要影响因素^[17],制定3种CO₂地 质封存适宜性评价指标体系^[13, 18];④研发 CO₂ 地质 封存模拟软件与实验装置,用于研究 CO2 运移规律 与水岩反应,预测 CO2封存成效与驱油效率^[19-21]。 这些成果为全球 CO2 地质封存理论研究和封存 潜力评价奠定了基础。

1.1.2 潜力评价阶段

2000年以来,美国、挪威、英国、欧盟、日本、 澳大利亚等国家和地区陆续开展海域 CO₂ 地质封 存潜力评价,主要取得 4 个方面成果:①查明本国

海域主要盆地咸水层、油气田及煤层 CO2 地质封 存潜力。美国地质调查局于 2008 年启动 "碳封存-地质研究和评估"项目,已完成5轮海域封存潜力 评价,公布预测潜力为 22 971×10⁸ t^[22]; 澳大利亚 CO₂地质封存预测潜力约为4100×10⁸ t, 挪威大陆 架海域 CO₂ 地质封存潜力约为 867×10⁸ t^[23], 英国 海域 CO, 地质封存潜力为 780×10⁸ t^[24], 日本海域 CO2 地质封存潜力为 1 500×10⁸ t; ②完成基于 GIS 系统建立 CO,地质封存基础数据库,编制发布 CO, 地质封存图集^[22, 24-25]; ③圈定 CO₂ 地质封存有 利目标区,制定封存场址评价规范,完成封存场址 比对优选,进行封存场址描述与模拟预测,提交工 程示范场址建议^[26];④开展补充地质调查,完成 CO, 地质封存环境影响与安全风险评价, 论证工程 示范项目经济可行性。该阶段工作的主体单位为 国家地质调查局或国有石油公司。

1.1.3 工程示范阶段

工程示范阶段的封存项目实施时间通常不超 过5年,年灌注规模<50×10⁴t。该阶段主要目的是 通过实施示范工程验证海洋地质碳封存的技术、安 全和经济的可行性,其主要任务包括项目可行性研 究、项目建设、CO₂灌注、监测和项目评估分析等 工作。为了提高油气采收率抵消油气开采过程中 产生的碳排放税、评价封存安全性和经济性,英国、

美国、日本等国家开展了海洋地质碳封存工程示范。荷兰 K12-B、日本 Tomakomai、英国 QICS、 ETI MMV 和 STEMM-CCS 均属示范工程项目。

1.1.4 商业应用阶段

商业应用阶段的封存项目通常实施时间超过 5年,年灌注规模>50×10⁴t。该阶段的目的是通过 项目实施获取商业利润,产生经济效益。经典的商 业项目如挪威在北海海域 Sleipner 咸水层封存 项目,自 1996年灌注以来运行超过 28年,CO2年 封存量达 100×10⁴t,至 2019年已累计封存 CO2约 2200×10⁴t,未发现 CO2泄露^[27]。2009年,挪威国 家石油公司在巴伦支海建成 Snøhvit 封存项目,每 年将 70×10⁴t CO2封存至海底以下 2 600 m 处的储 层中;巴西桑托斯盆地海域 Lula^[28]、澳大利亚 Gorgo 均属于商业应用阶段的项目^[29]。未来,挪威 Northern Lights^[30]、荷兰 Porthos^[31]、澳大利亚 CarbonNet^[32]、 美国休斯顿 Ship Channel 和得克萨斯州 CCS^[33]、 马来西亚 Kasawari^[34] 均是规模化 CO2 地质封存商 业项目。

国外海洋地质碳封存发展历程表明:根据资料 情况和评价级别,通常开展多轮海洋地质碳封存潜 力调查评价,牵头单位一般为地质调查部门或国有 石油公司;随着海洋地质碳封存技术不断进步,单 个项目封存量显著提升,已达到(200~500)×10⁴ t/a, 累计封存量达 1×10⁸ t; CO₂ 气源与封存场址距离越 来越远,不再仅仅局限于油气田开发过程中伴生的 CO₂,这标志着海洋地质碳封存技术的应用范围正 在不断拓宽。

1.2 国内现状

2020年,中国 CO₂总排放量约为 10×10⁸ t^[35], 沿海 11 个省市的 CO₂ 排放量约占全国总量的 47%^[36],碳封存减排需求巨大。因特殊的人文地理 环境和地质条件,沿海地区邻近陆域适合碳封存的 场址较少,海洋地质碳封存成为必然选择。中国 CO₂地质封存基础理论研究与世界先进水平基本 同步,初步评价了海域 CO₂地质封存潜力,正在规 划建设多个海域 CO₂地质封存项目,整体处于潜力 评价早期和工程示范试验阶段^[9]。

1.2.1 基础理论研究与国际先进水平基本同步

中国 CO₂ 地质封存基础理论研究成果集中在 4 个方面: ①CO₂ 地质封存机理方面, 利用室内实验 研究了不同尺度 CO₂-岩层-水相互作用下储层物性 的变化^[37-38], CO₂ 溶解对储层岩石矿物组成、孔隙 结构和力学性能的影响^[39-40], CO₂在储层中的运移 规律^[41] 以及 CO₂ 在深部咸水层运移的影响因素及 响应特征^[42]等;②在 CO₂地质封存潜力与适宜性 评价技术方法方面,初步形成与中国地质条件相适 配的咸水层、油气田、煤层封存潜力计算方法,明确 了 CO₂ 地质封存潜力与提高采收率主要影响因素, 探索了盆地级和区带级适宜性评价指标体系,形成 了 CO2 提高采收率评技术方法^[43-44]; ③建成了 CO2 地质封存与强化采油实验装置,对潜在的封存场 址进行了描述和数值模拟,研究了 CO2 地质封存成 效及环境影响,研发 CO2 地质封存监测仪器设备, 分析了 CO2 灌注对地质体稳定性影响^[45-48]; ④CO2 地质封存环境风险评估方面,研究了 CO,地质封存 环境风险评估的方法和空间范围^[49-50],探讨了 CO, 封存泄露监测技术方法^[51],发布了《二氧化碳捕集、 利用与封存环境风险评估技术指南(试行)》^[52]。 1.2.2 整体处于潜力评价早期阶段和工程示范试 验阶段

2010年,中国地质调查局设立"全国二氧化碳 地质储存潜力评价与示范工程"项目^[44],于2013年 完成中国海域 CO₂地质封存潜力初步评价^[53]。 2022年,中国地质调查局组织完成了中国海域 CO₂ 封存潜力系统评价^[5,54-56]。2020年,中海石油(中国) 有限公司上海分公司针对东海陆架盆地丽水 36-1 枯竭气田开展 CO₂地质封存研究,提出了废弃气藏 和咸水层 2种 CO₂封存方案。2023年6月,中海 石油(中国)有限公司深圳分公司开展了中国首个 海上 CO₂地质封存工程示范项目的正式灌注,该项 目每年可将珠江口盆地恩平 15-1油田群开发伴生 的 CO₂约为 30×10⁴ t,封存到海底以下 800~900 m 的储层中,5 a 累计封存 CO₂约 146×10⁴ t。

