

珠江口盆地阳江东凹始新统的源汇过程:碎屑锆石定年及物源示踪

杜晓东,彭光荣,吴 静,蔡国富,汪晓萌,索艳慧,周 洁

Tracing source-to-sink process of the Eocene in the Eastern Yangjiang Sag, Pearl River Mouth Basin: Evidence from detrital zircon spectrum

DU Xiaodong, PENG Guangrong, WU Jing, CAI Guofu, WANG Xiaomeng, SUO Yanhui, and ZHOU Jie

在线阅读 View online: https://doi.org/10.16562/j.cnki.0256-1492.2021071301

您可能感兴趣的其他文章

Articles you may be interested in

北康盆地基底卷入断层特征及其对南海南部构造演化的启示

Features of the basement-involved faults in the Beikang Basin and their implications for the tectonic evolution of the southern South China Sea

海洋地质与第四纪地质. 2021, 41(4): 116

关注微信公众号,获得更多资讯信息

DOI: 10.16562/j.cnki.0256-1492.2021071301

珠江口盆地阳江东凹始新统的源汇过程:碎屑锆石定年 及物源示踪

杜晓东1,彭光荣1,吴静1,蔡国富1,汪晓萌1,索艳慧2,3,周洁2,3

1. 中海石油(中国)有限公司深圳分公司南海东部石油研究院, 深圳 518054

2. 深海圈层与地球系统教育部前沿科学中心海底科学与探测技术教育部重点实验室,中国海洋大学海洋地球科学学院,青岛 266100

3. 青岛海洋科学与技术试点国家实验室海洋矿产资源评价与探测技术功能实验室, 青岛 266237

摘要:阳江东凹为近年来珠江口盆地取得重要勘探突破的凹陷。为阐明阳江东凹始新统文昌组-恩平组物源区、物源转换等源 汇过程,以锆石 U-Pb 定年为主要技术手段,对研究区文昌组和恩平组7件砂岩的碎屑锆石形态和年龄进行了分析。结果表 明,(1)在文昌组时期,阳江东凹以周缘凸起的中生代岩浆岩为物源区,为珠江口盆地内部(简称"盆内")近物源输入,且 物源输入量小,利于半-深湖相烃源岩的发育。文昌组的优质烃源岩为本地区油气勘探提供了物质基础。(2)在恩平组下段 沉积期,凹陷主体的物源来自阳江-一统暗沙断裂带西侧较远区域出露的加里东晚期岩浆岩或其再循环沉积物,局部仍由周缘 凸起供源,洼陷由盆内近物源转变为盆内远物源为主;恩平组上段沉积期,洼陷兼具盆内物源和珠江口盆地外部(简称"盆 外")物源的贡献,其中盆外物源来自华南板块,并且从该时期开始,华南板块物源供给增强,并逐渐控制了整个凹陷的沉积 充填。整个恩平组时期,物源供给持续增强及控洼断裂活动性减弱造成洼陷被浅水辨状三角洲所主导。 关键词:始新统;源汇过程;碎屑锆石 U-Pb 定年;物源示踪;物源转换;珠江口盆地

中图分类号: P736.21 文献标识码: A

Tracing source-to-sink process of the Eocene in the Eastern Yangjiang Sag, Pearl River Mouth Basin: Evidence from detrital zircon spectrum

DU Xiaodong¹, PENG Guangrong¹, WU Jing¹, CAI Guofu¹, WANG Xiaomeng¹, SUO Yanhui^{2,3}, ZHOU Jie^{2,3}

1. Nanhai East Petroleum Research Institute, Shenzhen Branch of CNOOC China Limited, Shenzhen 518054, China

2. Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Submarine Geosciences and Prospecting Techniques, MOE and

College of Marine Geosciences, Ocean University of China, Qingdao 266100, China

3. Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China

Abstract: Important breakthroughs have been achieved in hydrocarbon exploration recently in the Eastern Yangjiang Sag of the Pearl River Mouth Basin. In order to clarify the provenance of sediments and the process of provenance transition of the Eocene Wenchang-Enping Formation in the Eastern Yangjiang Sag, the detrital zircon morphology and ages of 7 sandstones from the Wenchang Formation and the Enping Formation are analyzed, with zircon U-Pb dating method. The results show that: (1) the sediments of the Wenchang Formation are sourced from some peripheral uplifts consisting of Mesozoic magmatic rocks. They are called in-basin provenances in this paper, which, with limited input, is beneficial to the formation of semi-deep lacustrine source rocks. The sediment source as such founded the material basis for petroleum generation in this area. (2) During the time of Early Enping Period, the provenance of the sag is dominated by Caledonian magmatic rocks or their recycled sediments exposed in the area far to the west of the Yangjiang-Yitong Fault Zone. Even the sediments for some small areas are still supplied by the peripheral uplifts, the basin provenances had changed from near-source to far-source ones. While the upper member of the Enping Formation was deposited, the sag is filled by the materials from both South China plate and peripheral uplifts with the gradually increase of material supply from the South China Plate. Both the enhancement of material supply and the weakening of sag-controlling faults lead to the sag dominated by shallow braided delta during the whole Period of Enping Formation.

Key words: Eocene; source-sink process; U-Pb dating of detrital zircon; provenance; provenance transition.; Pearl River Mouth Basin

资助项目:中海石油(中国)有限公司重大生产科研项目"珠江口盆地(东部)浅水区古近系油气成藏条件及勘探突破方向"(SCKY-2020-SZ-21) 作者简介:杜晓东(1986一),男,硕士,工程师,主要从事珠江口盆地石油地质研究工作,E-mail:duxd5@cnooc.com.cn 收稿日期:2021-07-13; 改回日期:2021-08-25. 文凤英编辑

含油气盆地的物源区变化深刻影响着盆地的 沉积充填和烃源岩发育条件。通过古地貌重建、沉 积岩碎屑组分、地球化学、重矿物、碎屑锆石 U-Pb 定年等多种分析手段,可以研究盆地不同地质时 期的物源区和沉积充填演化过程。其中,沉积岩中 的碎屑锆石分布广泛、稳定性强,受风化、剥蚀、搬 运及再沉积的影响小,能更好地保存源区信息,并 且随着锆石 U-Pb 年龄测试分析技术的发展,其成 分、形态、年龄分析等在盆地沉积物源区示踪方面 的作用越来越大^[1-4]。

阳江东凹是珠江口盆地珠三坳陷最东端的次 级构造单元,其油气勘探始于1979年,但在2018年 以前的将近40年里没有实现商业勘探突破,一直 被认为是一个边缘洼陷,油气勘探价值小,因此仅 有少数学者在洼陷结构、构造特征和勘探潜力等方 面进行了初步研究^[5]。自2018年开始,阳江东凹接 连取得Y20-4、Y20-5等多个油田的重要勘探发现, 累计探明地质储量达5000万m³,并且这些油田以 中浅层高孔渗的中—轻质油藏为主,具有较高的经 济价值,推动了新油田群的规划和建设,使得阳江 东凹迅速成为油气勘探的热点地区^[6-18]。

