DOI:10.16562/j.cnki.0256-1492.2018040301

粒度端元揭示的芝罘剖面末次间冰期—末次冰期气候 环境变化特征

黎武标^{1,2},李志文^{1,2},王志刚^{1,2},马泽源¹,王珍珍¹,梁丽婵¹ 1.东华理工大学地球科学学院,南昌 330013 2.东华理工大学核资源与环境国家重点实验室,南昌 330013

摘要:山东半岛北部芝罘剖面末次间冰期—末次冰期(124.9~62.85kaBP)层段由砂黄土、黄土、古土壤叠覆堆积组成。为获取 反映该地区气候变化的环境敏感粒组,应用端元分析模型对粒度数据进行反演,得出4个粒度端元。各端元在垂直方向上呈 现出有规律的峰谷变化,结合平均粒径及测年结果,认为 CEM1 与 CEM2 主要反映了末次间冰期间冰阶夏季风强盛,气候暖 湿,古土壤发育的沉积环境;CEM3 反映了末次间冰期冰阶冬季风短暂增强,气候相对干冷,黄土发育的沉积环境;CEM4 反映 了末次冰期强冬季风主导下黄土堆积速率加快,成壤作用弱的沉积环境。各端元揭示的冷暖气候振荡,与朝那黄土磁化率指 示的夏季风强弱、西峰黄土>32μm 粒组指示的冬季风强弱以及渤海底栖有孔虫记录的沿岸海侵/海退事件具有较高的同步 性。

关键词: 粒度; 端元分析; 古气候; 芝罘剖面; 未次间冰期; 未次冰期
 中图分类号: P534.63
 文献标识码: A

Climatic environment changes during the last interglacial-glacial cycle in Zhifu loess section: Revealed by grain-size end-member algorithm

LI Wubiao^{1,2}, LI Zhiwen^{1,2}, WANG Zhigang^{1,2}, MA Zeyuan¹, WANG Zhenzhen¹, LIANG Lichan¹ 1. School of Earth Science, East China University of Technology, Nanchang 330013, China 2. State Key Laboratory Nuclear Resources and Environment, Nanchang 330013, China

Abstract: The last interglacial-glacial Zhifu loess section on the northern Shandong Peninsula is mainly composed of sandy loess, loess and palaeosol. Grain-size analysis suggest that silty sand dominate the loess (74.95%), followed by the clay (10.05%) and very fine sand (9.57%). In terms of mean grain size, paleosoil is finer than sandy loess with loess in between. End-member algorithm is used in the study of grain size composition of the Zhifu section. Four clustering end members (CEM) are recognized. Based on the clustering end member frequency curves and optical stimulated luminescence dating results, it is concluded that CEM1 and CEM2 represent the strong summer monsoon and warm summer climate respectively during the MIS5e, MIS5c and MIS5a periods; CEM3 represents the environment during the MIS5d and MIS5b periods with intensified winter monsoon and relatively cold climate; while the CEM4 represents the extremely strong winter monsoon environment during the MIS4 period. These fluctuations show a strong coherence with the magnetic susceptibility of the Loess Plateau and intensity of the winter monsoon indicated by the content of grains $>32\mu$ m in the Xifeng loess section, as well as the transgression/regression events along the Bohai Bay recorded by benthic foraminifera.

Key words: grain-size; end-member algorithm; paleoenvironment; the Zhifu Section; last interglacial; last glacial

沉积物的粒度是重建古气候的常用指标,其保存了物源^[1]、搬运动力^[2]与沉积环境^[3-7]等多方面的

信息,但地质历史时期的沉积物普遍具有多成因组 分混合的特点^[8],全体的粒组只能近似地作为沉积

作者简介:黎武标(1992—),男,硕士研究生,研究方向为第四纪环境演变,E-mail:liwbill@163.com

通讯作者:李志文(1982—),男,副教授,主要从事地貌与第四纪地质学相关研究,E-mail:lizw1982@163.com 收稿日期:2018-04-03;改回日期:2018-07-09. 蔡秋蓉编辑

资助项目:国家自然科学基金项目"山东半岛北部海岸晚第四纪风沙沉积的时代划分与季风环境演变"(41201006),"南暖温带-北亚热带晚第 四纪不成熟网纹层的地质时代、形成机制与季风环境演变"(41571007);核资源与环境省部共建国家重点实验室培育基地(东华理工大学)开放 基金项目(NRE1507)

环境的代用指标^[9]。因此,对环境敏感粒组的提取 显得尤为重要。目前,提取环境敏感粒组的方法主 要有 Weibull 函数法^[10]、主成分分析法^[11]、粒级一 标准偏差法^[6,9]和端元模型法^[12-15]等。其中,粒度 端元模型在陆架浅海地区反演沉积物搬运动力、揭 示沉降规律和恢复古水环境等方面取得了大量成 果^[15,16]。

山东半岛北海岸地区海陆交汇,对气候变化响 应十分敏感,区内广泛分布的黄土-古土壤沉积序列 物源复杂,是第四纪以来东亚冬夏季风盛衰和渤海 海平面升降的重要地质记录。为获取该地具有定量 特征的、高分辨率气候记录,前人从粒度55、铷锶 比^[17]、有孔虫化石^[18]、孢粉^[19]、磁化率^[20]、¹⁴C、 TL^[21]以及 OSL^[22]等指标和测年手段对山东地区 黄土-古土壤做了大量的工作,但关于沉积物环境敏 感粒组的研究[5,23]起步较晚,缺乏使用其他数学方 法来捕捉更高分辨率的气候信息。端元分析模型是 识别多组分沉积物来源和查明搬运方式的有效工 具,在古环境重建中得到广泛的应用[15]。对此,本 文选择烟台市芝罘岛由砂黄土-黄土-古土壤等沉积 相组成的沉积序列进行工作,在运用分层聚类端元 模型提取环境敏感粒组的基础上,结合年代结果与 粒度参数,揭示各端元的变化规律以及它们指示的 古气候意义,并与深海氧同位素^[24]、朝那黄土^[25]、 西峰黄土[26]和渤海底栖有孔虫[27]为载体的气候代 用指标进行比对,以期探讨晚更新世黄渤海南岸地 区在北半球气候变化中的响应情况。