总体来看,中国海域目前仅有一个 CO₂ 地质封 存工程示范项目正在建设中,尚无商业应用项目, 整体处于潜力评价早期阶段和示范工程探索阶段。

2 全球典型案例

全球海上 CCS/CCUS 项目类型多、规模大小 不等,大体可分为伴生气封存、驱油封存、枯竭油气 藏封存和全链条咸水层封存项目4种类型。

2.1 海上 CO₂ 伴生气封存项目

2.1.1 挪威 Sleipner 项目

1996年,挪威在北海 Sleipner 气田实施了全

球首个商业规模的海洋地质碳封存项目,CO,注入 点距挪威海岸线约 240 km,由 Statoil 公司及其合 作伙伴共同经营,将 Sleipner Vest 气田和 Gudrun 气田产生的 CO2 分离, 注入北海海底咸水层, 项目 从 1996 年 10 月正式启动, 每年注入 100×10⁴ t。储 层为海底以下 800~1000 m 的新生代 Utsira 砂岩 层,砂地比>70%,孔隙度为27%~31%,局部可 以达到 42%,物性好。盖层为广泛分布的上新世 Nordland 组海相泥岩, 厚度 250 m, 为良好的 CO₂ 盖层。Utsira 砂岩层南北长 400 km, 东西宽 50~ 100 km, 面积约为 2.6 万 km², 厚度为 200~300 m, 预测 Utsira 砂岩层 CO, 封存潜力可达 6 000×10⁸ t。 该项目采用时移地震、可控源电磁、时移重力等监 测手段, 自 1994 年开始, Sleipner 共进行了 10 次三 维地震、4次重力、1次电磁调查和2次海底成像调 查。2014年,挪威发布了该项目 CO2 地质封存动 态监测结果,灌注的 CO,主要集中在距灌注点 3 km 以内区域,分布面积约4.5 km²,纵向上主要向地层 深部运移,未突破盖层向上运移,监测结果表明, 海域 CO2 地质封存安全可行^[57]。至 2019 年已累 计封存 CO₂ 约 2 200×10⁴ t, 未发现明显的 CO₂ 泄 露^[58]。

2.1.2 挪威 Snøhvit 项目

挪威国家石油公司在挪威北部巴伦支海实施 了 Snøhvit CO₂ 封存项目, Snøhvit 油田的天然气中 含有 5%~8% 的 CO₂, Snøhvit 项目是将油气开采 过程中分离出来的 CO2 回注至海底咸水层, 每年 CO_2 封存量约为 70×10⁴ t。 CO_2 注入点位于巴伦支 海 Hammerfest 盆地中部,发育断块圈闭,早中侏罗 统的 Tubåen 组和 Stø组砂岩层为储层, 埋深分别为 2 600 和 2 450 m。Tubåen 组为河流三角洲-潮汐砂 岩,厚度约100m,上覆Stø组为浅海相砂岩,厚度 约85m。该项目第1期(2008-2011年)向Tubåen 储层注入 100×10⁴ t CO₂; 第 2 期(2011—2012 年) 向 Stø储层注入 5×10⁴ t CO₂^[59-61]。为了监测 CO₂ 在储层中的变化,在注入前的 2003 年开展了三维 地震调查,注入后分别于 2009、2011 和 2012 年进 行了3次三维地震调查,并在注入井中安装了井下 压力表,监测压力变化。

2.1.3 澳大利亚 Gorgon 项目

澳大利亚海洋面积广阔,具有较大的 CO₂ 储存 潜力。Gorgon 项目是澳大利亚第1个碳封存工程 示范项目,由雪佛龙、埃克森美孚和荷兰皇家壳牌 等三大石油公司共同投资,CO₂ 注入点位于澳大利 亚西北部海域的巴罗岛附近,离岸约 60 km。该项 目计划将来自 Gorgon 和 Jsnsz 气田的 1.2×10^8 t CO₂ 封存至咸水层,预计年封存量(340~400)×10⁴ t,是 全球年封存量最大的海域碳封存项目。储层为海 底以下 2 000 m 的侏罗系 Dupty 组砂岩层,厚度约为 400 m,孔隙度为 22%,渗透率为 (30~100)×10⁻³ µm², 上覆 250 m 页岩盖层,确保了 CO₂ 长期安全性。项 目于 2019 年 8 月启动,遇到了采水层出砂、注入量 不及预期等问题,目前每年只能存储约 160×10⁴ t 的 CO₂,仅为预计封存量的 1/3,至今累积注入 CO₂ 超过 500×10⁴ t^[29]。

2.2 CO₂驱油封存项目

巴西 Lula 油田是全球首个开展大规模离岸 CO₂驱油的油田,由巴西国家石油公司运营。Lula 油田位于巴西东南部里约热内卢海岸外约 300 km 的超深水桑托斯盆地盐下区块(SBPSC),是巴西最 大的深水油田之一,水深约为2200m。该油田储 层为碳酸盐岩,埋深约海底以下 5 000~7 000 m,含 有大量的伴生气,其中 CO2 约占 11%,油藏内相对 较低的储层温度(60~70 ℃)和较高的原始储层压 力非常适合利用富含 CO2 的流体进行混相驱油。 Lula 油田 CO2 驱油项目自 2011 年正式启动,采用 水气交替的方式,将伴生气中的 CO2 直接在采油平 台进行分离和回注,从而提高石油采收率和环境效 益, CO2 注入量约为 35×10⁴ m³/d。由于 Lula 项目 的储层是固结的碳酸盐岩,盖层为巨厚的膏盐层, 使用地震监测技术较为困难,自运行以来,监测手 段主要包括示踪剂(PFCs)监测以及井下压力和温 度监测,监测结果表明,到目前为止,未发现 CO2 泄 漏和储层堵塞问题^[28]。

2.3 枯竭油气藏封存项目

2.3.1 荷兰 K12-B 项目

荷兰 K12-B 项目是全球第 1 个海域近枯竭气 藏 CO₂ 封存项目。1982 年发现的 K12-B 气田位于 荷兰北海海域, 距阿姆斯特丹约 150 km 处, 气田 CO₂ 最高含量达 13%, 储层位于海底以下 3 800 m 的 Slochteren 组, 盖层为 Zechstein 群数百米厚的蒸 发岩。该气田自 1987 年开采以来, 累计产气超过 127×10⁸ m³, 已进入近枯竭阶段。荷兰 GDF 公司分 别于 2004 和 2005 年开展了 2 次注入试验, 将天然 气开采过程中产生的 CO₂ 回注到 K12-B 气田, 以 验证近枯竭气田 CO₂ 封存的可行性。第1次试验 在 2004年 5—12月,在 K12-B8 井注入气相 CO₂, 每天平均注入 2.92×10⁴ m³,验证 CO₂ 注入的可行性 和安全性。第2次注入试验在 2005年 2—12月, 平均每天注入 3×10⁴ m³ 的 CO₂,以超临界的状态注 入 2个近枯竭气井(K12-B1和 K12-B5)以及 1个 CO₂ 注入井(K12-B6),旨在调查 CO₂ 注入正在产气 的储层后的响应特征,评价 CO₂ 对提高天然气采收 率的潜力。同时开展多种监测手段,主要包括井径 仪、测井、视频测井、电磁测井、井下压力和温度测 量、化学示踪剂等,监测结果表明,CO₂ 的注入对天 然气生产和基础设施没有任何负面影响,可以提高 天然气的采收率^[62-64]。