现有研究表明,在断陷演化阶段,珠江口盆地 为隆坳相间的地貌格局,各个凹陷具有弥散性、带 状分布的特征,凹陷的沉积物以相邻古隆起的剥蚀 物为主;在拗陷演化阶段,盆地发生整体沉降,物源 区整体发生由近到远的变化;同时,古近纪晚期开 始,整个盆地基本位于海平面之下,物源逐渐转变 为以北侧华南陆地物源为主[19-22]。阳江东凹位于珠 一坳陷和珠三坳陷交界处,被南海北部中-新生代 继承性深大断裂——阳江-一统暗沙断裂带所分割, 且凹陷中—东段处于阳江-—统暗沙断裂带影响范 围内[23-26]。凹陷在构造控制下的古近系物源特征及 沉积充填演化过程,有助于理解区域的构造-沉积转 换过程,也对油气勘探指导有重要意义。本文选取 阳江东凹钻遇始新统文昌组-恩平组的4口钻井、 7个砂岩样品进行碎屑锆石 U-Pb 年龄研究, 以探讨 其潜在物源区及物源-沉积转换等源汇过程。

1 区域地质概况

阳江东凹位于珠江口盆地珠三坳陷北东端,整体呈北东东-南西西走向,南北两侧分别为阳江低凸起、恩平14洼及阳春低凸起、恩平27洼,东西两侧分别为恩平15低凸起和阳江中低凸起,并且根据 洼陷结构的差异分为4个次洼,自西向东依次为阳 江 24 洼、恩平 19 洼、恩平 20 洼和恩平 21 洼。其 中,位于凹陷东段的恩平 20 洼和恩平 21 洼为一组 控洼断裂倾向相对的半地堑组合,恩平 21 洼可进 一步划分为恩平 21 西洼和恩平 21 东洼^[7]。本文进 行沉积岩样品碎屑锆石 U-Pb 定年的 4 口钻井就位 于恩平 20 洼和恩平 21 洼(图 1)。

阳江东凹是在古生界浅变质岩和中生界花岗 岩基底上发育的新生代陆缘拉张型断陷,中生代以 来受太平洋构造域及特提斯构造域两大汇聚系统 的作用,经历了始新世裂陷、渐新世—早中新世拗 陷及晚中新世—现今新构造运动3个构造阶段,并 受阳江-一统暗沙断裂带的影响,凹陷破碎且各次洼 的结构亦有较大差别,具有复杂的构造背景和演化 历史。新生代的沉积地层从老到新分别为文昌 组、恩平组、珠海组、珠江组、韩江组、粤海组、万 山组和第四系,其中古近系文昌组可分为文昌组三 段、文昌组二段和文昌组一段(分别简称为文三、 文二和文一),恩平组可分为恩平组下段和恩平组 上段(分别简称为恩下和恩上)。文昌组—恩平组 为断陷阶段,控洼断裂活动强烈,在洼陷内产生较 大的可容空间;但恩平组中晚期则开始向拗陷阶段 过渡,凹陷发生整体沉降,逐渐沉降于水下(图2)。

2 样品与实验方法

对位于阳江东凹恩平 20 洼和恩平 21 洼的 4 口 井总计 7 个沉积岩样品进行了碎屑锆石 U-Pb 测年, 7 个样品分布于恩平组上段(3 个)、恩平组下段 (2 个)、文昌组二段(1 个)和文昌组三段(1 个),每 个样品的谐和年龄个数(谐和度>90%)均超过了 90 个,具有较强的统计意义。4 口井的位置见图 1, 各井钻遇的始新统岩性剖面见图 3,其中 Y20-4 和 Y20-5 井仅钻遇恩平组上段(未钻穿),Y20-7 井钻 遇恩平组上段和下段(下段未钻穿),Y20-7 井钻 遇恩平组上、下段及文昌组二、三段(文昌组一段缺 失)。总的来看,恩平组地层主要为砂泥互层,文昌 组地层主要为厚层泥岩。7 个测试样品的取样信息 见图 3 和表 1。

样品经机械粉碎、电磁分选和重液分选后,在 双目镜下挑选出若干锆石,并从中随机选取 250 颗 用环氧树脂固定并抛光,使其内部结构剖面充分暴 露。然后对锆石靶样进行阴极发光图像采集,观察 锆石内部结构,确定适合的激光打点位置。由于本 文所有样品所选取的碎屑锆石大部分具有明显的 岩浆振荡环带,为岩浆成因,因此一般选取靠近锆

图 1 阳江东凹构造单元划分 Fig.1 Tectonic map of the Eastern Yangjiang Sag

石颗粒边部的环带作为测试点,同时避开包裹体、 裂隙等不利部位,上述测试点代表了最新的岩浆冷 却、锆石结晶的年龄,即物源区锆石所经历的最新 一期大规模岩浆活动时间。锆石 U-Pb 同位素测年 是在同济大学海洋地质国家重点实验室利用LA-ICP-MS 分析完成, 激光剥蚀系统为 New Wave 213 nm, ICP-MS 型号为 Thermo Elemental X-Series。激光剥 蚀过程中采用氦气作载气、氩气为补偿气以调节灵 敏度。激光斑束大小和剥蚀频率分别选用 30 μm 和 10 Hz。每个样品分析数据包括大约 25 s 的空白 信号和 50 s 的样品信号。U-Pb 同位素定年中采用 锆石标准 91500(1065.4 ± 0.3 Ma)作外标进行同位 素分馏校正,每分析6个样品点,分析2次91500。 同时,采用锆石标准 Plešovice(337.1±0.4 Ma)来监 测分析结果的精确度。对分析数据的离线处理(包 括对样品和空白信号的选择、仪器灵敏度漂移校正 及 U-Th-Pb 同 位 素 比 值 和 年 龄 计 算) 采 用 ICPMSDataCal 软件。受放射性铅同位素的影响,当 年龄<1000 Ma 时采用²⁰⁶Pb/²³⁸U, 年龄>1000 Ma 时 则采用207Pb/206Pb 年龄,并根据 Kernei Density Estimation (KDE)方法绘制锆石年龄谱图^[27-29]。

3 碎屑锆石年龄及形态特征

测年数据经过预处理, 共获得 707 个谐和年龄, 其中 630 颗锆石的 Th/U>0.3(为总数的 89%), 只 有 4 颗锆石的 Th/U<0.1, 说明这些锆石主要为岩浆 成因, 部分受变质作用影响, 但纯变质成因锆石极 少。7 个样品的碎屑锆石 U-Pb 年龄从新生代到太 古代均有分布, 其中最年轻年龄为新生代 58.9 Ma (Y20-4 井恩平组上段样品), 最古老年龄为新太古代 3004 Ma(Y20-5 井恩平组上段样品)(图 4)。整体 来看, 文昌组样品的碎屑锆石粒度为 80~140 μm, 柱状特征显著, 晶型相对更完整, 晶体边缘棱角分 明, 磨圆度差, 而恩平组样品的碎屑锆石较文昌组 略大, 但晶型相对破碎, 晶体磨圆度更高, 说明恩平 组的物源与文昌组有较大差别(图 5)。