1 研究区概况与地层划分

芝罘岛位于山东半岛北海岸,其岩层为太古代 的芝罘系,主要是各种石英片麻岩、黑灰色云母钾长 石片麻岩和长石英变质岩等^[28]。岛内地势西北高 东南低,北岸砾滩广布,南岸以泥滩为主^[29]。气候 类型为暖温带季风型湿润气候,多年平均降水量为 651.9mm,年均气温 12.7℃,年均风速 4~6m/s,冬 春季多偏北风,夏秋季多偏南风。植被属暖温带落 叶阔叶林,主要乔木类型有刺槐林、黑松林、杨树林 和竹林等,灌丛有杜鹃和鹅耳枥等。地带性土壤以 棕壤和褐土为主(烟台市志,1994),采样点表层为棕 壤。

本文的研究剖面位于西口村(37°37′4″N、121° 21′44″E)(图1),剖面顶部海拔约17m,厚约6m,呈 西北一东南走向。本文研究的层位深度为72~ 498cm,根据土壤颗粒、性状及地层接触关系,自上 而下分为8个层位:

ZF1 混杂堆积层一耕作层。土壤呈暗黑色,长 有低矮植被,土中含较多腐殖质和未腐烂枯枝落叶, 人为痕迹明显,松散,厚约 37cm;

ZF2 砂黄土层。浅褐色,含中砂的极细砂质粉砂,较松散,含有较少的植物根系,厚约 35cm;

ZF3 砂黄土-黄土层。褐色,含黏土的极细砂一 中砂质粉砂,无明显层理,较紧实,厚 56cm;

图 1 芝罘剖面地理位置 Fig.1 Location of the Zhifu section

ZF4 古土壤层。红褐色,含极细砂的黏土质粉砂,有较多的黑色铁锰胶膜,偶见砾石,厚68cm;

ZF5 黄土层。黄土赭色,含黏土的极细砂质粉砂,偶见铁锰胶膜垂直分布,厚 56cm;

ZF6 古土壤层。亮棕色,含极细砂的黏土质粉砂,紧实,厚 66cm;

ZF7 黄土层。暗棕色,含黏土的极细砂质粉砂, 含少量铁锰斑点,紧实,厚 52cm;

ZF8 古土壤层。棕色,含极细砂的黏土质粉砂, 含较多铁锰斑点,砾石层相间分布,紧实,厚 124cm, 未见底。

2 材料与实验方法

2.1 年代测试

共采集 6 个光释光(OSL)样品,其中 4 个在中 国科学院青海盐湖研究所完成测试,2 个由中国地 震局地壳应力研究所地壳动力学重点实验室测定, 测试方法为简单多片再生法(SMAR)。

2.2 粒度测试

以 2cm 为间距连续采样,共采集 213 个样品, 粒度测试在东华理工大学核资源与环境国家重点实 验室完成,测试仪器为英国 Malvern 公司产的 Mastersizer 2000 激光粒度仪,检测范围是 0.02 ~ 2000μm,重复测量误差小于 2%。测试前对样品进 行前处理,过程如下:将自然风干未经研磨的样品均 匀混合后称取约 10g,加入 30% H₂O₂ 去除有机物, 待无气泡产生,加热蒸发残余 H₂O₂,冷却后加入 10% HCl 去除碳酸盐,静置过夜后倒出上清液,加 入纯水中和溶液。测试前再加入适量(NaPO₃)。使 样品充分分散,用吸管吸取样品在超声波中震荡 10min 再测试,每个样品均测试 3 次求其算术平均 值。本文根据乌登-温特沃斯粒级分类标准(Udden-Wentworth scale),将粒度组分分为黏土($<2\mu$ m)、 粉砂(2~63 μ m)、极细砂(63~125 μ m)、细砂(125~ 250 μ m)和中-粗砂(>250 μ m),并采用福克和沃 德^[30](Folk&Ward)图解法公式进行 Mz、 σ 、Sk、Kg 等粒度参数计算。

2.3 粒度端元分析方法

根据 Zhang X 等(2017)建立的分层聚类端元 分析模型(Hierarchical Clustering Endmember Modeling Analysis,CEMMA),在 Matlab环境下对 芝罘剖面粒度数据进行非负矩阵等运算。CEMMA 对查明多成因混杂沉积组分的成因与来源具有显著 的效果。当集聚系数大幅度变化时,该变化的"节 点"可作为端元(clustering endmember,CEM)的最 优数量^[31]。计算结果显示:端元数为4时(图 2),集 聚系数变化幅度最大,被划分成两个不同的集群。 该"节点"表明了端元的最佳数量为4,并分别命名 为 CEM1、CEM2、CEM3、CEM4。