2.3.2 丹麦 Greensand 项目

2023年3月8日,丹麦启动了 Greensand 项目, 该项目由英国化学巨头英力士(Ineos)和德国油气 公司 Wintershall Dea 合作实施, 计划将比利时捕获 的 CO₂ 经跨境船舶运输至丹麦北海 Nini West 枯竭 油田,注入海底永久封存。Nini West 油田位于丹麦 中央地堑以东的 Siri 峡谷区,该区域地震活动较 弱,远离断裂活动带,地壳稳定性良好。Siri峡谷区 包含 Siri、Stine、Cecilie 和 Nini(Nini West、Nini Main 和 Nini East)等多个油田^[65],其中, Nini West 油田位于 Nini 盐背斜构造的西翼,属于构造和地层 相结合的圈闭,储层为古新统 Balder 组 Kolga 砂岩, 位于海底之下 1700~1800 m。盖层由始新世 Horda 组和渐新世—中新世 Lark 组致密泥岩组成,厚度 约 900 m^[65-66]。该项目计划到 2025 年,年 CO₂ 封 存量为(50~150)×10⁴ t,到 2030年,年 CO₂ 封存量 为(400~800)×10⁴ t_o

2.4 全链条咸水层封存项目

2.4.1 日本 Tomakomai 项目

日本北海道 Tomakomai 项目始于 2016 年 4 月, 为全流程海域咸水层碳封存工程示范项目,其目的 是验证 CO₂ 从捕集-注入-封存-监测全流程系统的 可行性。该项目储层包括上下 2 套,上部更新统 Moebetsu 组位于海底以下 1 000 m,由约 200 m 厚 的砂岩组成,下部中新统 Takinoue 组位于海底以下 约 2 400 m,由火山岩和火山碎屑岩组成,厚度约为 600 m,上覆泥岩盖层厚度约为 500 m^[67]。该项目 通过 2 个斜井由陆地到海上分别注入到 2 个独立 的储层中。项目工程设备包括捕集、运输、注入和 以及海陆监测设备,其中监测设备包括 1 台陆地地 震台站、4个海底地震仪(OBS)和1条海底电缆 (OBC)^[68]、海底沉积物和底层水取样设备等。项 目 2011 年完成三维地震选址调查,2016 年开始灌 注 CO_2 ,每年灌注约 10×10^4 t,至 2019 年累积灌注 CO_2 约 30×10^4 t。项目运行期间发生过 2 次大地震 (2018 和 2019 年),且震中距离注入点 20 km,监测 结果显示并未发现 CO_2 泄漏。目前已暂停注入,但 仍在监测中^[67,69-70]。

2.4.2 挪威 Northern Lights 项目

挪威 Northern Lights 项目是挪威全链条 CCS 项目,2021年3月获得挪威政府批准,由挪威国家 石油公司、壳牌和道达尔合作建设^[71],是全球首个 获批的 CO, 跨境运输并实施海底地质封存的项目。 该项目计划将挪威东部陆域及欧洲其他地区工业 源(水泥厂和废物发电厂)捕获的 CO2, 液化后通过 船舶运输到陆上枢纽,并通过水下管道输送至距离 海底以下约2500m的咸水层中永久封存。该项目 封存点位于挪威西部近海 Horda 台地,离岸约 50~ 100 km。注入井(31/5-7 井)位于 Troll West 和 Troll East 巨型油气田的南部,属于一个 E 向的构造单元, 东西两侧分别受控于 Tusse 和 Svartalv 断裂带。储 盖层主要为早侏罗统 Dunlin 群,为浅海-海相沉积, 发育4套砂岩和泥岩组合,其中, Johansen 组是主要 的目标储层, Cook 组为次目标储层, Johansen 组砂 岩主要分布在 Horda 台地的东部和中部, Cook 组分 布更为广泛,穿过 Horda 台地向 N、W、S 向延伸。 盖层为 Drake 组海相泥岩, 平均厚度约 100 m^[72]。 项目分2个阶段进行,第1个阶段封年存量为 150×10⁴ t, 第 2 个阶段年封存量最大达 500×10⁴ t, 计划运行 25 年, CO2 封存总量>1×10⁸ t^[73]。

3 对中国的启示

中国海域辽阔, 沉积盆地众多, 新生界咸水层 广泛发育, CO₂ 地质封存潜力巨大。2022年, 中国 地质调查局的评价结果表明, 盆地级预测潜力达 2.58×10¹² t, 区带级推定潜力达 1.21×10¹² t。其中, 渤海盆地(渤海湾盆地的海域部分)、东海陆架盆地 和珠江口盆地的封存潜力大、油气田多、油气勘探 开发程度高, 且紧邻京津冀城市群、长江三角洲城 市群和珠港澳大湾区等经济发达地区, 碳源地与碳 汇地匹配性好, 为中国近海 3 个高适宜盆地; 北部 湾盆地、南黄海盆地、莺歌海盆地、琼东南盆地、台 西南盆地、台湾海峡盆地、北黄海盆地为中国近海 7个中适宜盆地。

3.1 目标级和场地级潜力评价是选址的基础

中国海域已开展了盆地级封存潜力评价,且以 盆地内的隆起和坳陷为评价单元完成了区带级评 价,采用的方法为体积法,该方法适合较大范围的 宏观评价,其评价结果可为区带优选提供依据,但 对目标评价的支撑作用不够,对封存场地选址参考 价值不大。中国双碳目标的时间表已经确定,海洋 地质碳封存是沿海省市实现碳中和的重要选择,在 2030年碳达峰前急需确定海洋地质碳封存的技术 路径,完成理论、技术、安全和经济4大可行性论证 方案,这些方案的出台急需示范工程数据支撑。因 此,从现在开始至2030年的5~6年时间内需要完 成场地选址到示范工程实施等一系列工作。挪威 Sleipner、Snøhvit、Northern nights, 丹麦 Greensand 和澳大利亚 Gorgon 等所有工程示范项目实践表明, 场地封存潜力评价是选址的基础,所以中国海域急 需开展目标级和场地级潜力评价,为场地选址提供 封存依据,支撑示范工程论证工作。

3.2 针对不同目的开展分类选址

前述表明,国际上海洋地质碳封存项目主要分为4类:油气田伴生气咸水层封存、CO2驱油气、枯竭油气藏封存、全链条咸水层封存项目。中国海域沉积盆地多样,油气勘探开发程度和油气藏特征存在显著差异,各盆地 CO2封存源汇匹配性和封存的基本地质条件各有特色,因此,应针对不同目的和条件开展示范工程选址论证。

3.2.1 海上油气田 CO₂ 伴生气咸水层封存项目是 优先示范项目

海上 CO₂ 地质封存成本高,采用油气田开发过 程中的伴生气 CO₂ 作为碳源具有显著低成本优势。 同时,全球海域咸水层封存技术相对成熟。因此, 在示范工程探索阶段,海上油气田 CO₂ 伴生气咸水 层封存项目是优先示范项目。

挪威 Sleipner 项目是将 Sleipner west 和 Gudrun 2 个气田伴生 CO₂ 分离再注入产气层上部埋深 800~900 m 的咸水层中, Snøhvit 碳封存项目也是 将 Snøhvit 油田的 CO₂ 伴生气分离再回注至埋深 2 450~2 600 m 的咸水层中, 澳大利亚 Gorgon、荷 兰 K12-B 和巴西 Lula 封存项目均采用油气田伴生 的 CO₂。