3.1 文昌组三段碎屑锆石年龄特征

Y21-3 井位于恩平 21 东洼,该井文昌组三段砂

岩样品共测得 93 个锆石 U-Pb 谐和年龄, 年龄范围 为 113~454 Ma, 锆石年龄较集中, 以中生代锆石为 主, 占 97%(89 个), 其中侏罗纪占 88%(81 个), 白垩 纪占 9%(8 个); 古生代年龄仅占 3%(二叠纪、泥盆 纪及奥陶纪各 1 个)(图 6)。该样品的主峰值为 159 Ma, 次要峰值为 122 Ma(图 7)。阴极发光图像显示, 该 样品中含有较多岩浆生长振荡环带明显、晶型完 好、棱角分明、呈长柱状的锆石, 说明该时期的沉 积物搬运距离短, 为近源沉积(图 5d)。

3.2 文昌组二段碎屑锆石年龄特征

Y21-3 井文昌组二段砂岩样品共测得 114 个锆石 U-Pb 谐和年龄,年龄范围为 105~851 Ma,锆石 年龄同样较集中,以中生代锆石为主,占 98% (111个),其中侏罗纪占 74%(84个),较文昌组三段样品占比降低,白垩纪占 24%(27个),较文昌组 三段样品占比明显增加,三叠纪占 1%(1个);古生代和元古代年龄仅 2个(泥盆纪 1个、新元古代 1个)(图 6)。该样品的主峰值为 157 Ma,次要峰值

为114 Ma(图7),碎屑锆石的阴极发光图像特征亦 与文昌组三段样品相似(图5c),同样表现为近源沉 积的特征。

3.3 恩平组下段碎屑锆石年龄特征

恩平组下段有 2 口井进行了碎屑锆石 U-Pb 测 年,每口井 1 个样品,分别为 Y21-3 和 Y20-7 井。两 个样品的锆石年龄特征呈现出较大差异,前者以中 生代锆石为主,后者则以古生代锆石为主。

Y21-3 井恩平组下段样品为花岗质砂砾岩,主要由砾石组成,少部分粗、巨粒,砾石成分主要为花岗斑岩和流纹岩,部分石英;部分岩屑颗粒挤压变形严重,少量泥质呈细纹状产出;局部偶见铁方解石交代岩屑颗粒产出;局部见少量粒间孔。该样品共测得 93 个锆石 U-Pb 谐和年龄,年龄范围为116~508 Ma,同样以中生代锆石为主,占96%(88个),其中侏罗纪占89%(82个),较文昌组二段样品的占比增加,白垩纪仅占3%(3个),较文昌组二段样品占比明显降低,三叠纪占3%(3个);古生代年龄占4%(奥陶纪4个)(图6)。样品的锆石年龄非常集中,仅表现出一个峰值,峰值年龄为163 Ma(图7)。锆石阴极发光图像具有棱角分明、磨圆度差的特征。上述特征反映该样品为近源、快速堆积的沉积环境,物源区面积小。

位于恩平 21 东洼最西侧的 Y20-7 井恩平组下 段样品为细砂岩,该样品共测得 110 个锆石 U-Pb 谐 和年龄,年龄范围为 96~2437 Ma,以古生代锆石为 主,占 72%(79个),其中奥陶纪最多,占 39%(43个),志留纪次之,占 20%(22个),其他时代 的年龄较少,占 1%~6% 不等(1~7个不等);中生 代和元古代锆石占比接近,分别占 14%(15个)和 15%(16个)(图6)。该样品的年龄特征明显不同于 前文其他 3 个样品,主要峰值为 443 Ma,次要峰值 有多个,年龄范围 101~243 Ma(图7)。阴极发光图 像显示,该样品碎屑锆石的磨圆度明显好于前文其 他 3 个样品,以近似椭圆状为主,长柱状锆石的数 量已非常少,反映该井附近的沉积物经历了较长距 离的搬运或多旋回沉积过程,且物源区与前文其他 3 个样品有较大差别(图5b)。

3.4 恩平组上段碎屑锆石年龄特征

恩平组上段有 3 口井进行了碎屑锆石 U-Pb 测年,每口井 1 个样品,分别为 Y20-4(恩平 20 洼西端)、Y20-5(恩平 20 洼东端)和 Y20-7 井。上述 3 个样品、Y20-4 及 Y20-7 井的锆石年龄特征相似,以中

图 3 4 口钻井始新统地层划分与 GR 测井曲线剖面对比 Fig.3 Correlation of Eocene lithological units and their GR logging data from 4 wells

生代锆石为主, 而 Y20-5 井样品的碎屑锆石年龄从 中生代到太古代均有, 呈现出多个峰值(图 6、7)。

Y20-4 井恩平组上段样品共测得 95 个锆石 U-Pb 谐和年龄,年龄范围为 59~2574 Ma,锆石年龄 较集中,以中生代锆石为主,占 89%(85 个),其中侏

罗纪占 84%(80个), 白垩纪占 4%(4个), 三叠纪占 1%(1个); 新生代年龄占 5%(5个); 古生代、元古 代和太古代年龄占 1%~2%(1~2个)(图 6)。该样 品的主峰值为 151 Ma, 次要峰值为 60 Ma。该样品 与前文其他样品的最大区别是出现少量新生代年

	Table 1	Parameters of detrital zircon U-Pb dating samples of the Eastern Yangjiang Sag				
位置	井号	层段	样品类型	取样中深/m	岩性	个数(谐和度>90%)
恩平20洼	Y20-4	恩平组上段	岩屑	3 558	细砂岩	95
	Y20-5	恩平组上段	岩屑	3 3 7 8	细砂岩	98
恩平21洼	Y20-7	恩平组上段	岩屑	3 692	细砂岩	105
		恩平组下段	岩屑	3 979	细砂岩	110
	Y21-3	恩平组下段	岩屑	3 382	砂砾岩	92
		文昌组二段	岩屑	3 588	砂砾岩	114
		文昌组三段	岩屑	3 660	中砂岩	93

表1 阳江东凹碎屑锆石 U-Pb 定年测试样品信息

图 4 阳江东凹砂岩碎屑锆石 Th/U 值

Fig.4 Th/U ratio of detrital zircons of sandstones in the Eastern Yangjiang Sag

图 5 阳江东凹砂岩碎屑锆石阴极发光图像 数字为年龄(Ma)。

Fig.5 CL images of detrital zircons of sandstones in the Eastern Yangjiang Sag

龄的碎屑锆石,年龄范围 59~63 Ma,属古近纪古新世(图 7)。阴极发光图像显示碎屑锆石磨圆度差,含有较多的长柱状、晶型完整的锆石。

Y20-7井恩平组上段样品共测得 105个锆石 U-

Pb 谐和年龄,年龄范围为60~1898 Ma,同样以中生 代 锆 石 为 主,占 82%(86个),其中 侏 罗 纪 占 70%(74个);新生代年龄占 7%(7个),与 Y20-4 井 样品相似;古生代和元古代年龄分别占 8%(8个)