3 结果分析

3.1 年代学结果

芝罘剖面 OSL 年代测试结果列于表 1,根据年 代结果与采样深度,绘制了年代随深度变化的关系 图(图 3),二者具有良好的线性关系, R 为 0.9904, 说明不同深度的地层年代与层序的新老关系基本吻 合,无地层倒置。其中,ZF8 底部测年结果为(124.9 ±9.7)kaBP,参考深海氧同位素阶段的研究结 果^[24],对应末次间冰期(MIS5e)早期。ZF3 顶部测年 结果为(62.85±6.94)kaBP,对应末次间冰期(MIS4)

中期。因此,芝罘剖面(ZF3-ZF8)为末次间冰期--冰期时期沉积。在此基础上,采用分段式沉积速率内插方法建立芝罘剖面层段的年代框架。

3.2 粒度测试结果

3.2.1 沉积物的粒度组成

芝罘剖面以粉砂为主(表 2)(变化范围和平均 值为 59.06% ~ 83.98%、74.95%), 黏土次之 (6.87%~14.35%、10.05%),亦含有较多的极细砂 (3.21%~16.06%、9.57%)和中-粗砂(0~8.03%、 2.21%),细砂含量最少(0~10.25%、1.75%)。不 同的沉积相中,各粒级百分含量波动较大。古土壤 的黏粒(11.92%)与粉砂(76.75%)含量均高于剖面 平均值,细砂(1.35%)与中粗砂(0.63%)含量则低 于平均值。砂黄土的极细砂和细砂含量相对较高, 黏土(8.05%)与粉砂(68.89%)含量最低。

表 1 芝罘剖面 OSL 年代的测定结果及其:

Table 1 OSL ages of Zhifu section and their datingl parameters

野外编号	$U/10^{-6}$	$Th/10^{-6}$	K/ %	深度/m	年剂量/(Gy/ka)	等效剂量/Gy	实测结果/ka
ZF3 顶	2.02	12.20	2.08	0.72	4.06	255.46 ± 11.95	62.85±6.94
ZF3 底	2.05	12.00	2.24	1.28	4.47	313.66 ± 29.71	70.18 ± 9.67
ZF4 底	0.700	3.390	2.700	1.89	3.12 ± 0.24	260.1 ± 5.9	83.4±6.6
ZF6 顶	2.490	11.700	2.080	2.63	3.44±0.24	325.8 ± 18.4	94.7±8.5
ZF8 顶	1.320	6.780	1.780	3.91	2.72 ± 0.20	322.1±10.0	118.5 ± 9.3
ZF8 底	1.660	7.440	2.030	4.96	2.55 ± 0.19	318.5 ± 9.1	124.9 ± 9.7

3.2.2 沉积物的粒度参数

芝罘剖面的平均粒径为4.86~6.13Φ,平均值 为5.77Φ。分选值为1.79~2.86,属分选较差-分选 差等级。偏度为一0.16~0.37,大部分属正偏,仅有 个别为负偏和近对称。峰态为0.78~1.19,平均值 为0.91,属平坦。各沉积相的比较中,古土壤的平均 粒径和分选值(6.06Φ、2.47)>黄土(5.83Φ、2.01)> 砂黄土—黄土(5.09Φ、1.95),表明古土壤粒度最细, 分选差;黄土粒度居中,分选较差;砂黄土—黄土最 粗,分选相对较好。

3.3 端元分析结果

端元粒度频率分布曲线与各沉积相及剖面平均 粒度频率分布曲线形态相近。各端元频率分布曲线 主峰粒级逐渐增大(图 4b),分选逐渐变好。其中, CEM1呈双峰分布,鞍部不明显,峰态平坦,粒级范 围较大,分选较差,众数粒级不明显,为 3~8µm,多 属黏土-细粉砂。CEM2和CEM3均为单峰分布,峰 态尖锐,粒级含量集中于粗粉砂-极细砂,二者曲线 形态近似,众数粒级分别为 56µm(粗粉砂)和 80µm 各端元的频率分布随深度的变化见图 5,其取

值范围为 0~100%。可以看到,4 个端元的相对含量在垂直方向上差异较大。CEM1 在 ZF3、ZF5 和 ZF7 中为谷值(平均值分别为 3.3%、2.1%、1.9%), 在 ZF4、ZF6 和 ZF8 中为峰值(平均值分别为 55.7%、

1 able 2	The grain size distribution parameters and CLM of sedmentary types in Zhitu section							
沉积相		全剖面	砂黄土一黄土	黄土	古土壤			
黏土/%	变化范围	6.87~14.35	7.31~11.34	6.87~12.59	7.44~14.35			
	平均值	10.05	8.05	8.66	11.92			
粉砂/%	变化范围	59.06~83.98	59.06~77.48	61.11~80.43	62.56~83.98			
	平均值	74.95	68.89	71.86	76.75			
极细砂/%	变化范围	3.21~16.06	6.32~15.44	3.21~16.02	3.67~16.06			
	平均值	9.57	11.32	8.42	9.15			
细砂/%	变化范围	0~10.25	5.32~10.25	2.22~9.87	0~2.20			
	平均值	1.75	9.74	7.63	1.35			
中粗砂/%	变化范围	0~8.03	0.08~7.31	2.37~8.03	0~1.33			
	平均值	2.21	2.63	1.23	0.63			
M_{Z}/Φ	变化范围	4.86~6.13	4.86~5.85	5.63~6.09	5.55~6.13			
	平均值	5.77	5.09	5.83	6.06			
σ	变化范围	1.79~2.86	1.79~2.31	1.89~2.31	1.94~2.86			
	平均值	2.05	1.95	2.01	2.47			
Sk	变化范围	$-0.16 \sim 0.37$	$-0.16 \sim 0.21$	0.02~0.37	0.06~0.29			
	平均值	0.14	0.04	0.19	0.15			
Kg	变化范围	0.78~1.19	0.89~1.19	0.78~0.84	0.91~1.08			
	平均值	0.91	1.06	0.82	0.91			
CEM1/ %	平均值	/	1.1	16.6	44.3			
CEM2/ %	平均值	/	8	11.5	47.2			
CEM3/%	平均值	/	7.1	66.6	7.8			
CEM4/ %	平均值	/	83.8	5.3	0.7			