目前的油气勘探证实,中国海域发育有大量的

CO2 伴生气或高浓度 CO2 气田, CO2 成因包括壳源 型、幔源型和壳-幔混合型3种类型^[74-76],渤海盆地、 珠江口盆地和琼东南盆地主要发育幔源气,幔源型 火山活动产生大量的 CO2, 并通过基底深大断裂运 移至盆地地层构造与有机烃类共同聚集成藏。如 渤海盆地的 BZ19、BZ25 等区块^[77], 琼东南盆地的 BD19和 BD15 区块^[75]以及珠江口盆地的 HZ18、 HZ22、PY28、WC14、WC15、WC19 等区块^[75]。中 海油实施的中国首个海上 CO2地质封存项目: EP15-1项目就是将 EP15-1 油田的伴生气在平台上 分离再灌注到油田上部的咸水层中实现长期封存; 珠江口盆地南部深水-超深水区勘探也发现了无机 成因的幔源 CO₂和有机成因烃类天然气成藏于同 一构造圈闭,储层上部为含 CO2 的天然气藏,下部 为纯 CO, 气藏; 东海陆架盆地的 SMT1 井也钻遇幔 源型 CO2^[78]; 莺歌海盆地发育大量的壳源型 CO2, 由 于泥底辟的发育和演化将富 CO2 气源从巨厚的上 新—中新统海相含钙砂泥岩或深部碳酸盐岩沉积 地层中带入浅部地层构造中富集成藏,如DF1、D15、 DF29、LD15、LD20、LD21、LD22 和 LD28 等区块; 在莺歌海盆地和琼东南盆地中也有部分壳-幔混合 型 CO, 富集^[79-80]。上述富 CO, 油气聚集区是开展 海上油气田 CO,伴生气咸水层封存项目选址的重 要方向。

3.2.2 CO₂驱油气与封存协同项目具有现实应用价值

巴西 Lula 项目是世界知名的 CO₂ 驱油项目, 该油田的高压低温储层有利于开展 CO₂ 的流体混 相驱油,从而提高采收率产生经济效益。中国陆上 CO2 驱油已有成功案例,中国石油吉林油田 CO2 驱 油提高采收率 25%,依 59、黑 46 和黑 72 等区块石 油开采通过 CO, 驱油获得较大经济效益; 中国石化 启动的齐鲁石化-胜利油田百万吨 CCUS-EOR 项目 于 2022 年 8 月 25 日正式投产,实现了"把油赶出 来、把碳封地下"的目的。目前,中国还没有海域 CO, 驱油气与封存协同项目, 但是渤海盆地具备良 好的 CO2 驱油封存条件,一方面油气田中含有大量 的 CO2 伴生气产出, 另一方面因稠油开采难度大, 存在驱油提高采收率的迫切需求,同时还具备完善 的管网系统。因此, 渤海是 CO, 驱油气与封存协同 项目的理想海域,此外珠江口盆地西部珠一坳陷、 珠二坳陷及深水区珠三坳陷也具有同样的条件。

3.2.3 枯竭油气藏封存项目是示范工程的重要选择 枯竭油气藏有明确的储集空间、完善的地质参 数和友好的工程施工条件,是验证海上 CO₂ 地质封存技术可行性和经济可行性的重要选择。

荷兰 K12-B 项目是全球第 1 个海域近枯竭气 藏碳封存项目,该气田于 1987 年开始开采天然气, 累积产量超过 127×10⁸ m³ 后接近枯竭,始于 2004 年 的 2 次注入试验成功地将 CO₂ 封存在近枯竭气田。 丹麦 Greensand 项目是将比利时捕获的 CO₂ 经跨 境船舶运输至丹麦北海 Nini West 枯竭油田,注入 海底永久封存。中国有一批投产时间早、油气藏处 于开发中后期、输运管网发达、工程数据充分、 CO₂ 地质封存潜力大的近枯竭油气田,如渤海盆地 的绥中 36-1 油田、秦皇岛 32-6 油田、渤中 25-1 南 油田,东海陆架盆地的丽水 36-1 气田、平湖油气田, 珠江口盆地的西江 24-3 油田、文昌 13-1 油田等,可 作为下一步枯竭油气藏封存示范项目开展场址论证。 3.2.4 全链条规模化海上咸水层封存项目是未来 发展方向

挪威 Sleipner 项目的成功实施, 验证了海域 CO2地质封存的技术、安全和经济可行性,挪威政 府于 2021 年批准了北极光项目, 这是一个全链条 规模化 CCUS 海上咸水层封存项目, 计划将挪威周 边的欧洲国家工业过程中产生的 CO₂ 捕集后通过 汽车、管道或船舶运输近岸储存罐,再统一输送至 挪威西部近海 Horda 台地灌注到海底以下 2 500~ 2600 m 咸水层中实现长期封存。CO2年封存量为 (150~500)×10⁴ t, 总封存量超过 1×10⁸ t。通过规 模化封存可以产生更好的经济效益,支撑碳中和目 标的实现。中国沿海地区一方面工业发达、CO₂排 放占全国排放的47%、拥有大量的碳源,另一方面 人口密集,尤其东南沿海陆域的沉积盆地面积小、 难以找到合适的封存场地,海域 CO,地质封存成为 重要的发展方向。渤海、南黄海^[56,81]、东海陆架^[55,82]、 珠江口盆地^[83]和北部湾等盆地^[84]CO2封存潜力大, 源汇匹配性好,分别是京津冀城市群、山东半岛蓝 色经济区、长江三角洲城市群、珠港澳大湾区和防 城港经济区 CO2 的理想封存海区, 是全链条海上咸 水层封存项目选址的重要方向。2022年6月,广东 省发改委、中国海油、壳牌集团和埃克森美孚集团 四方合作启动的大亚湾区规模化 CCS/CCUS 集群 项目,旨在将大亚湾工业园区 40 余家石化企业排 放的 CO₂ 捕集起来, 封存到珠江口盆地海底咸水层 中,助力惠州建成世界级绿色石化产业高地,从而 为广东省开展全链条海上咸水层封存项目、推进 CCUS 规模化和产业化应用打造示范。