图 6 阳江东凹砂岩碎屑锆石 U-Pb 年龄分布

图 7 阳江东凹砂岩碎屑锆石 U-Pb 年龄谱

(峰值年龄/Ma)

Fig.7 U-Pb age spectra of detrital zircons from sandstones in the Eastern Yangjiang Sag

和 4%(4个),较 Y20-4 井样品略高,反映有更多的 古老沉积物供源(图 6、7)。 Y20-5 井恩平组上段样品共测得 98 个锆石 U-Pb 谐和年龄, 年龄范围为 148~3004 Ma, 年龄分布特

征与其他样品的差异非常明显。该样品以元古代 错石为主,占62%(61个),古生代错石次之,占19% (19个),中生代错石占12%(12个),太古代锆石占 6%(6个)(图6)。从年龄谱来看,该样品具有多峰 态分布的特征,有148、241、430和966 Ma4个主要 峰值,另外还有799、1136、1724~1918、2579和 3003 Ma等多个次要峰值或年龄区间(图7)。阴极 发光图像显示,该样品的碎屑锆石最破碎,几乎没 有完整的长柱状锆石,磨圆度较其他样品为最好 (图5a),反映沉积物经历了长距离的搬运或多旋回 沉积过程。

4 物源示踪及源汇过程

4.1 潜在物源区特征

前人研究表明,包括珠江口盆地在内的南海北 部新生代盆地是华南大陆向海域的自然延伸^[21]。 在陆内,华南板块为元古界、古生界及中生界所组 成的复杂褶皱,并大量出露印支期及燕山期岩浆 岩,地层年龄跨度很大^[30];在海域,南海北部以阳江-一统暗沙断裂带为界,断裂带以东主要为中生代花 岗岩及沉积岩基底,断裂带以西则主要为古生界浅 变质岩及前寒武纪变质岩基底^[31-34]。阳江东凹位于 阳江-一统暗沙断裂带之上,东侧为珠一坳陷,西侧 为珠三坳陷,北侧靠近华南陆内,上述 3 个区域均 有可能为阳江东凹的物源区。同时, 3 个区域的地 层组合差别较大,所供物源的锆石年龄谱特征亦有 较大差异。

(1)阳江-一统暗沙断裂带东侧物源区:该潜在 物源区主要包括珠一坳陷及周缘隆起,以中生代岩 浆岩为主体。区域内多口钻遇前古近系的钻井显 示,中生代岩浆岩在珠江口盆地东部广泛发育,并 以花岗岩为主。前人研究表明,珠江口盆地花岗岩 锆石年龄有两个峰值,表现为100~130 Ma和145~ 165 Ma两个区间(图 8b-I),分别属白垩纪和侏罗 纪,表明本区主要受到晚侏罗世和早白垩世两期岩 浆活动的影响。地球化学特征表明,这两期花岗岩 具有火山弧、板内花岗岩的特征,属于太平洋板块 俯冲背景下大陆边缘活动带中晚期的产物^[33]。另 外,在东沙隆起之上的潮汕坳陷则残留了较大面积 的中生界海相沉积地层^[35-37]。

(2)阳江-一统暗沙断裂带西侧物源区:该潜在 物源区包括珠江口盆地西部、琼东南盆地、北部湾 盆地及海南岛等。现有研究认为,上述新生代盆地 的基底主要由下古生界(震旦系-志留系)变质岩组成,包括变质程度不同的千枚岩、片麻岩及混合岩等,是华南加里东-海西期褶皱向海域的延伸,中生界呈零星分布^[23-24,31-32];但珠江口盆地西部(神狐隆起、珠三坳陷)及琼东南盆地多口钻遇基底探井的碎屑锆石年龄谱表现为145 Ma 主峰值和240 Ma次要峰值(图 8b-II、III),反映了燕山期岩浆岩在阳江--统暗沙断裂带西侧仍有较大范围展布^[21-22]。海南岛大面积出露燕山期和印支期酸性岩浆岩,锆石年龄谱具明显的100 Ma和235 Ma双峰特征(图 8b-IV)^[38]。

(3) 华南板块(包括华夏地块和扬子地块):华 南板块由北西侧的扬子地块和南东侧的华夏地块 组成,两地块均有一定数量>2500 Ma的碎屑锆石 数据,暗示两者都可能存在太古宙地壳基底^[39-42]。 新元古代,华夏地块和扬子地块沿着江山-绍兴缝合 带(江绍断裂带)发生拼接,之后经历了加里东期、 印支期、燕山期等多期构造-岩浆活动,碎屑锆石年 龄谱具有从元古代—中生代的多个峰值[43-49]。而向 珠江口盆地运输沉积物的珠江流域各支流和干流 的碎屑锆石年龄谱呈现出 170、260、445、840、950、 1855、2495 Ma 等多个峰值或区间, 锆石年龄组合 相比前两个潜在物源区最为复杂。而且,珠江流域 东西两侧的支流也有较大差异,西部支流(西江及 其上游河流)的锆石年龄跨度大,主要包括新元古 代、早古生代和中生代锆石,还含有一定数量的新 太古代—古元古代的锆石(图 8b-V);而东部支流 (北江及东江)的锆石年龄跨度相对较小,主要为早 古生代和中生代锆石,少量新元古代锆石,更老的 锆石数量更少(图 8b-VI)^[47-48]。

4.2 始新世源汇过程

4.2.1 文昌期

新生代初期的珠琼运动一幕使珠江口盆地进入断陷演化阶段,发育了一系列 NE-NEE 走向的凹陷,各个凹陷具有弥散性、带状分布的特征,并以相邻古隆起的剥蚀物为主要物源^[19,21-22]。位于恩平21 东洼的 Y21-3 井文昌组三段样品碎屑锆石年龄谱的主峰值为 159 Ma,次要峰值为 122 Ma,文昌组二段样品碎屑锆石的主峰值为 157 Ma,次要峰值为114 Ma,两者年龄谱特征相似(图7),与南海北部中生代两期岩浆活动的时间(140~165 Ma 和 100~130 Ma)相匹配,表明阳江东凹在文昌组沉积期母岩类型单一,主要为凹陷周缘隆起的中生代岩浆岩。根据阳江东凹周缘基底花岗岩锆石 U-Pb 测年

图 8 潜在物源区(a)及相应的碎屑锆石年龄谱图(b) b图中,I据本项目未发表数据,II-VI据参考文献[22]。

Fig.8 Potential provenances (a) and their corresponding detrital zircon age spectra (b)

结果(课题组未发表数据),凹陷北东侧的恩平 15低凸起及西南侧阳江低凸起的峰值年龄为155 Ma, 而凹陷北侧阳春凸起的峰值年龄则为110 Ma。周 边花岗岩基底的锆石 U-Pb 年龄进一步证实了文昌 组沉积期的物源主要为周缘低凸起的晚侏罗世和 早白垩世岩浆岩,为珠江口盆地内部近物源体系 (简称"盆内近物源体系"),属上文所述阳江-一统 暗沙断裂带东侧物源区(图 9)。

