

加瓜海脊铁锰结壳的年龄及其定年方法适用性比较

罗顺开,周怀阳,赵国庆,袁伟

Age of a Fe-Mn crust on the Gagua Ridge and applicability studies of dating methods

LUO Shunkai, ZHOU Huaiyang, ZHAO Guoqing, and YUAN Wei

在线阅读 View online: https://doi.org/10.16562/j.cnki.0256-1492.2021070502

您可能感兴趣的其他文章

Articles you may be interested in

北康盆地基底卷入断层特征及其对南海南部构造演化的启示

Features of the basement-involved faults in the Beikang Basin and their implications for the tectonic evolution of the southern South China Sea

海洋地质与第四纪地质. 2021, 41(4): 116

关注微信公众号,获得更多资讯信息

罗顺开,周怀阳,赵国庆,等.加瓜海脊铁锰结壳的年龄及其定年方法适用性比较[J].海洋地质与第四纪地质,2022,42(1): 135-145. LUO Shunkai, ZHOU Huaiyang, ZHAO Guoqing, et al. Age of a Fe-Mn crust on the Gagua Ridge and applicability studies of dating methods[J]. Marine Geology & Quaternary Geology, 2022, 42(1): 135-145.

加瓜海脊铁锰结壳的年龄及其定年方法适用性比较

罗顺开1,周怀阳1,赵国庆2,袁伟1

同济大学海洋地质国家重点实验室,上海 200092
 中国科学院地球环境研究所,西安 710061

摘要:深海铁锰结壳的定年对其记录的百万年尺度古海洋环境变化研究至为关键。综合运用¹⁰Be/⁹Be、Co 经验公式、²³⁰Th_{ex}/²³²Th 和磁性地层学,对采自加瓜海脊的铁锰结壳样品开展了系统的年代学对比研究。结果表明:相对于开阔大洋的铁 锰结壳,较多的陆源物质输入造成了不同定年方法获得的年龄或生长速率的明显差异。其中,因为大量陆源物质携带的 ²³²Th 以及对 Co 含量的稀释,铁锰结壳表层的²³⁰Th_{ex}/²³²Th 初始通量以及样品部分层位的 Co 通量出现显著变化,²³⁰Th_{ex}/²³²Th 定 年方法与 Co 经验公式获得的结果受到碎屑物质的影响最为显著。尽管¹⁰Be/⁹Be 初始通量也受到了陆源物质输入的影响,但是 ¹⁰Be/⁹Be 初始通量变化很小,应该是本研究中最为可信的结果。而古地磁地层学定年法需要参考其他定年结果,最后也只能得 到几个年龄控制点。最终得出加瓜海脊该铁锰结壳样品的年龄为 7.09 Ma,而不同核素在铁锰结壳中的赋存状态应该是今后 值得深入研究的一个重要方向。

关键词:铁锰结壳;定年方法;古地磁;同位素地球化学;加瓜海脊 中图分类号:P736.4 文献标识码:A DOI: 10.16562/j.cnki.0256-1492.2021070502

Age of a Fe-Mn crust on the Gagua Ridge and applicability studies of dating methods

LUO Shunkai¹, ZHOU Huaiyang¹, ZHAO Guoqing², YUAN Wei¹

1. State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China

2. Institute of Earth Environment, Chinese Academy of Science, Xi'an 710061, China

Abstract: Precise dating of deep-sea Fe-Mn crust is crucial to the research of paleoceanographic changes. In this paper, dating methods of 10 Be/ 9 Be, Co empirical formula, 230 Th_{ex}/ 232 Th and paleomagnetic stratigraphy are comparatively used for systematical chronological studies of a Fe-Mn crust sample collected from the Gagua Ridge. Different growth rate or different age figures are observed as different dating methods are adopted due to large inputs of terrigenous materials. Co content is diluted by the excessive amounts of 232 Th brought in by the terrigenous inputs, and the Co flux in certain layers and initial 230 Th_{ex}/ 232 Th flux at the surface layer are both greatly fluctuated, which will render greatly influence onto the dating results of the two methods. Although the 10 Be/ 9 Be initial flux is also influenced by terrigenous inputs, it remains relatively stable. Therefore, 10 Be/ 9 Be can be regarded as the most precise dating method in the case. Paleomagnetic stratigraphy dating results may provide several age controlling points after referring to other dating results. Finally, the initial growth age of the Fe-Mn crust is confirmed as 7.09 Ma. For more precise age figure, further studies are required on the occurrence of nuclides in the Fe-Mn crust.