3.3 地质风险监测贯穿示范工程始终

全球海洋地质碳封存示范项目,包括已完成、 正在执行或规划中的项目无一例外地将地质风险 监测贯穿项目始终,如挪威 Sleipner 项目为监测 CO2流体在咸水层中的空间分布和运移特征,先后 开展了10次三维地震、4次重力、1次电磁调查和 2次海底成像调查;荷兰 K12-B 项目为研究 CO,注 入对油气储层影响,开展井中成像测井、电磁测井、 井径、井压、井温度、化学示踪剂等监测;巴西 Lula项目为研究 CO, 注入是否对储层产生堵塞和 是否存在泄漏,采用示踪剂监测以及井压和井温监 测:日本 Tomakomai 项目是针对性的地质风险监测 项目,围绕灌注场地进行了陆地和海域的全方位监 测,共布设1台陆地地震台站、4个海底地震仪(OBS) 和1条海底电缆(OBC),以及海底沉积物取样、底 层水取样和温压特征测量设备以监测 CO2 灌注前、 灌注中、灌注后地质条件的变化及其对环境产生的 可能影响;英国为研发海洋 CO2 封存环境监测技术 也特别开展了 QICS、ETI MMV 和 STEMM-CCS 项目。上述监测证实了海域 CO2 地质封存的可行 性和安全性。中国非常重视对 CO2 地质封存过程 中地质风险评估工作,2016年原环境保护部(现生 态环境部)出台了《二氧化碳捕、集利用与封存环境 风险评估技术指南(试行)》,在陆域开展的鄂尔多 斯盆地神华集团煤制油深部咸水层 CCS 示范工程、 延长石油 CO₂-EOR 项目、渤海湾盆地胜利油田-齐 鲁石化 CCUS 项目、松辽盆地吉林油田 CCUS-EOR 项目以及沁水盆地中联煤 CO₂-ECBM(CO₂ 驱替煤 层气)先导性试验项目,这些项目都开展了地质风 险监测和环境影响评估工作,初步构建了"大气-地 表-地下"CO2地质封存立体监测技术体系。中国 海域 EP15-1 地质碳封存项目也开展了监测研究工 作,但海域 CO,地质封存监测技术研究刚刚起步, 在示范工程的设计、实施工程中应借鉴挪威 Sleipner、 荷兰 K12-B、巴西 Lula 和日本 Tomakomai 等项目 的经验将地质风险监测和环境监测贯穿项目的始 终,同时针对中国海域 CO2 地质封存的地质、工程 和环境条件研发 "空中-海面-水体-海底" 立体监测 技术,建立中国海域特色的 CO2 地质封存地质风险 预警技术体系。

4 结论与建议

(1)中国海域 CO₂ 地质封存处于潜力评价早期

和工程示范试验阶段。全球海域 CO₂ 地质封存可 划分为基础研究、潜力评价、工程示范和商业应用 4 个阶段, 挪威、巴西、澳大利亚处于商业应用阶段, 欧盟、英国、美国、日本处于工程示范阶段, 中国处 于潜力评价早期和工程示范试验阶段。

(2)全球海上 CCS/CCUS 项目大体可分为伴生 气封存、驱油封存、枯竭油气藏封存和全链条咸水 层封存 4 种类型。挪威 Sleipner 和 Snøhvit、荷兰 K12-B、巴西 Lula 和中国 EP15-1 项目的 CO₂ 均来 自油气开采过程中的伴生气;巴西 Lula 为驱油封存 项目;荷兰 K12-B 和丹麦 Greensand 项目为枯竭气 藏封存项目;挪威 Northern Lights 项目为全链条咸 水层封存项目。

(3)全球海域 CO₂ 地质封存项目对中国有 3 点 重要启示:目标级和场地级潜力评价是选址的基础; 应针对不同条件开展分类选址;海上油气田 CO₂ 伴 生气咸水层封存项目是优先示范项目,CO₂ 驱油气 与封存协同项目具有现实应用价值,枯竭油气藏封 存项目是示范工程的重要选择,全链条规模化海上 咸水层封存项目是未来发展方向;地质风险监测贯 穿示范工程始终。

参考文献:

[1] 彭雪婷, 吕昊东, 张贤. IPCC AR6 报告解读: 全球碳捕集利用 与封存 (CCUS) 技术发展评估 [J]. 气候变化研究进展, 2022, 18(5): 580-590.

> PENG X T, LYU H D, ZHANG X. Interpretation of IPCC AR6 report on carbon capture, utilization and storage(CCUS) technology development[J]. Climate Change Research, 2022, 18(5): 580-590.

- [2] The Intergovernmental Panel on Climate Change. Climate change 2022: mitigation of climate change[R]. The Intergovernmental Panel on Climate Change, 2022.
- [3] 张贤,杨晓亮,鲁玺,等.中国二氧化碳捕集利用与封存 (CCUS)年度报告 (2023)[R].北京:中国 21 世纪议程管理中 心,全球碳捕集与封存研究院,清华大学,2023.
 ZHANG X, YANG X L, LU X, et al. Carbon capture, utilization, and storage (CCUS) progress in China (2023)[R]. Beijing: The Administrative Center for China's Agenda 21, Global CCS In-
- stitute, Tsinghua University, 2023.

 [4] 蔡博峰,李琦,张贤,等. 中国二氧化碳捕集利用与封存 (CCUS)

 年度报告 (2024): 中国区域二氧化碳地质封存经济可行性研

究 [R]. 北京: 生态环境部环境规划院, 2024.

CAI B F, LI Q, ZHANG X, et al. Carbon capture, utilization, and storage (CCUS) progress in China (2024): economic feasibility study on geological carbon dioxide sequestration in China[R]. Beijing: Chinese Academy of Environmental Planning, 2024. [5] 陈建文,王嘹亮,王平康,等.中国海域沉积盆地咸水层二氧 化碳地质封存潜力 [J].海洋地质与第四纪地质,2024,44(3): 98-114.

> CHEN J W, WANG L L, WANG P K, et al. Carbon dioxide geological storage potential in saline aquifer of sedimentary basins in China Sea[J]. Marine Geology & Quaternary Geology, 2024, 44(3): 98-114.

- [6] 米立军. 全球海上 CO₂ 封存现状及中国近海机遇与挑战 [J]. 中国海上油气, 2023, 35(1): 123-135.
 MI L J. Current status of global CO₂ ocean sequestration and opportunities and challenges in China offshore areas[J]. China Offshore Oil and Gas, 2023, 35(1): 123-135.
- [7] Global CCS Institute. Global status of CCS report 2019[R]. Global CCS Institute, 2019.
- [8] Global CCS Institute. Global status of CCS report 2020[R]. Global CCS Institute, 2020.
- [9] 陈建文,王嘹亮,王平康,等.中国海域二氧化碳地质封存潜 力评价 [R].北京:中国地质调查局,2022.
 CHEN J W, WANG L L, WANG P K, et al. Evaluation of geological carbon dioxide storage potential in China sea [R].
 Beijing; China Geological Survey, 2022.
- [10] METZ B, DAVIDSON O, CONINCK H D, et al. IPCC special report on carbon dioxide capture and storage[R]. New York: Intergovernmental Panel on Climate Change, 2005.
- [11] Carbon Sequestration Leadership Forum. Phase II final reporttask force for review and identification of standards for CO₂ storage capacity measurement[R]. Carbon Sequestration Leadership Forum, 2007.
- [12] United States Department of Energy. Appendix B: methodology for development of geologic storage estimates for carbon dioxide[R]. Washington: United States Department of Energy, 2008.
- [13] International Energy Agency Greenhouse Gas R&D Programme. Development of storage coefficients for CO₂ storage in deep saline formations[R]. International Energy Agency Greenhouse Gas R&D Programme, 2009.
- [14] GOODMAN A, BROMHAL G, STRAZISAR B, et al. Comparison of methods for geologic storage of carbon dioxide in saline formations[J]. International Journal of Greenhouse Gas Control, 2013, 18: 329-342.
- [15] GOODMAN A, HAKALA A, BROMHAL G, et al. U. S. DOE methodology for the development of geologic storage potential for carbon dioxide at the national and regional scale[J]. International Journal of Greenhouse Gas Control, 2011, 5(4): 952-965.
- [16] BACHU S, BONIJOLY D, BRADSHAW J, et al. CO₂ storage capacity estimation: methodology and gaps[J]. International Journal of Greenhouse Gas Control, 2007, 1(4): 430-443.
- [17] BACHU B. Review of CO₂ storage efficiency in deep saline aquifers[J]. International Journal of Greenhouse Gas Control, 2015, 40: 188-202.
- [18] BACHU S. Screening and ranking of sedimentary basins for sequestration of CO₂ in geological media in response to climate change[J]. Environmental Geology, 2003, 44(3): 277-289.