文昌组为珠琼运动一幕裂陷期内形成的地层, 曾发生区域性抬升、剥蚀、岩浆活动等^[16]。根据区 域地质背景及控挂断层活动性,文昌组三段为裂陷 初始期,二段为裂陷强烈期,一段为裂陷萎缩期^[13]。 结合该时期古地貌,整个文昌组时期,恩平 20 挂和 恩平 21 洼由周缘的恩平 15 低凸起、阳春凸起、阳 江低凸起等供源,在控洼断裂附近发育小规模的扇 三角洲,在恩平 21 东洼缓坡带发育范围较局限的 辫状河三角洲;同时,洼陷周缘的低凸起供源面积 小,物源输入量有限,利于洼陷内部形成欠补偿的 沉积环境,该时期洼陷的半—深湖相最为发育,其 中文昌组二段为裂陷高峰期,洼陷沉积速率最大, 欠补偿的沉积环境使洼陷大面积发育半—深湖相 烃源岩(图 9)。Y21-3 井钻遇的文昌组二段和三段 地层总厚度为 437 m(文昌组一段缺失,未钻遇),以 泥岩为主,局部夹薄层砂(图 3);泥岩的有机质丰度 高(TOC平均值为 2.43%)、成熟度较高(R₀为 0.77%~1.2%)、以 II₁—I 型为主,属优质烃源岩;生

图 9 阳江东凹文昌组二段盆内近物源体系源汇模式图 Fig.9 Near in-basin provenances and source-sink pattern of the Wenchang-2 Member in the Eastern Yangjiang Sag

物标志化合物特征表现为高 C₃₀ 4-甲基甾烷, Ts 含量远高于 Tm, 高 OL 和 T 化合物含量, 具有藻类及高等植物贡献较高的特征, 整体为浅湖—半深湖相沉积环境^[16]。文昌组是本区的主要烃源岩发育层段, 为本区油气勘探提供了物质基础。

4.2.2 恩平期

珠琼运动二幕之后,盆地开始由断陷向拗陷演 变,控洼断裂活动性较文昌组时期减弱,同时盆地 发生整体沉降,湖盆面积扩大,但水体逐渐变浅,除 较高的隆起或凸起外,其他区域沉积了厚度不等的 恩平组地层,为"填平补齐"式沉积,与下伏地层呈 平行不整合或角度不整合接触。

恩平组下段,恩平 21 东洼的 Y21-3 井碎屑锆石 年龄谱仅有 163 Ma这一个峰值,并且其岩性为花 岗质砂砾岩,分选磨圆差,与恩平 15 低凸起基底锆 石年龄 155 Ma 接近,说明该井周缘继承了文昌组 沉积期的恩平 15 低凸起近距离物源供给,但其为 快速堆积的沉积环境。而位于恩平 21 东洼西段的 Y20-7 井碎屑锆石年龄谱的主要峰值为 443 Ma、次 要峰值为101~243 Ma,还有少量874~2437 Ma的 年龄,表现出与Y21-3 井及周缘凸起截然不同的年 龄谱特征(图7)。前文述及,洼陷周缘凸起基底花 岗岩的锆石U-Pb测年结果为110 Ma和155 Ma,神 狐隆起近洼位置的锆石年龄为145 Ma和240 Ma, 说明该时期主要物源区已非阳江东凹周缘。阳江-一统暗沙断裂带西侧为华南加里东-海西期褶皱向 海域的延伸,Y20-7 井443 Ma主峰值则说明洼陷主 要物源为加里东晚期岩浆岩或以其为母岩的沉积 岩,暗示了神狐隆起或珠三坳陷基底仍残存加里东 期岩浆岩或以其为母岩的沉积岩,但范围较中生代 岩浆岩要局限得多。结合该时期古地貌,阳江东凹 主要物源区离洼陷距离有所增加,为局部残留的加 里东期岩浆岩或以其为母岩的沉积岩,但仍属盆内 物源。

恩平组上段,位于恩平 20 洼西段的 Y20-4 井和 靠近恩平 21 西洼的 Y20-7 井的碎屑锆石年龄谱呈 现出相似的峰值特征(主要峰值 151~168 Ma,次要 峰值 60~64 Ma),而距离这两口井约 9 km、位于恩 平 20 洼东段的 Y20-5 井的碎屑锆石年龄谱具有 4 个主要峰值、多个次要峰值的多峰态分布特征, 太古代—中生代锆石年龄均有一定的数量,并且没 有中生代末—新生代初的年龄,呈现出与 Y20-4 井 和 Y20-7 井完全不同的年龄谱特征(图 7),说明洼 陷西段和东段的物源区不同。结合前文所述潜在 物源区特征,Y20-5 井的多个峰值区间说明其所在 洼陷北东部分应以华南板块物源为主,为盆外物源 体系(图 10b),并且较多的太古代—元古代年龄反 映珠江流域西部支流有较大的贡献;而 Y20-4 和 Y20-7 井所处洼陷西段以阳春凸起、神狐隆起为物 源区,为盆内物源体系,但物源供给较恩平组上段 明显减弱。因此,恩平组上段沉积期,洼陷具有盆 内和盆外双物源区供源的特点(图 10)。

恩平组沉积期, 洼陷从文昌组沉积期以"窄盆 深湖"为特征的断陷湖盆, 转变为"广盆浅湖"的坳 陷湖盆沉积环境, 来自西南和北东两侧的浅水辫状 河三角洲推进到恩平 20 洼和恩平 21 洼湖盆中部, 沉积了砂泥互层为主的岩性组合, 含砂率为 44%~ 56%(图 3)。其中,在恩平组下段沉积期,神狐隆起 供源面积广,西南侧的辫状河三角洲主导沉积,并 且在湖盆沉积中心可见叠瓦状前积反射,也证实辫 状河三角洲已推进到 Y20-7 井区;在恩平组上段沉 积期,洼陷内仍主要为辫状河三角洲沉积相带,但 与恩平组下段相比,神狐隆起供源的西南侧辫状三 角洲逐渐萎缩,而北东侧的辫状河三角洲转换为洼 陷的主体沉积,使洼陷主要接受来自华南板块的盆 外物源供给(图 10)。

通过多个层段、多口井的碎屑锆石 U-Pb 年龄 分析,阳江东凹始新世文昌组-恩平组物源存在多次 转换。文昌组沉积期,物源以洼陷周缘凸起的中生 代岩浆岩为主,为盆内近物源体系;恩平组下段则 转换为主要由阳江-一统暗沙断裂带西侧较远(神狐 隆起或更西)的加里东期岩浆岩(或其再循环沉积 物)供源,但整体由盆内近物源体系转变为盆内远 物源体系;恩平组上段沉积期物源再次发生转换, 洼陷西段主要由近凹的神狐隆起中生代岩浆岩供 源,洼陷东段则以华南板块为主物源区,研究区兼