表 2 芝罘剖面不同沉积相的粒度参数、粒级含量和 CEM 值 Table 2 The grain size distribution parameters and CEM of sedimentary types in Zhifu section

图 5 芝罘剖面平均粒径与 CEM 随深度变化 Fig.5 Meane grain size and CEM variation with depth in Zhifu section

27.9%、49.4%),与剖面的 Mz 变化有较好的对应, 二者相关系数 R 为 0.6659。CEM2 在 ZF4 和 ZF8 中占主导地位,平均值分别为 73%和 66%。CEM3 在 ZF5 和 ZF7 中处于高值,平均值分别为 62% 和 60%。CEM2 与 CEM3 在地层中的相对含量呈现 良好的负相关关系,相关系数 R 为 - 0.5651。 CEM4 除在 ZF3 中表现出高值以外(平均值为 79%),其余层位均为低值或零值。

4 讨论

古土壤层和黄土层是正地形气下环境的关键证 据之一^[32]。我国风尘堆积的古土壤大多为"加积型 土壤"^[33],是季节交替下沉积和成壤作用同步进行 的产物,代表了一个沉积暂时停止或沉积速度小于 成土作用时期。因此,芝罘剖面中的古土壤是指示 夏季风进退的有力证据,而交替发育的黄土层物源 复杂,既有自亚洲内陆由西北气流搬运来的远源物 质;又有冰期时裸露的河漫滩和陆架松散沉积物等 组成的近源物质^[34,35],可用来研究冰期冬季风演化 和黄渤海海平面变化。因而,芝罘剖面黄土-古土壤 序列记录了该地区轨道尺度的冰期—间冰期气候冷 暖旋回。

4.1 CEM1 与 CEM2 指示的环境气候

CEM1 众数粒级为 3~8μm,表示的沉积物类型主要是黏土质粉砂和粉砂质黏土。CEM2 众数粒径为 56μm,属粗粉砂。二者高值所在的区间 ZF3、 ZF5 和 ZF7 分别对应 MIS5a、MIS5c 和 MIS5e 时期(图 5),均为末次间冰期的间冰阶。这些层位中黏土(11.92%)和粉砂(76.75%)含量属各层位最高,表明沉积物颗粒较细。CEM1 和 CEM2 与这些层位具有良好的对应关系以及它们较细的粒度特征表明,其可能指示 MIS5a、MIS5c 和 MIS5e 时期芝罘 剖面古土壤发育的环境气候。

前人的研究表明,黄土一古土壤中细颗粒物质 来源有3个:一是单独被风搬运;二是由大颗粒"挟 持"而来;三是沉降后受成壤作用影响形成的次生组 分^[36],是夏季风的替代指标^[37]。末次间冰期时期

183

夏季风强盛,最北界可达乌兰巴托至马鬃山、安西一 线^[38],西风带随夏季风推进而北移,西北细颗粒物 质难以通过高空西风达到此处。暖湿气候下丰富的 降水和土壤生物活动频繁,促进风化作用。母岩在 各种风化作用下崩解破碎,继之有生物化学作用,土 壤发生学过程得以进行,颗粒细化,形成细颗粒组分 (CEM1 与 CEM2),因此,认为其可以指示温暖的气 候环境。另外,间冰阶时期沉积速率较快(图 3),根 据物源越近沉积速率越快的规律^[5],说明该时期近 源物质贡献大于远源物质。CEM1 和 CEM2 组分 具有较好的正相关关系(*R* = 0.504),亦可认为 CEM1 与 CEM2 是同一成因下的产物。当然,这也 需要来自生物化石、孢粉等更多指标的深入研究。

对比邻近地区:蓬莱林格庄剖面末次间冰期敏 感粒组为 56.23~63.10 μ m^[22],属短距离搬运物质, 与 CEM2 代表的粒级较一致,表明该组分为近源物 质。埠 西 剖 面 夏 季 风 敏 感 粒 级 为 2.51 ~ 8.91 μ m^[5]、砣 矶 岛 的 大 口 北 黄 土 剖 面 为 5 ~ 10 μ m^[23],表明 CEM1 组分是风化成壤过程的产物。

4.2 CEM3 指示的气候环境

CEM3 表示含黏土的极细砂质粗粉砂,在剖面 中存在两个相对高值区,分别是 ZF5 和 ZF7 层位, 含量为 43.2%~81.7%,平均值为 54.8%。在研究 区东北方的蔡家沟剖面和石峁剖面的 S₁ 中夹有两 层黄土,其测年结果显示在约 120 和 100~95kaBP 出现短暂的冬季风增强阶段^[39],该时间恰为 ZF5 和 ZF7 的 沉积时间。两个层位中黏土含量较低 (8.66%),而粗粉砂一极细砂(CEM3)富集,反映此 时夏季风萎缩,冬季风相对强盛,近源较粗物质沉积 速率加快,后期受到成土作用弱,细颗粒物质 (CEM1 和 CEM2)少。因此,CEM3 可能指示了该 区域末次间冰期冰阶(MIS5b 和 MIS5d)东亚冬季 风增强的气候事件。但其在冬季风主导的 MIS4 阶 段(对应 ZF3 层位)含量多为0,对此存疑,具体原因 有待进一步研究。