Key words: Fe-Mn crust; dating methods; paleomagnetism; isotopic geochemistry; the Gagua Ridge

在现代大洋,水深 400~7000 m、无松散沉积物 覆盖的裸露海山或海脊基岩上基本都有铁锰结壳 的沉积^[1-3]。根据 Koschinsky 和 Halbach^[4]提出的被 普遍接受的假设,水体中带正电的铁氢氧化物胶体 和带负电的锰氧化物胶体发生电性中和,沉积并逐 步累积形成以铁锰氧化物为主要组分的铁锰结壳 壳层。也就是说,主要为水成成因的海山铁锰结壳 可以记录其生长过程中海水化学成分的变化^[5-7]。 由于其生长速率十分缓慢,一般每百万年生长数毫 米,在几个厘米厚的铁锰结壳上就浓缩了数百万年

作者简介:罗顺开(1995一), 男, 硕士研究生, 海洋科学专业, E-mail: 1176298753@qq.com

通讯作者:周怀阳(1961一),男,博导,教授,从事海洋化学研究, E-mail: Zhouhy@tongji.edu.cn

资助项目:国家自然科学基金项目"南海深部计划重点项目"(91428207)

收稿日期:2021-07-05; 改回日期:2021-08-08. 周立君编辑

的古海洋环境记录,因此开展高精度的定年工作, 对于铁锰结壳用于古海洋环境的研究极为关键。

至今已有多种针对铁锰结壳的定年方法:Os 同 位素、微体古生物地层学、轨道周期调谐法、1°Be/°Be、 ²³⁰Th_{ex}/²³²Th、Co 经验公式和古地磁地层学等。Klemn^[8] 根据深海远洋黏土、富金属碳酸盐和富有机质沉积 物的 Os 同位素特征, 建立了 80 Ma 以来全球海水 Os 同位素演化曲线。通过对比全球海水 Os 同位素 演化曲线和结壳的 Os 同位素特征便可以获得结壳 的年龄,但局部热液或者陆源物质的输入可以使结 壳 Os 同位素偏离全球海水 Os 同位素演化曲线, 使 定年结果出现一定的误差[9-10];古生物地层学法是通 过对结壳中微体生物化石的鉴定来判断结壳的年 龄[11],但是该方法得到的年龄通常是一个范围值[12-14], 而且结壳中绝大部分微体古生物化石基本都被溶 蚀,很难展开化石的鉴定工作;轨道周期调谐法是 通过对纹层状构造化学成分的频谱分析、调谐来获 得这段构造的生长速率,这种方法只能得到纹层状 构造的生长速率[15-16]。目前最为常用的定年方法是 ¹⁰Be/⁹Be、²³⁰Th_{ex}/²³²Th、Co 经验公式和古地磁地层学。

Ku^[17]首先利用 Be 同位素对结壳开展定年工 作,之后 Be 同位素定年在铁锰结壳的研究中得到了 广泛的应用, Von Blackenburg 和 O'Nions^[18]研究大 西洋结壳发现,在过去7Ma中,海水的¹⁰Be/⁹Be 基本稳定,采用¹⁰Be/⁹Be可以有效避免¹⁰Be含量所带 来的误差。Somayajulu^[19]认为对于生长年龄在10 Ma 以内的结壳, Be 同位素的定年最可靠; U 系同位素 也是最早应用于结壳定年的方法之一,²³⁴U、²³⁰Th半 衰期分别为 244.6 ka 和 75.4 ka, 234U 测年范围长达 1.5 Ma, 而²³⁰Th 的测年上限为 0.5 Ma, 这两种放射性 核素一般用于第四纪时期结壳的定年工作[20]; Crecelius 等^[21]首先研究了铁锰结核的沉积剩磁特 征并且发现了结核中地磁倒转的证据,后由许多学 者不断发展了结壳的磁性地层学研究[22-25]。古地磁 地层学是通过建立铁锰结壳古地磁极性年代序列, 然后对比标准古地磁年代极性表来确定结壳的年 龄。由于磁性地层学研究方法简单易行,测试成本 低廉,近些年来被广泛重视。