具盆内物源和盆外物源的贡献,且从该时期开始华 南板块供源能力逐渐增强。

5 结论

(1)阳江东凹文昌组沉积岩的碎屑锆石年龄谱 表现为157~159 Ma和114~122 Ma两个峰值区 间,表明该时期凹陷以恩平15 低凸起、阳春凸起及 阳江低凸起等周缘凸起的中生代岩浆岩为主,为盆 内近物源体系,且物源输入量小。凹陷在该断陷阶 段形成了以半—深湖相为主的沉积环境,为本区主 要烃源岩发育层段。

(2)恩平组下段沉积岩的碎屑锆石年龄谱表现 为443 Ma 主峰值和101~243 Ma 次要峰值区间,表 明凹陷主体的物源来自阳江-一统暗沙断裂带西侧 较远的加里东晚期岩浆岩或其再循环沉积物,凹陷 转变为以盆内远物源体系为主(局部仍由周缘隆起 供源),主要发育浅水辫状河三角洲沉积。

(3)恩平组上段时期,凹陷主体依然被辫状河 三角洲所覆盖,但 Y20-4 和 Y20-7 井的沉积岩碎屑 锆石年龄谱表现为151~168 Ma 主峰值及60~64 Ma 次要峰值,与 Y20-5 井的年龄谱有很大差异(4个主 要峰值、多个次要峰值的多峰态分布),表明凹陷西 段以周缘隆起/凸起为物源区,东段则以华南板块为 物源区,研究区为两个物源区的交汇部位,盆内物 源和盆外物源均有一定贡献,并且从该时期开始华 南板块逐渐发展为主要供源区。

致谢:中国海洋大学李三忠教授对本文写作 提出了宝贵的修改意见,谨致诚挚谢意!

参考文献 (References)

- [1] 闫义, 林舸, 李自安. 利用锆石形态、成分组成及年龄分析进行沉积物源区示踪的综合研究[J]. 大地构造与成矿学, 2003, 27(2): 184-190. [YAN Yi, LIN Ge, LI Zian, et al. Provenance tracing of sediments by means of synthetic study of shape, composition and chronology of zircon [J]. Geotectonica et Metallogenia, 2003, 27(2): 184-190.]
- [2] Belousova E A, Griffin W L, O'reilly S Y. Zircon crystal morphology, trace element signatures and Hf Isotope Composition as a tool for petrogenetic modelling: examples from eastern Australian granitoids [J]. Journal of Petrology, 2006, 47 (2): 329-353.
- [3] 雷玮琰,施光海,刘迎新.不同成因锆石的微量元素特征研究进展[J]. 地学前缘, 2013, 20(4): 273-284. [LEI Weiyan, SHI Guanghai, LIU Yingxin. Research progress on trace element characteristics of zircons of different origins [J]. Earth Science Frontiers, 2013, 20(4): 273-

284.]

- [4] 焦鹏,郭建华,王玺凯,等.珠江口盆地韩江-陆丰凹陷珠江组下段碎 屑锆石来源与储层物源示踪[J].石油与天然气地质,2018,39(2): 239-253. [JIAO Peng, GUO Jianhua, WANG Xikai, et al. Detrital zircon genesis and provenance tracing for reservoirs in the Lower Zhujiang Formation in Hanjiang-Lufeng Sag, Pearl river Mouth Basin [J]. Oil & Gas Geology, 2018, 39(2): 239-253.]
- [5] 杨海长,徐建永,武爱俊,等.珠三坳陷阳江凹陷构造特征及其对油 气成藏的影响[J].海洋石油,2011,31(2):20-24.[YANG Haizhang, XU Jianyong, WU Aijun, et al. Structural features and impact on hydrocarbon accumulation in Yangjiang Sag of Zhu III depression [J]. Offshore Oil, 2011, 31(2):20-24.]
- [6] 彭光荣,张向涛,许新明,等.南海北部珠江口盆地阳江凹陷油气勘 探重要发现与认识[J].中国石油勘探,2019,24(3):267-279. [PENG Guangrong, ZHANG Xiangtao, XU Xinming, et al. Important discoveries and understandings of oil and gas exploration in Yangjiang sag of the Pearl River Mouth Basin, northern South China Sea [J]. China Petroleum Exploration, 2019, 24(3):267-279.]
- [7] 杜晓东,彭光荣,吴静,等. 珠江口盆地阳江东凹断层特征及其对油 气成藏的影响[J]. 新疆石油地质, 2020, 41 (4): 414-421. [DU Xiaodong, PENG Guangrong, WU Jing, et al. Faults and its impacts on petroleum accumulation in eastern Yangjiang Sag, Pearl River Mouth Basin [J]. Xinjiang Petroleum Geology, 2020, 41 (4): 414-421.]
- [8] 刘欣颖, 吴静, 朱定伟, 等. 珠江口盆地多期走滑构造与叠合型拉分 盆地: 以阳江东凹为例[J]. 大地构造与成矿学, 2021, 45(1): 6-19.
 [LIU Xinying, WU Jing, ZHU Dingwei, et al. Superimposition of strike-slip faults and pull-apart basins in the Pearl River Mouth Basin: a case study from the Eastern Yangjiang Sag [J]. Geotectonica et Metallogenia, 2021, 45(1): 6-19.]
- [9] 占华旺, 蔡国富, 张志伟, 等. 南海北缘古近纪断裂活动规律及控盆 特征:以阳江东凹为例[J]. 大地构造与成矿学, 2021, 45(1): 20-39. [ZHAN Huawang, CAI Guofu, ZHANG Zhiwei, et al. Paleogene fault activity and basin controlling characteristics in the northern South China Sea Margin: a case study of the Eastern Yangjiang Sag [J]. Geotectonica et Metallogenia, 2021, 45(1): 20-39.]
- [10] 于海洋, 索艳慧, 杜晓东, 等. 珠江口盆地渐-中新世古气候及物源特征: 以阳江东凹为例[J]. 大地构造与成矿学, 2021, 45(1): 53-63.
 [YU Haiyang, SUO Yanhui, DU Xiaodong, et al. Oligocene-Miocene provenance and paleoclimate of the Pearl River Mouth Basin: a case study of the Eastern Yangjiang Sag [J]. Geotectonica et Metallogenia, 2021, 45(1): 53-63.]
- [11] 马晓倩, 刘军, 朱定伟, 等. 多期走滑拉分盆地的沉积响应: 以南海北部珠江口盆地为例[J]. 大地构造与成矿学, 2021, 45(1): 64-78.
 [MA Xiaoqian, LIU Jun, ZHU Dingwei, et al. Sedimentary response of multi-stage pull-apart basin: insights from the Pearl River Mouth Basin in the northern South China Sea Margin [J]. Geotectonica et Metallogenia, 2021, 45(1): 64-78.]
- [12] 杨悦, 彭光荣, 朱定伟, 等. 珠江口盆地阳江东凹裂陷期沉积环境及 其构造控制[J]. 大地构造与成矿学, 2021, 45(1): 79-89. [YANG Yue, PENG Guangrong, ZHU Dingwei, et al. Syn-rifting sedimentary environment and its tectonic control in the Eastern Yangjiang Sag of the Pearl River Mouth Basin [J]. Geotectonica et Metallogenia, 2021,

45(1):79-89.]