- [19] WEIR G J, WHITE S P, KISSLING W M. Reservoir storage and containment of greenhouse gases[J]. Energy Conversion and Management, 1995, 36(6/9): 531-534.
- [20] LINDEBERG E. Escape of CO₂ from aquifers[J]. Energy Conversion and Management, 1997, 38: S235-S240.
- [21] YAMAMOTO H, ZHANG K, KARASAKI K, et al. Large-scale numerical simulation of CO₂ geologic storage and its impact on regional groundwater flow: a hypothetical case study at Tokyo Bay[J]. Energy Procedia, 2009, 1(1): 1871-1878.
- [22] United States Department of Energy. Carbon sequestration atlas(Fifth edition)[R]. Washington: United States Department of Energy, National Energy Technology Laboratory, 2015.
- [23] HALLAND E K. Offshore storage of CO₂ in Norway, in geophysics and geosequestration[M]. Cambridge: Cambridge University Press, 2019: 195-208.
- [24] BENTHAM M, MALLOWS T, LOWNDES J, et al. CO₂ storage evaluation database (CO₂ stored). The UK's online storage atlas[J]. Energy Procedia, 2014, 63: 5103-5113.
- [25] International Energy Agency. 20 years of carbon capture and storage[R]. Paris: International Energy Agency, 2016.
- [26] CHADWICK A, ARTS R, BERNSTONE C, et al. Best Practice for the Storage of CO₂ in Saline Aquifers: Observations and Guidelines from the SACS and CO₂ Store Projects[M]. London: British Geological Survey, 2008.
- [27] Global CCS Institute. Global status of CCS 2021[R]. Melbourne: Global CCS Institute, 2021.
- [28] PIZARRO J O D E S, PETROBRAS P, BRANCO C C M. Planning and implementing an EOR project for the pre-salt Lula field[J]. World Oil, 2012, 233(8).
- [29] TRUPP M, FRONTCZAK J, TORKINGTON J. The Gorgon CO₂ injection project-2012 update[J]. Energy Procedia, 2013, 37: 6237-6247.
- [30] THOMPSON N, ANDREWS J S, BJØRNARÅ T I. Assessing potential thermo-mechanical impacts on caprock due to CO₂ injection: a case study from Northern Lights CCS[J]. Energies, 2021, 14(16): 5054.
- [31] UDEN J V. Dutch council of state green-lights Porthos project[J]. Environmental Law Management, 2023, 32(6): 210-211.
- [32] HARIS K, SHAJAHAN N, BERGèS B, et al. Evaluation of passive acoustic methods for ambient noise baseline and gas flow rate quantification at a proposed nearshore carbon capture and storage site in Australia[J]. International Journal of Greenhouse Gas Control, 2023, 129: 103961.
- [33] TIP M. Commercialization of offshore CCS in the gulf of Mexico [R]. Austin: The Gulf Coast Carbon Center. 2021.
- [34] Carbon Capture Journal Group. PETRONAS proceeds with Kasawari CCS project offshore Sarawak[J]. Carbon capture journal, 2023.
- [35] International Energy Agency. Net zero by 2050: a roadmap for the global energy sector [R]. Paris: International Energy Agency, 2021.

[36] 中国碳核算数据库. 省级碳排放清单 [R]. 北京: 中国碳核算数据库 (CEADs), 2020.

China Emission Accounts and Datasets. Provincial CO₂ emission inventories[R]. Beijing: China Emission Accounts and Datasets(CEADs), 2020.

- [37] 于志超,杨思玉,刘立,等. 饱和 CO₂ 地层水驱过程中的水-岩相互作用实验 [J]. 石油学报, 2012, 33(6): 1032-1042.
 YU Z C, YANG S Y, LIU L, et al. An experimental study on water-rock interaction during water flooding in formations saturated with CO₂[J]. Acta Petrolei Sinica, 2012, 33(6): 1032-1042.
- [38] 曹冲,张京伦,朱鸿昊,等. CO₂-岩石-地层水相互作用实验[J].成都工业学院学报, 2016, 19(4): 3-8.
 CAO C, ZHANG J L, ZHU H H, et al. Experimental research on the interaction process between CO₂-saturated rocks and formation water[J]. Journal of Chengdu Technological University, 2016, 19(4): 3-8.
- [39] 赵仁宝. 溶解气驱油藏中斜井和水平井流入动态 [J]. 石油石 化节能, 1994, 10(1): 15-19.
 ZHAO B R. Inflow behavior of inclined and horizontal wells in dissolved gas drive reservoirs[J]. Energy Conservation in Petroleum & Petrochemical Industry, 1994, 10(1): 15-19.
- [40] 李义曼, 庞忠和. 二氧化碳地质封存中的水-岩反应动力学模拟: 进展及问题 [J]. 吉林大学学报: 地球科学版, 2012(S2): 352-360.

LI M Y, PANG Z H. Development and issue on kinetic model of water-rock interaction in CO₂ geological sequestion[J]. Journal of Jilin University (Earth Science Edition), 2012(S2): 352-360.

[41] 马鑫,李旭峰,文冬光,等.新疆准东地区场地尺度二氧化碳 地质封存联合深部咸水开采潜力评估[J].水文地质工程地质, 2021,48(6):196-205.

> MA X, LI X F, WEN D G, et al. A study of the potential of fieldscale of CO₂ geological storage and enhanced water recovery in the eastern Junggar area of Xinjiang[J]. Hydrogeology and Engineering Geology, 2021, 48(6): 196-205.

[42] 舒娇娇. 深部咸水层封存二氧化碳迁移规律研究 [D]. 大连: 大连海事大学, 2020.

SHU J J. Study on the migration of carbon dioxide in deep salt water layer[D]. Dalian: Dalian Maritime University. 2020.

- [43] 沈平平, 廖新维. 二氧化碳地质埋存与提高石油采收率技术 [M]. 北京: 石油工业出版社, 2009.
 SHEN P P, LIAO X W. Carbon Dioxide Geological Storage and Enhanced Oil Recovery Technology[M]. Beijing: Petroleum Industry Press, 2009.
- [44] 郭建强.中国二氧化碳地质储存适宜性评价与示范工程 [M].
 北京:地质出版社, 2014.
 GUO J Q. Suitability Evaluation and Demonstration Project of

CO₂ Geological Storage in China[M]. Beijing: Geological Publishing House, 2014.

[45] 李冠颖, 郭俊志, 谢其泰, 等. 二氧化碳储存环境对油井水泥
 性质影响之研究 [J]. 岩土力学, 2011, 32(S2): 346-350.
 LI G Y, GUO J Z, XIE Q T, et al. Study of mechanical and mi-

croscopic properties of API G cement with additives exposed to CO₂-rich environment[J]. Rock and Soil Mechanics, 2011, 32(S2): 346-350.