4.3 CEM4 指示的气候环境

CEM4 仅在 ZF3 中为高值区,表示的沉积物类型为含细砂-极细砂的粗粉砂,众数粒径为 112.468µm,表明砂含量是该沉积时期中一个重要 的环境指标。平均粒径显示该层位粒度较粗,并不 符合中国黄土颗粒自西北向东南逐渐变细的规 律^[40],说明其具有区域性。通过对比,该地 MIS4 阶段的冬季风敏感粒组(112.468µm)粗于内陆黄土 高原(约 100μ m)^[41] 和埠西地区(>50.12 μ m)^[5]。 另外,渤海底栖有孔虫记录了在约 71.2kaBP 期间, 渤海湾有多次强风暴事件,搬运的平均粒径为 5~ 5.5 Φ ^[34],与该层位的平均粒径(5.09 Φ)吻合。因 此,CEM4 可能是该地区末次冰期极强冬季风或强 风暴的替代性指标。

综上,造成这一区域的环境敏感粒组(CEM1-4)在不同地层变化的主要原因是物源变化与沉积后 成壤作用的强弱^[41],而这又直接反映了东亚冬夏季 风的盛衰,表现为:CEM1 与 CEM2 的高值指示末 次间冰期间冰阶强盛夏季风主导下温暖湿润的区域 环境气候(图 6);CEM3 的高值指示末次间冰期冰 阶夏季风相对衰弱、冬季风增加的区域环境气候; CEM4 的高值指示末次冰期强盛冬季风主导下寒冷 干燥的区域环境气候。可以看出,研究区域内在轨 道尺度上经历了 6 次冷暖气候振荡,即 1 次干冷时 期(62.85 ~ 70.18kaBP)、3 次暖湿时期(70.18 ~ 83.4、94.7 ~ 105.2 和 118.5 ~ 124.9kaBP)和 2 次 较干冷时期(83.4 ~ 94.7 和 105.2 ~ 118.5kaBP), 在 MIS5 阶段呈现三暖峰夹两冷谷,且暖湿气候持 续时间长于干冷气候。

4.4 芝罘剖面末次间冰期一末次冰期气候演变的 区域响应

鉴于各 CEM 的峰谷变化能较好的反映研究区 域内环境气候,将其分别与朝那黄土-古土壤磁化 率^[25]、西峰黄土中>32μm 颗粒含量^[26]、渤海 BH08 孔底栖有孔虫^[27]和深海氧同位素^[24]进行比对。其 中,西峰黄土中>32μm 粒度组分为冬季风敏感粒 组,它的增加反映了冬季风主导下的大范围寒冷时 期;成壤作用是导致磁化率发生变化的主要因素,其 高值反映出沉积物中磁铁矿含量丰富、成壤作用强 烈;渤海底栖有孔虫含量记录了海平面升降的情况, 是研究黄渤海海侵/海退的基础资料。

CEM4 在 ZF3 含量为 72.9%,曲线表现为峰 值,与同期朝那黄土磁化率^[25]的谷值、西峰黄土> 32μm 颗粒含量^[26]和渤海底栖有孔虫数量^[27]的峰 值有良好的对应(图 6)。朝那黄土中磁赤铁矿含量 降低与西峰黄土中>32μm 粒组的增加,均反映了 冬季风主导下的大范围寒冷时期。在黄渤海地区, 对应玉木冰期早期成山头海退期(70~60kaBP),古 海岸线在今 80~100m 等深线附近^[42],陆架出水成 陆,海底松散沉积物裸露,被西北风吹扬在海岸带东 侧堆积,形成蓬莱一庙岛一带特殊的海陆相砂质黄 土^[43]。其主要以近源物质组成,颗粒比内陆黄土

图 6 深海氧同位素 δ¹⁸ O_{ocean}‰^[24]、渤海 LR05 孔底栖有孔虫^[27]、朝那黄土-古土壤磁化率 10⁻⁸ m³ · kg^{-1[25]}、 西峰黄土中>32μm 颗粒含量^[26]与芝罘剖面平均粒径、CEM1、CEM2、CEM3 和 CEM4 比较 Fig.6 Correlation of mean size、CEM1、CEM2、CEM3 and CEM4 from the ZhiFu section with deep ocean δ¹⁸ O variations ^[24]、 benthic foraminifera in the LR05 hole of Bohai Sea^[27]、magnetic susceptibility in Chaona section ^[25] and content of > 32μm particles in Xifeng loess section^[26]

粗,与 CEM4 所代表的含细砂-极细砂的粉砂相似。

CEM1 与 CEM2 在 ZF4、ZF6 和 ZF8 的含量均 高于全剖面平均值,曲线形态上为高峰,对应渤海底 栖有孔虫数量的谷值,该时期为里斯-玉木间冰期灵 山岛海侵期^[42,44](80、100 和 120kaBP)。两者的消 长关系说明黄渤海海面上升时,土层中有孔虫化石 减少,风力沉积作用减弱,暖湿气候下成壤作用占主 导地位,以 CEM1 和 CEM2 为代表的细颗粒组分增 加,形成古土壤层。

CEM3 在 ZF5 和 ZF7 中的含量高于全剖面平 均值,曲线形态上为高峰,对应渤海底栖有孔虫数量 的次峰,表示的是夏季风衰弱下相对寒冷时期。该 时期冬季风有所增强,较粗颗粒以跃动式或滚动式 运动,行程较近,遇地形阻挡在渤海东南缘沉降,成 壤作用弱化,细颗粒组分减少,形成较薄的黄土层。