- [13] 姜衍,张向涛,龙祖烈,等. 南海北部珠江口盆地烃源岩成因: 阳江凹陷的资源潜力[J]. 大地构造与成矿学, 2021, 45(1): 90-107.
 [JIANG Yan, ZHANG Xiangtao, LONG Zulie, et al. Formation of source rocks in the Pearl River Mouth Basin, northern South China Sea: resource potential of the Yangjiang Sag [J]. Geotectonica et Metallogenia, 2021, 45(1): 90-107.]
- [14] 陆蕾蕾, 姜素华, 索艳慧, 等. 南海珠江口盆地走滑构造与油气成藏 机制[J]. 大地构造与成矿学, 2021, 45(1): 108-122. [LU Leilei, JIANG Suhua, SUO Yanhui, et al. Relationship between strike-slip structure and hydrocarbon accumulation in the Pearl River Mouth Basin in the northern South China Sea [J]. Geotectonica et Metallogenia, 2021, 45(1): 108-122.]
- [15] 刘军, 彭光荣, 朱定伟, 等. 珠江口盆地阳江凹陷东部地区断控成藏 条件[J]. 大地构造与成矿学, 2021, 45(1): 123-130. [LIU Jun, PENG Guangrong, ZHU Dingwei, et al. Fault-controlled hydrocarbon accumulation in the Eastern Yangjiang Sag, Pearl River Mouth Basin [J]. Geotectonica et Metallogenia, 2021, 45(1): 123-130.]
- [16] 汪晓萌, 彭光荣, 吴静, 等. 珠江口盆地恩平21洼文昌组沉积期原型 盆地及其对优质烃源岩的控制[J]. 大地构造与成矿学, 2021, 45(1): 158-167. [WANG Xiaomeng, PENG Guangrong, WU Jing, et al. Prototype basin and its control on high-quality source rocks during the depositional period of Wenchang Formation in Enping 21 Sub-sag, Pearl River Mouth Basin [J]. Geotectonica et Metallogenia, 2021, 45(1): 158-167.]
- [17] 梁卫,彭光荣,朱定伟,等.珠江口盆地阳江东凹古近系构造特征与勘探潜力[J].大地构造与成矿学,2021,45(1):168-178.[LIANGWei,PENGGuangrong,ZHUDingwei, et al. Paleogene structures and exploration potential in the Eastern Yangjiang Sag, Pearl River Mouth Basin [J]. Geotectonica et Metallogenia, 2021, 45(1):168-178.]
- [18] 彭光荣,朱定伟,吴静,等. 珠江口盆地阳江凹陷油气重大发现与成 藏启示[J]. 大地构造与成矿学, 2021, 45(1): 179-187. [PENG Guangrong, ZHU Dingwei, WU Jing, et al. Discoveries of hydrocarbon accumulation in the Yangjiang Sag of the Pearl River Mouth Basin and implications [J]. Geotectonica et Metallogenia, 2021, 45(1): 179-187.]
- [19] 王维, 叶加仁, 杨香华, 等. 珠江口盆地惠州凹陷古近纪多幕裂陷旋回的沉积物源响应[J]. 地球科学——中国地质大学学报, 2015, 40(6): 1061-1071. [WANG Wei, YE Jiaren, YANG Xianghua, et al. Sediment provenance and depositional response to multistage rifting, paleogene, Huizhou Depression, pearl river mouth basin [J]. Earth Science—Journal of China University of Geosciences, 2015, 40(6): 1061-1071.]
- [20] Shao L, Cao L C, Pang X, et al. Detrital zircon provenance of the Paleogene SYN-rift sediments in the northern South China Sea [J]. Geochemistry, Geophysics, Geosystems, 2016, 17(2): 255-269.
- [21] 崔字驰,曹立成,乔培军,等.南海北部古近纪沉积物碎屑锆石U-Pb年龄及物源演化[J].地球科学,2018,43(11):4169-4179.[CUI Yuchi, CAO Licheng, QIAO Peijun, et al. Provenance evolution of Paleogene sequence (Northern South China Sea) based on detrital zircon U-Pb dating analysis [J]. Earth Science, 2018, 43(11):4169-4179.]

- [22] 邵磊, 崔字驰, 乔培军, 等. 南海北部古河流演变对欧亚大陆东南缘 早新生代古地理再造的启示[J]. 古地理学报, 2019, 21(2): 216-231. [SHAO Lei, CUI Yuchi, QIAO Peijun, et al. Implications on the Early Cenozoic palaeogeographical reconstruction of SE Eurasian margin based on northern South China Sea palaeo-drainage system evolution [J]. Journal of Palaeogeography, 2019, 21(2): 216-231.]
- [23] 鲁宝亮, 王璞珺, 张功成, 等. 南海北部陆缘盆地基底结构及其油气 勘探意义[J]. 石油学报, 2011, 32(4): 580-587. [LU Baoliang, WANG Pujun, ZHANG Gongcheng, et al. Basement structures of an epicontinental basin in the northern South China Sea and their significance in petroleum Prospect [J]. Acta Petrolei Sinica, 2011, 32(4): 580-587.]
- [24] 孙晓猛,张旭庆,张功成,等. 南海北部新生代盆地基底结构及构造 属性[J]. 中国科学:地球科学, 2014, 57(6): 1199-1211. [SUN Xiaomeng, ZHANG Xuqing, ZHANG Gongcheng, et al. Texture and tectonic attribute of Cenozoic basin basement in the northern South China Sea [J]. Science China:Earth Sciences, 2014, 57(6): 1199-1211.]
- [25] Li Y H, Zhu R W, Liu H L, et al. The cenozoic activities of Yangjiang-Yitongdong Fault: insights from analysis of the tectonic characteristics and evolution processes in western Zhujiang (Pearl) River Mouth Basin [J]. Acta Oceanologica Sinica, 2019, 38 (9): 87-101.
- [26] 蔡国富,张向涛,彭光荣,等.南海北部阳江-一统暗沙断裂带与新近 纪岩浆活动[J].大地构造与成矿学,2021,45(1):40-52.[CAI Guofu, ZHANG Xiangtao, PENG Guangrong, et al. Neogene volcanism and tectonics along the Yangjing-Yitong'ansha Fault Zone in the northern South China Sea margin [J]. Geotectonica et Metallogenia, 2021, 45(1):40-52.]
- [27] Sircombe K N, Hazelton M L. Comparison of detrital zircon age distributions by kernel functional estimation [J]. Sedimentary Geology, 2004, 171 (1-4): 91-111.
- [28] Vermeesch P. Statistical uncertainty associated with histograms in the Earth sciences [J]. Journal of Geophysical Research:Solid Earth, 2005, 110 (B2): B02211.
- [29] Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard [J]. Chemical Geology, 2008, 257 (1-2): 34-43.
- [30] Wang Y J, Zhang F F, Fan W M, et al. Tectonic setting of the South China Block in the Early Paleozoic: Resolving intracontinental and ocean closure models from detrital zircon U-Pb geochronology [J]. Tectonics, 2010, 29 (6): TC6020.
- [31] 王家林,张新兵,吴健生,等.珠江口盆地基底结构的综合地球物理研究[J].热带海洋学报,2002,21(2):13-22. [WANG Jialin, ZHANG Xinbing, WU Jiansheng, et al. Integrated geophysical researches on base texture of Zhujiang River Mouth Basin [J]. Journal of Tropical Oceanography, 2002, 21(2):13-22.]
- [32] 谢锦龙,余和中,唐良民,等.南海新生代沉积基底性质和盆地类型[J]. 海相油气地质, 2010, 15 (4): 35-47. [XIE Jinlong, YU Hezhong, TANG Liangmin, et al. The basement features and basin types of Cenozoic sediments in South China Sea [J]. Marine Origin Petroleum Geology, 2010, 15 (4): 35-47.]
- [33] Shi H S, Xu C H, Zhou Z Y, et al. Zircon U Pb Dating on granitoids