不同定年方法存在适用范围和可靠性差异,对 相同样品采用不同的测年方法通常会得到不同的 结果,如利用 Co 经验公式得到中太平洋结壳 CD29-2 的年龄为 58 Ma^[26],而 Os 同位素定年法确定该结 壳年龄为 76 Ma^[8];同样利用 Co 经验公式得到南海 铁锰结壳的 HYD179 的年龄为 2.57 Ma^[20],而古地磁 定年方法确定该结壳的年龄超过 3.506 Ma^[24]。对于 同一块样品不同测年方法得到的年龄差异尚没有 系统性的解释。之前, Chen^[27]利用 Co 经验公式得 到加瓜结壳的年龄为 6.32 Ma, 即该地区尚未开展 结壳年代学的系统性研究。针对上述问题, 本文对 采自加瓜海脊顶部的一块铁锰结壳同时采用 ¹⁰Be/⁹Be、Co 经验公式、²³⁰Th_{ex}/²³²Th 和磁性地层学定 年手段开展研究, 对比讨论所获得的定年结果, 希 冀为今后边缘海环境中铁锰结壳的准确定年提供 重要借鉴。

1 样品与测试

加瓜海脊位于西菲律宾海盆的最西端, 是一个 跨度约 300 km的南北走向的狭长隆起, 宽度约 20~30 km, 海脊比洋壳高出约 2~4 km。加瓜海脊 从南部的吕宋岛向北延伸至 23°N, 其中一部分已经 俯冲到琉球岛弧下方。海脊将花东盆地与菲律宾 海盆分隔开来。样品由 ROV 采集自加瓜海脊的顶 部, 样品编号 Dive-08-1-3(以下简写为 D-08), 采样 位置 22.06°N、122.90°E, 水深 2071 m。

在样品回到实验室之后,首先利用线切割机切下一部分结壳,用超纯水清洗表面附着的沉积物,放入超声波中清洗多次,再放入 80 ℃ 烘箱烘干,以备 Be 同位素分析取样。取样前需要选取一个较为平整且厚度较大的壳层,剔除表层残留的钙质或者 硅质生物遗骸。取样部分的面积约 2.25 cm²,沿着 结壳的生长纹层轻轻刮取 0.5 g 左右的样品,每次刮 完样品后用洗耳球吹走多余的粉末,用酒精清洗取样刀具,并用游标卡尺测量深度,对样品称重,共取得 11 个样品。Be 同位素测试分析工作在西安地球环境研究所加速质谱仪中心完成,前处理和上机测试按照 Du^[28]完成。

(1)样品称量和消解:称取约 0.2 g左右的样品 放置于 20 mL 离心管中,用 2 mL 超纯水清洗管壁, 向离心管中加入 6 mL 6N 的 HCl,然后逐滴缓慢加 入 1 mL 30% 的 H₂O₂,用玻璃小棒多次搅拌离心管, 静置过夜。向试管中加入约 50 mg 的 BeSO₄。然后 将试管放置在 4000 r 离心机中离心 15 min,将上清 液转移至 150 mL 特氟龙烧杯,向原试管加入 6 mL 6N 的 HCl,同时用小棒多次搅拌沉淀。再次离心后 将上清液转移至烧杯中,用少量超纯水清洗玻璃小 棒,洗液也要转移至烧杯中;

(2)将烧杯放置在电热板上,以120℃蒸干,然 后用1mL6N的HCl溶解沉淀,将溶液转移至15mL 离心管后,再用约2mL去离子水清洗烧杯壁,洗液

转移至离心管中;

(3)过碱性除 Fe: 向离心管加入 2 mL 6N 的 NaOH, 将溶液调至过碱。将离心管放置在冰箱低温冷藏 约 3~4 h 加速沉淀分离, 然后离心将上清液转移至 新试管中。该步骤可重复多次至上清液无明显的 红色沉淀。最后加入 1 mL 6N 的 HCl 将 pH 调至 7 左右, 然后再加入少量的氨水调节 pH 至 8~9, 然 后得到混有杂质的 BeOH 沉淀;

(4) 过离子柱除 B 和 Al: 将试管离心后得到BeOH 沉淀, 加入 1 mL 1N 的 HCl 溶解沉淀, 过柱除B 和 Al, 将洗脱液蒸干;