因此,芝罘剖面末次间冰期一末次冰期黄土-古 土壤沉积序列受东亚冬夏季风格局影响,远源与近 源物质交替混杂,各 CEM 值是探讨该区域气候变 化的有效指标。

5 结论

(1) 芝罘剖面可分为 MIS5 和 MIS4 两个阶段。
其中, MIS5 又可划分为 MIS5e(118.5~
124.9kaBP)、MIS5d(105.2~118.5kaBP)、MIS5c(94.7~105.2kaBP)、MIS5b(83.4~94.7kaBP)和
MIS5a(70.18~83.4kaBP)5个亚阶段;

(2) 粒度分析结果显示剖面沉积物以粉砂为主
(74.95%),黏土(10.05%)和极细砂(9.57%)次之,
其余为细砂-粗砂(3.98%),平均粒径为 5.77Φ,分
选系数为 2.05,具有区域特征;

(3)采用端元分析模型得出指示芝罘剖面 OIS5—OIS4 时期气候更替的4个端元,其在剖面 呈现出明显的峰谷变化,揭示出OIS5e、OIS5c和 OIS5a为温暖期;OIS5d、OIS5b和OIS4为寒冷期, 在轨道尺度上经历了6次气候冷暖振荡。这些冷暖 阶段与朝那黄土磁化率指示的夏季风盛衰、西峰黄 土>32μm粒组指示的冬季风变化以及渤海底栖有 孔虫记录的渤海湾沿岸海侵、海退事件具有较高的 同步性。

参考文献(References)

- [1] 董欣欣,杨石岭,唐自华,等.基于黄土粒度估算粉尘源区-沉积 区距离的新方法[J].中国科学:地球科学,2016,46(10):1406-1412.[DONG Xinxin, YANG Shiling, TANG Zihua, et al. A grain-size-based model for dust source-to-sink distance reconstruction: A case study from Chinese loess (in Chinese)[J]. Scientia Sinica Terrae, 2016,46(10):1406-1412.]
- [2] 王斌,曾琳,赵万苍,等.对黄土高原风尘搬运动力与沉积控制 因素的新认识[J].中国沙漠,2017,37(2):237-246.[WANG Bin, ZENG Lin, ZHAO Wancang, et al. A new progress of the transport dynamics and the accumulation factors of the aeolian dust in Chinese Loess Plateau[J]. Journal of Deserts Research,2017,37(2):237-246.]
- [3] Sun M, Zhang X, Tian M, et al. Loess deposits since early Pleistocene in northeast China and implications for desert evolution in east China[J]. Journal of Asian Earth Sciences, 2018, 155(2):164-173.
- [4] Sun D H, Zhang Y B, Yan F H, et al. Magnetostratigraphic and paleoenvironmental records for a Late Cenozoic sedimentary sequence from Lanzhou, Northeastern margin of the Tibetan Plateau[J].Global and Planetary Change, 2011, 76 (2011): 106-116.
- [5] 徐树建,丁新潮,倪志超.山东埠西黄土剖面沉积特征及古气候 环境意义[J].地理学报,2014,69(11):1707-1717.[XU Shujian, DING Xinchao, NI Zhichao. The sedimentary characteristics of Buxi Loess profile in Shandong Province and their paleoclimatic and paleoenvironment significance[J]. Acta Geographica Sinica, 2014,69(11):1707-1717.]
- [6] 李腾飞,李金凤,鲁瑞洁,等,青海湖东岸沙地风成沉积物粒度 敏感组分及其古气候意义[J].中国沙漠,2017,37(5):878-884.[LI Tengfei,LI Jinfeng,LU Ruijie, et al. Extraction of grain-size components with environmentally sensitivity of aeolian sediments in eastern shore of Qinghai Lake and their paleoclimatic implications [J]. Journal of Deserts Research, 2017,37(5):878-884.]
- [7] 王琳栋,杨太保,梁烨,等.会宁地区全新世黄土沉积粒度特征及其古气候意义[J].干旱区研究,2016,33(6):1150-1156.
 [WANG Lindong, YANG Taibao, LIANG Ye, et al. Grain size characteristics in the loess-paleosol at Huining Section and its signification to paleoclimate during Holocene[J]. Arid Zone Research,2016,33(6):1150-1156.]
- [8] 陈洪云,孙有斌.黄土高原风尘沉积的物质来源研究:回顾与展 望[J].第四纪研究,2008,28(5):892-900.[CHEN Hongyun, SUN Youbin. Study on provenance of eolian dust deposits on the Chinses Loess Plateau: Retrospects and prospects[J].Quaternary Sciences, 2008,28(5):892-900.]
- [9] 何继山,梁杏,李静,等.天津滨海平原区深孔沉积物环境敏感 粒度提取及其意义[J].地球科学,2015,40(7):1215-1225.[HE Jishan, LIANG Xi, LI Jing, et al. Environmentally sensitive grain-size extraction of deep hole sediment from Tianjin coastal plain and its significance[J].Earth Science—Journal of China

University of Geosciences, 2015,40(7):1215-1225.]