from the Northern South China Sea and its geotectonic relevance [J]. Acta Geologica Sinica, 2011, 85(6): 1359-1372.

- [34] 张功成, 贾庆军, 王万银, 等. 南海构造格局及其演化[J]. 地球物理 学报, 2018, 61 (10): 4194-4215. [ZHANG Gongcheng, JIA Qingjun, WANG Wanyin, et al. On tectonic framework and evolution of the South China Sea [J]. Chinese Journal of Geophysics, 2018, 61 (10): 4194-4215.]
- [35] 邵磊, 尤洪庆, 郝沪军, 等. 南海东北部中生界岩石学特征及沉积环境[J]. 地质论评, 2007, 53 (2): 164-169. [SHAO Lei, YOU Hongqing, HAO Hujun, et al. Petrology and depositional environments of Mesozoic strata in the Northeastern South China Sea [J]. Geological Review, 2007, 53 (2): 164-169.]
- [36] 吴国瑄, 王汝建, 郝沪军, 等. 南海北部海相中生界发育的微体化石 证据[J]. 海洋地质与第四纪地质, 2007, 27(1): 79-85. [WU Guoxuan, WANG Rujian, HAO Hujun, et al. Microfossil evidence for development of marine Mesozoic in the north of South China Sea [J]. Marine Geology & Quaternary Geology, 2007, 27(1): 79-85.]
- [37] 郝沪军, 施和生, 张向涛, 等. 潮汕坳陷中生界及其石油地质条件: 基于LF35-1-1探索井钻探结果的讨论[J]. 中国海上油气, 2009, 21(3): 151-156. [HAO Hujun, SHI Hesheng, ZHANG Xiangtao, et al. Mesozoic sediments and their petroleum geology conditions in Chaoshan sag: a discussion based on drilling results from the exploratory well LF35-1-1 [J]. China Offshore Oil and Gas, 2009, 21(3): 151-156.]
- [38] 葛小月. 海南岛中生代岩浆作用及其构造意义: 年代学、地球化学及Sr-Nd同位素证据[D]. 中国科学院广州地球化学研究所博士学位论文, 2003: 15-41. [GE Xiaoyue. Mesozoic magmatism in Hainan Island (SE China) and its tectonic significance: geochronology, geochemistry and Sr-Nd isotope evidences[D]. Doctor Dissertation of Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2003: 15-41.]
- [39] 于津海, O'Reilly Y S, 王丽绢, 等. 华夏地块古老物质的发现和前寒 武纪地壳的形成[J]. 科学通报, 2007, 52(1): 13-22. [YU Jinhai, O'Reilly Y S, WANG Lijuan, et al. Finding of ancient materials in Cathaysia and implication for the formation of Precambrian crust [J]. Chinese Science Bulletin, 2007, 52(1): 13-22.]
- [40] 李献华,李武显,何斌. 华南陆块的形成与Rodinia超大陆聚合-裂解:
 观察、解释与检验[J]. 矿物岩石地球化学通报, 2012, 31(6): 543-559.
 [LI Xianhua, LI Wuxian, HE Bin. Building of the South China Block and its relevance to assembly and breakup of Rodinia

supercontinent: Observations, interpretations and tests [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2012, 31 (6): 543-559.]

- [41] 舒良树. 华南构造演化的基本特征[J]. 地质通报, 2012, 31(7): 1035-1053. [SHU Liangshu. An analysis of principal features of tectonic evolution in South China Block [J]. Geological Bulletin of China, 2012, 31(7): 1035-1053.]
- [42] 邹和平,杜晓东,劳妙姬,等.广西大明山地块寒武系碎屑锆石U-Pb年龄及其构造意义[J].地质学报,2014,88(10):1800-1819.
 [ZOU Heping, DU Xiaodong, LAO Miaoji, et al. Detrital zircon U-Pb geochronology of Cambrian sandstones in Damingshan, central Guangxi and its tectonic implications [J]. Acta Geologica Sinica, 2014, 88(10):1800-1819.]
- [43] 舒良树, 于津海, 贾东, 等. 华南东段早古生代造山带研究[J]. 地质 通报, 2008, 27(10): 1581-1593. [SHU Liangshu, YU Jinhai, JIA Dong, et al. Early Paleozoic orogenic belt in the eastern segment of South China [J]. Geological Bulletin of China, 2008, 27(10): 1581-1593.]
- [44] Li X H, Li W X, Li Z X, et al. Amalgamation between the Yangtze and cathaysia blocks in south China: constraints from SHRIMP U-Pb zircon ages, geochemistry and Nd-Hf isotopes of the Shuangxiwu volcanic rocks [J]. Precambrian Research, 2009, 174 (1-2): 117-128.
- [45] Wang Y J, Fan W M, Zhang G W, et al. Phanerozoic tectonics of the South China Block: Key observations and controversies [J].
 Gondwana Research, 2013, 23 (4): 1273-1305.
- [46] Ding R X, Zou H P, Min K, et al. Detrital Zircon U-Pb Geochronology of Sinian-Cambrian Strata in the Eastern Guangxi Area, China [J]. Journal of Earth Science, 2017, 28 (2): 295-304.
- [47] 赵梦, 邵磊, 乔培军. 珠江沉积物碎屑锆石U-Pb年龄特征及其物源示 踪意义[J]. 同济大学学报:自然科学版, 2015, 43(6): 915-923.
 [ZHAO Meng, SHAO Lei, QIAO Peijun. Characteristics of detrital zircon U-Pb geochronology of the Pearl River sands and its implication on provenances [J]. Journal of Tongji University:Natural Science, 2015, 43(6): 915-923.]
- [48] 侯元立, 邵磊, 乔培军, 等. 珠江口盆地白云凹陷始新世—中新世沉积物物源研究[J]. 海洋地质与第四纪地质, 2020, 40 (2): 19-28.
 [HOU Yuanli, SHAO Lei, QIAO Peijun, et al. Provenance of the Eocene-Miocene sediments in the Baiyun Sag, Pearl River Mouth Basin [J]. Marine Geology & Quaternary Geology, 2020, 40 (2): 19-28.]