- [46] 杜槟. 二氧化碳封存场地三维地质建模及现场注入试验研究 [D]. 北京: 中国地质大学 (北京), 2016.
 DU B. Carbon dioxide sequestration sites 3D geolog ical modeling and the injection test research[D]. Beijing: China University of Geosciences (Beijing), 2016.
- [47] 刘雪雁,李鹏春,周蒂,等.南海北部珠江口盆地惠州 21-1 油田 CO₂-EOR 与碳封存潜力快速评价 [J].海洋地质前沿,2017,33(3): 56-65.

LIU X Y, LI P C, ZHOU D, et al. Quick assessment of CO₂-EOR and CO₂ sequestration potential in Huizhou 21-1 Oilfield, Pearl River Mouth Basin, northern South China Sea[J]. Marine Geology Frontiers, 2017, 33(3): 56-65.

- [48] 张志超, 柏明星, 陈巧珍. 二氧化碳埋存井筒的腐蚀行为影响 因素 [J]. 腐蚀与防护, 2021, 42(4): 54-61. ZHANG Z C, BAI M X, CHEN Q Z. Influencing factors of corrosion behavior of carbon dioxide storage wellbore[J]. Corrosion & Protection, 2021, 42(4): 54-61.
- [49] 李琦,刘桂臻,蔡博峰,等. 二氧化碳地质封存环境风险评估 的空间范围确定方法研究 [J]. 环境工程, 2018, 36(2): 27-32. Li Q, LIU G Z, CAI B F, et al. Principle and methodology of determining the spatial range of environmental risk assessment of carbon dioxide geological storage[J]. Environmental Engineering, 2018, 36(2): 27-32.
- [50] 李琦, 蔡博峰, 陈帆, 等. 二氧化碳地质封存的环境风险评价 方法研究综述 [J]. 环境工程, 2019, 37(2): 13-21. Li Q, CAI B F, CHEN F, et al. Review of environmental risk assessment methods for carbon dioxide geological storage[J]. Environmental Engineering, 2019, 37(2): 13-21.
- [51] 郝艳军,杨顶辉. 二氧化碳地质封存问题和地震监测研究进展[J]. 地球物理学进展, 2012, 27(6): 2369-2383.
 HAO Y J, YANG D H. Research progress of carbon dioxide capture and geological sequestration problem and seismic monitoring research[J]. Progress in Geophysics, 2012, 27(6): 2369-2383.
- [52] 中华人民共和国环境保护部. 二氧化碳捕集、利用与封存环 境风险评估技术指南(试行)[S]. 北京:中华人民共和国环境 保护部, 2016.

Ministry of Environmental Protection of the People's Republic of China. Technical guideline on environmental risk assessment for carbon dioxide capture, utilization and storage (on trial)[S]. Beijing: Ministry of Environmental Protection of the People's Republic of China, 2016.

- [53] 彭轩明,曹珂. 浅海沉积盆地二氧化碳地质储存潜力与适宜 性评价成果报告 [R].青岛:青岛海洋地质研究所, 2013.
 PENG X M, CAO K. Report on evaluation of CO₂ geological storage potential and suitability in shallow sea sedimentary basins[R]. Qingdao: Qingdao Institute of Marine Geology, 2013.
- [54] 马馨蕊,梁杰,李清,等. 咸水层 CO₂ 地质封存研究进展及前 景展望[J]. 海洋地质前沿, 2024, 40(10): 1-18.

MA X R, LIANG J, LI Q, et al. Progress and prospects of CO₂ geological storage in saline aquifer[J]. Marine Geology Frontiers, 2024, 40(10): 1-18.

[55] 陈建文,孙晶,杨长清,等.东海陆架盆地新生界咸水层二氧 化碳封存地质条件及封存前景 [J].海洋地质前沿,2023, 39(10): 14-21.

> CHEN J W, SUN J, YANG C Q, et al. Geological conditions and prospects of carbon dioxide storage in the Cenozoic saline water layers of the East China Sea Shelf Basin[J]. Marine Geology Frontiers, 2023, 39(10): 14-21.

- [56] YUAN Y, WANG J, CHEN J, et al. Carbon dioxide storage potential of Cenozoic saline aquifers in the South Yellow Sea Basin[J]. Energies, 2023, 16(4): 1578.
- [57] CHADWICK R A, WILLIAMS G A, FALCON-SUAREZ I. Forensic mapping of seismic velocity heterogeneity in a CO₂ layer at the Sleipner CO₂ storage operation, North Sea, using time-lapse seismics[J]. International Journal of Greenhouse Gas Control, 2019, 90: 102793.
- [58] FURRE A K, EIKEN O, ALNES H, et al. 20 years of monitoring CO₂-injection at Sleipner[J]. Energy Procedia, 2017, 114: 3916-3926.
- [59] GRUDE S, LANDRØ M, DVORKIN J. Pressure effects caused by CO₂ injection in the Tubåen Fm., the Snøhvit field[J]. International Journal of Greenhouse Gas Control, 2014, 27: 178-187.
- [60] SHCHIPANOV A A, KOLLBOTN L, BERENBLYUM R. Characterization and monitoring of reservoir flow barriers from pressure transient analysis for CO₂ injection in saline aquifers[J]. International Journal of Greenhouse Gas Control, 2019, 91: 102842.
- [61] WHITE J C, WILLIAMS G, CHADWICK A. Seismic amplitude analysis provides new insights into CO₂ plume morphology at the Snohvit CO₂ injection operation[J]. International Journal of Greenhouse Gas Control, 2018, 79: 313-322.
- [62] KREFT E, GEEL C R, D'HOORE D, et al. CO₂ storage and testing enhanced gas recovery in the K12-B reservoir[C] //23rd World Gas Conference, Amsterdam, 2006.
- [63] VAN DER MEER L G H, ARTS R J, GEEL C R, et al. K12-B: Carbon dioxide injection in a nearly depleted gas field offshore the Netherlands[M]//GROBE M, PASHIN J C, DODGE R L, Carbon Dioxide Sequestration in Geological Media State of the Science. AAPG Studies in Geology, 2009: 379-390.
- [64] VANDEWEIJER V, HOFSTEE C, GRAVEN H. 13 years of safe CO₂ injection at K12-B[C] //Fifth CO₂ Geological Storage Workshop. Utrecht: European Association of Geoscientists & Engineers, 2018: 1-5.
- [65] PETERSEN H I, SPRINGER N, WEIBEL R, et al. Sealing capability of the Eocene-Miocene Horda and Lark formations of the Nini West depleted oil field-implications for safe CO₂ storage in the North Sea[J]. International Journal of Greenhouse Gas Control, 2022, 118: 103675.
- [66] PETERSEN H I, AL-MASRI W F, RUDRA A, et al. Movable and non-movable hydrocarbon fractions in an oil-depleted sand-

stone reservoir considered for CO₂ storage, Nini West Field, Danish North Sea[J]. International Journal of Coal Geology, 2023, 280: 104399.