- [10] 周烨,蒋富清.南青云,等.奄美三角盆地晚更新世以来碎屑沉积物粒度特征及其物源和古气候意义[J].地球科学进展,2016,31(3):298-309.[ZHOU Ye, JIANG Fuqing, NAN Qinyun, et al. Grain-size distribution of detrital sediment in the AmamiSankaku Basin since late Pleistocene and its provenance and paleoclimate implications[J]. Advances in Earth Science,2016,31(3):298-309.]
- [11] 葛本伟,刘安娜.天山北麓黄土沉积的光释光年代学及环境敏 感粒度组分研究[J].干旱区资源与环境,2017,31(2):110-116.[GE Benwei, LIU Anna. Optically stimulated luminescence dating and analysis of environmentally sensitive grain size component of Loess in the northern slope of Tianshan Mountains[J]. Journal of Arid Land Resources and Environment, 2017,31(2):110-116.]
- [12] Zhang X N, Zhou A F, Xie H C, et al. Unmixing grain-size distributions in lake sediments: a new method of endmember modeling using hierarchical clustering[J]. Quaternary Resesch, 2017;1-9.
- [13] Weltje G J, Prins M A, Muddled or mixed? Inferring paleoclimate from size distributions of deep-sea clastics[J].Sedimentary Geology,2003,162:39-62.
- [14] Yu S Y, Steven M. Colman, Li L X. BEMMA: A hierarchical bayesian end-member modeling analysis of sediment grainsize distributions[J]. Math Geosci, 2016,48,723-741.
- [15] 张晓东,季阳,杨作升,等.南黄海表层沉积物粒度端元反演及 其对沉积动力环境的指示意义[J].中国科学:地球科学, 2015,45(10):1515-1523.[ZHANG Xiaodong, JI Yang, YANG Zuosheng, et al. End member inversion of surface sediment grain size in the South Yellow Sea and its implications for dynamic sedimentary environments[J]. Science China; Earth Sciences, 2015,45(10):1515-1523.]
- [16] 赵松,常凤鸣,李铁刚,等.粒度端元法在东海内陆架古环境重 建中的应用[J].海洋地质与第四纪地质,2017,37(3):187-196.[ZHAO Song, CHANG Fengming, LI Tiegang, et al. The application of grain-size end member algorithm to paleoenvironmental reconstruction on inner shelf of East China Sea [J].Marine Geology&Quaternary Geology, 2017,37(3):187-196.]
- [17] 李志文,李保生,孙丽,等.柳夼剖面末次冰期层段 Rb/Sr 的不稳定变化及其揭示的气候特征[J].热带地理,2015,35(4):
 592-600.[LI Zhiwen, LI Baosheng, SUN Li, et al. Climatic characteristics indicated by the variations of Rb/Sr in the Li-ukuang Section during the Last Glacial Period[J]. Tropical Geography,2015,35(4):592-600.]
- [18] 程振波,傅命佐,鞠小华.渤海海峡和辽东半岛海岸带黄土中的古生物化石的地质意义[J].海洋地质与第四纪地质,1996, 16(1):85-94. [CHENG Zhenbo, FU Mingzuo, JU Xiaohua. Geological significance of paleontological fossils in coastal loess in the Bohai Strait and Liaodong Peninsula[J]. Marine Geology& Quaternary Geology, 1996,16(1):85-94.]
- [19] 刘恩峰,张祖陆,沈吉.莱州湾南岸滨海平原晚更新世以来古 环境演变的孢粉记录[J].古地理学报,2004,6(1):78-84.

[LIU Enfeng, ZHANG Zulu, SHEN Ji. Spore-pollen records of environmental change on south coast plain of Laizhou Bay since the Late Pleistocene[J]. Journal of Palaeogeography, 2004,6(1):78-84.]

- [20] 王箫风,郑祥民,许健,等.山东长岛黄土沉积物的磁性与碳酸盐特征及其环境意义初探[J].云南地理环境研究,2007,19(4):133-138.[WANG Xiaofeng, ZHENG Xiangmin, XU Jian, et al. The primary research on magnetic measurements and CaCo₃ from loess sediments of Changdao in Shandong[J]. Yunnan Geographic Environment Research, 2007,19(4): 133-138.]
- [21] 彭淑贞,朱丽君,肖国桥,等.山东青州黄土的地层年代及其物质来源研究[J].干旱区地理,2010,33(6):947-953.[PENG Shuzhen, ZHU Lijun, XIAO Guoqiao, et al. Magnetostraigraphy and provenance of the Qingzhou Loess in Shandong Province[J]. Arid Land Geography, 2010,33(6):947-953.]
- [22] 徐树建,王涛.蓬莱黄土剖面光释光年代学及其沉积特征研究
 [J].中国沙漠,2011,31(2):295-301.[XU Shujian, WANG Tao. Optically stimulated luminescence dating and sedimentary characteristics of loess section at Penglai in Shandong Province[J]. Journal of Deserts Research, 2011,31(2):295-301.]
- [23] 丁新潮,曹文,徐树建,等.山东砣矶岛大口北黄土剖面的沉积 特征及其古环境意义[J].干旱区资源与环境,2016,30(10): 192-197.[DING Xinchao, CAO Wen, XU Shujian, et al. The sedimentary characteristics of Dakoubei loess profile in Tuoji island and their paleoenvironment significance[J]. Journal of Arid Land Resources and Environment, 2016,30(10):192-197.]
- [24] Grootes P M, Stulver M, White J W C, et al. Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores[J]. Nature, 1993,366:552-554.
- [25] Wang Q S, Song Y G, Zhao Z J, et al. Color characteristics of Chinese loess and its paleoclimatic significance during the last glacial - interglacial cycle[J]. Journal of Asian Earth Sciences, 2016, 116 :132-138.
- [26] Guo Z T, A Berger, Yin Q Z, et al. Strong asymmetry of hemispheric climates during MIS-13 inferred from correlating China loess and Antarctica ice records [J]. Climate of the Past,2009,5:21-31.
- [27] 李小艳,赵泉鸿,姚政权,等.渤海百万年以来的海侵记录: BH08孔有孔虫和介形类证据[J].海洋地质与第四纪地质, 2015,35(6):93-108.[LI Xiaoyan, ZHAO Quanhong, YAO Zhenquan, et al. Transgressive records of last million years in the Bohai Sea, China: Evidence from foraminifera and ostracoda of Core BH08[J]. Marine Geology&Quaternary Geology, 2015,35(6):93-108.]
- [28] 蔡爱智.论芝罘连岛沙坝的形成[J].海洋与湖沼,1987,9(1):
 1-14.[CAI Aizhi. On the formation of Zhifu Tombolo[J].
 Oceanologic et Limnologic Sinica, 1987,9(1):1-14.]
- [29] 邢秀臣,杜国云,魏新华,等.芝罘岛北岸海湾砾滩侵蚀研究
 [J],湖沼海洋通报,2009(1):73-78.[XING Xiuchen, DU Guoyun, WEI Xinhua, et al. The erosion of gravel beaches in

northern coast of Zhifu Island[J]. Transactions of Oceanology and Limnology, 2009(1):73-78.]

- [30] Folk R L, Ward W C.Brazos River Bar: A study in the signification of grain size parameter[J]. Journal of Sedimentary Petrology, 1957(27): 3-27.
- Salvador S, Chan P. Determining the number of clusters/segments in hierarchical clustering/segmentation algorithms[J].
 In: Proceedings 16th IEEE International Conference on Tools with Artificial Intelligence, Boca Raton, FL, 2004; 576-584.
- [32] 郭正堂,黄土高原见证季风和荒漠的由来[J].中国科学:地球科学,2017,47,(4):421-437.[GUO Zhengtang. Loess Plateau attests to the onsets of monsoon and deserts (in Chinese)
 [J]. Scientia Sinica Terrae, 2017,47(4): 421-437.]
- [33] 朱显谟.我国黄土性沉积物中的古土壤[J].第四纪研究, 1965,4:9-19.[ZHU Xianmo. Paleosol in the Loess sediments of China[J]. Quaternary Sciences,1965,4:9-19.]
- [34] 曹家欣,李培英,石宁.山东庙岛群岛的黄土[J].中国科学(B 辑),1987,10(10):1117-1122.[CAO Jiaxin, LI Peiying, SHI Ning. Loess of Miaodao Islands in Shandong Province[J]. Science China(Series B), 1987,10(10):1117-1122.]
- [35] Du S H, Li B S, Chen M H, et al. Paleotempestology evidence recorded by eolian deposition in the Bohai Sea coastal zone during the last interglacial period[J]. Marine Geology, 2016, 379: 78-83.
- [36] 孙东怀,鹿化煜,David Rea,等.中国黄土粒度的双峰分布及 其古气候意义[J].沉积学报,2000,18(3);327-335.[SUN Donghuai, LU Huayu, David Rea, et al. Bimode grain-size distribution of Chinese Loess and its paleoclimate implication [J]. Acta Sedimentologica Sinica, 2000,18(3);327-335.]
- [37] 管清玉,潘保田,高红山.等.粘粒含量一夏季风的良好替代指标[J].干旱区资源与环境,2004,18(8):17-19. [GUAN Yuqing, PAN Baotian, GAO Hongshan, et al. A good proxy of east Asian monsoon-fine grain size[J]. Journal of Arid Land Resources and Environment, 2004,18(8):17-19.]
- [38] 董光荣,靳鹤龄,陈惠忠.末次间冰期以来沙漠-黄土边界带移 动与气候变化[J].第四纪研究,1997,17(2):158-167.[DONG Guangrong, JIN Heling, CHEN Huizhong. Desert-loess boundary belt shift and climatic change since the Last Interglacial period[J]. Quaternary Sciences, 1997,17(2):158-167.]
- [39] 孙继敏,丁仲礼,刘东生,等.末次间冰期以来沙漠一黄土边界带的环境演变[J].第四纪研究,1995,15(2):117-122.[SUN Jimin, DING Zhongli, LIU Dongsheng, et al. Environmental changes in the desert-loess transitional zone of north china since beginning of the last interglacial[J]. Quaternary Sciences, 1995,15(2):117-122.]
- [40] Bian C W, Jiang W S, Richard J, et al. The suspended sediment concentration distribution in the Bohai Sea, Yellow Sea and East China Sea[J]. Oceanic and Coastal Sea Research, 2013, 12 (3): 345-354.
- [41] 徐树建,潘保田,高红山,等.末次间冰期-冰期旋回黄土环境 敏感粒度组分的提取及意义[J].土壤学报,2006,43(2):183-189.[XU Shujian, PAN Baotian, GAO Hongshan, et al.A-

nalysis of grain-size populations with environmentally sensitive components of loess during the Last Interglacial-glacial cycle and their implications[J]. Acta Pedologica Sinica, 2006, 43(2):183-189.]

- [42] 刘厚敏,吴世迎,王永吉.黄海晚第四纪沉积[M].北京:海洋出版社,1987.[Llu Houmin, WU Shiying, WANG Yongjie.
 Late Quaternary Sediments in the Yellow Sea[M].Beijing:
 Ocean Press,1987.]
- [43] 刘东生.黄土与环境[M].北京:科学出版社,1985.[LIU Dongsheng. Loess and Environment[M]. Beijing: Science Press, 1985.]
- [44] 姚政权,石学法.渤海湾沿岸第四纪海侵研究进展[J].海洋地质前沿,2015,31(2):9-16.[YAO Zhengquan, SHI Xuefa. A review of Quaternary transgression researches along the Bohai Bay[J].Marine Geology Frontiers, 2015,31(2):9-16.]