- [67] TANAKA Y, SAWADA Y, TANASE D, et al. Tomakomai CCS demonstration project of Japan, CO₂ injection in process[J]. Energy Procedia, 2017, 114: 5836-5846.
- [68] IKEDA T, TSUJI T. Advanced surface-wave analysis for 3D ocean bottom cable data to detect localized heterogeneity in shallow geological formation of a CO₂ storage site[J]. International Journal of Greenhouse Gas Control, 2015, 39: 107-118.
- [69] MECKEL T A, FENG Y E, TREVIñO R H, et al. High-resolution 3D marine seismic acquisition in the overburden at the Tomakomai CO₂ storage project, offshore Hokkaido, Japan[J]. International Journal of Greenhouse Gas Control, 2019, 88: 124-133.
- [70] SAWADA Y, TANAKA J, SUZUKI C, et al. Tomakomai CCS demonstration project of Japan, CO₂ injection in progress[J].
 Energy Procedia, 2018, 154: 3-8.
- [71] Northern Lights Joint Ventures. Northern Lights annual report 2023[R]. Stavanger: Northern Lights Joint Ventures, 2024.
- [72] MENEGUOLO R, SUNDAL A, MARTINIUS A W, et al. Impact of the lower Jurassic Dunlin Group depositional elements on the aurora CO₂ storage site, EL001, northern North Sea, Norway[J]. International Journal of Greenhouse Gas Control, 2022, 119: 103723.
- [73] GENTILE V, CAUCHOIS G, ÅLUND I, et al. Carbon footprint of the Northern Lights JV CO₂ transport and storage value chain[R]. Stavanger: Northern Lights Joint Ventures, 2023.
- [74] 戴金星. 中国东部和大陆架二氧化碳气田 (藏) 及其气的类型 [J]. 大自然探索, 1996, 15(4): 18-20.
 DAI J X. Types of carbon dioxide gas fields (reservoirs) and their gas in eastern China and continental shelf[J]. Discovery of Nature, 1996, 15(4): 18-20.
- [75] 何家雄, 祝有海, 黄霞, 等. 南海北部边缘盆地不同类型非生物成因 CO₂ 成因成藏机制及控制因素 [J]. 天然气地球科学, 2011, 22(6): 935-941.
 HE J X, ZHU Y H, HUANG X, et al. Accumulation mechanisms for different geologic types of non-biological CO₂ and controlling factors in north marginal basin, South China Sea[J].
- Natural Gas Geoscience, 2011, 22(6): 935-941.
 [76] 何家雄, 刘全稳. 南海北部大陆架边缘盆地 CO₂ 成因和运聚 规律的分析与预测 [J]. 天然气地球科学, 2004, 15(1): 12-19.
 HE J X, LIU Q W. The analysis and discussion to the characters on generative cause, migration and distribution of CO₂ in the marginal basin in the northern South China Sea[J]. Natural Gas Geoscience, 2004, 15(1): 12-19.

- [77] 李军,邹华耀,周心怀,等. 渤海海域 CO₂ 成因与分布主控因素 [J]. 中国海上油气, 2012, 24(2): 19-22.
 LI J, ZOU H Y, ZHOU X H, et al. Carbon dioxide origin and the main controls over its distribution in Bohai Sea[J]. China Offshore Oil and Gas, 2012, 24(2): 19-22.
- [78] 刘宝明,夏斌,李绪宣,等.中国东部及南海西部陆缘 CO₂气 藏形成机理 [J]. 矿物岩石地球化学通报, 2004, 23(3): 207-211.

LIU B M, XIA B, LI X X, et al. The genetic mechanism of CO₂ in the East China and the western South China Sea[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2004, 23(3): 207-211.

- [79] 何家雄,李明兴,陈伟煌,等. 莺琼盆地天然气中 CO₂ 的成因及气源综合判识 [J]. 天然气工业, 2001, 21(3): 15-21.
 HE J X, LI M X, CHEN W H, et al. Origin of carbon dioxide in natural gas in Yingqiong Basin and its comprehensive gas source discrimination[J]. Natural Gas Industry, 2001, 21(3): 15-21.
- [80] 王振峰,何家雄,裴秋波.莺-琼盆地和珠江口盆地西部 CO₂ 成因及运聚分布特征 [J].中国海上油气 (地质), 2003, 17(5): 293-297.

WANG Z F, HE J X, PEI Q B. The origin and migration-accumulation features of CO₂ in Ying-Qiong Basin and the western Pearl River Mouth Basin[J]. China offshore Oil and Gas (Geology), 2003, 17(5): 293-297.

- [81] LUO D, YUAN Y, CHEN J, et al. Structural and reservoir characteristics of potential carbon dioxide storage sites in the northern South Yellow Sea Basin, offshore Eastern China[J]. Journal of Marine Science and Engineering, 2024, 12(10): 1733.
- [82] 可行,陈建文,龚建明,等.东海陆架盆地 CO₂ 地质封存适宜 性评价 [J].海洋地质前沿, 2023, 39(7): 1-12.
 KE X, CHEN J W, GONG J M, et al. Suitability evaluation of CO₂ sequestration in the East China Sea Shelf Basin[J]. Marine Geology Frontiers, 2023, 39(7): 1-12.
- [83] 可行,陈建文,龚建明,等.珠江口盆地二氧化碳地质封存条件及源汇匹配性分析[J].海洋地质与第四纪地质,2023,43(2):55-65.

KE X, CHEN J W, GONG J M, et al. Assessment on geological condition for carbon dioxide sequestration and source-sink matching in the Pearl River Mouth Basin[J]. Marine Geology & Quaternary Geology, 2023, 43(2): 55-65.

[84] WANG J, YUAN Y, CHEN J W, et al. Geological conditions and suitability evaluation for CO₂ geological storage in deep saline aquifers of the Beibu Gulf Basin (South China)[J]. Energies, 2023, 16(5): 2360.

Typical cases of global marine geological carbon storage and its implications for China

CHEN Jianwen^{1,2,3,4,5}, LUO Di^{1,2,3,4,5*}, YUAN Yong^{1,2,3,4,5}, LI Qing^{1,2,3,4,5}, ZHAO Hualin^{1,2,3,4,5}, WANG Jianqiang^{1,2,3,4,5}, SUN Jing^{1,2,3,4,5}

(1 Qingdao Institute of Marine Geology, Qingdao 266237, China; 2 Laboratory for Marine Mineral Resources, Qingdao Marine Science and Technology Center, Qingdao 266237, China; 3 Shandong Engineering Research Center of Offshore CO₂ Geological Storage, Qingdao 266237, China;
 4 Qingdao Key Laboratory of Offshore CO₂ Geological Storage, Qingdao 266237, China; 5 Qingdao Engineering Research Center of Offshore CO₂ Geological Storage, Qingdao 266237, China;

Abstract: As one of the application scenarios of CCUS, marine carbon dioxide (CO_2) geological storage is an effective way to achieve carbon emission reduction in coastal areas. Based on the analysis of typical cases of global marine CO_2 geological storage, this paper believes that China has great potential for CO_2 storage. In the next step, the site selection of pilot projects should pay attention to the evaluation of target-level and site-level sequestration potential, carry out classified site selection according to different conditions, and monitor geological risks throughout the pilot projects. According to the source-sink match of CO_2 geological storage in different basins in China's sea area and the construction conditions, the following is proposed: The CO_2 associated gas storage project in offshore oil and gas fields is a type of priority pilot project, and the cooperation between CO_2 enhanced oil/gas recovery and storage has practical application value. The storage project of depleted oil and gas reservoirs is an important choice for pilot projects, and the whole-chain large-scale offshore saline aquifer CO_2 reservoir storage project is the future development direction.

Key words: marine geology; CO₂ storage; saline aquifer; depleted oil and gas reservoirs; CCUS