(5)洗沉淀:用1 mL 1N 的 HCl 将沉淀溶解转移 至离心管中,用超纯水清洗杯壁后,洗液也转移至 离心管。加入 0.8 mL 1N 的 NaOH 将 pH 调至 7 以 下,然后再加入少量氨水将 pH 调制 8~9。将沉淀 离心后,倒掉上清液,加入 4 mL 超纯水后静置 1 天;

(6)制靶:将沉淀离心后倒掉上清液,加入1mL 1N的HNO₃溶解沉淀,将沉淀转移至玻璃坩埚,放 置在电热板上120℃蒸干水分。然后将坩埚放入 高温炉中加热至900℃,得到BeO粉末。将等量的 Nb粉与BeO粉末混合压靶,最后上机测试。

表层样品 U-Th 同位素取样时选择一个面积约 2 cm² 的平整表面,轻轻刮取样品,每次得到的样品 质量约为 15 mg,取样深度为表层 2 mm。假设结壳 密度不变,每层样品的厚度是根据其质量计算得到 的: *d=m_i×(D/Σm_i)*,其中 D 是取样总厚度,*m_i*是每层 样品的质量,*d*是该层样品的厚度,共取得 14 个样 品。表层样品的 U-Th 同位素测试在西安交通大学 同位素实验室完成,前处理步骤按照 Tu^[29]完成。

(1)首先进行样品称重并记录;加适量超纯水, 冲洗内壁,晃动小烧杯,并尽量使所有的粉末沉淀 在超纯水底部。

(2)消解:加入 HCl、HNO₃溶液至样品全部溶 解;计算每个样品所需示踪剂的量,并记录(W_{示踪剂} =²³⁸U含量×W_{样品}/217);加1~2滴 HClO₄,小心地转 动烧杯并尽量使粘在烧杯壁上的溶液汇入烧杯底 部,放置电热板上蒸干;再加入1滴14N的 HNO₃, 溶解,蒸干(可重复该步骤一次)。

(3)制作分离柱:将滤膜填充至分离柱底部;加 满超纯水,且无气泡,放置于分离柱架上,下方放置 接收废液的玻璃杯;利用移液管填充满树脂细管; 加入 3CV 超纯水和 1 滴 14N 的 HNO₃ 去除树脂中 的金属离子;在分离柱中加入 2CV 7N 的 HNO₃;在 分离柱中加入 1CV 7N 的 HNO₃。

(4) 分离 U和 Th: 在蒸干的样品中加入 0.5 CV

7N的 HNO₃,振荡,溶解;将样品转移至准备好的分离柱中,并用 0.5 CV 7N的 HNO₃ 润洗烧杯,将液体也倒入分离柱中;去除 Fe:向柱子中加入 7N的 HNO₃ 至 2CV,再加入 1CV 7N的 HNO₃;收集 Th:先加入 2CV 6N的 HCl,再加入 1CV 6N的 HCl;收集U:先加入 2CV超纯水,再加入 2CV 超纯水;在收集的 Th和U样品 beaker中,各加入 1~2滴 HClO₄,在加热板上蒸干。

(5)上机样品制备:用 14N的 HNO₃溶解样品,加入 1滴 HClO₄,蒸干;加入一滴 14N的 HNO₃,蒸 干;加入一滴 14N的 HNO₃,蒸干;最后再加入一滴 14N的 HNO₃,蒸至半干,加入 2%的 HNO₃+HF 溶 液,转移至进样瓶中;

(6)测试: U-Th样品的测试采用 MC-ICP-MS, 按照 Cheng^[30]的方法测定。

铁锰结壳的古地磁取样分析和测试在同济大 学海洋地质国家重点实验室磁屏蔽室内完成。首 先按照 Yuan 等^[24]的方法利用金刚石线切割机切下 结壳的柱状样品,然后进行样品切片,切片垂直于 结壳的生长方向,切割线的直径为 0.2 mm,每次切 割时会损失掉厚度约 0.24 mm 的铁锰壳层,因此在 计算结壳的沉积速率时需要统计切样损失的总厚 度。样品 D08 共获得规格为 15 mm×15 mm 的厚度 1~1.5 mm 切片 56 个。为了获取每个切片的古地 磁方向,首先在 D2000 交变退磁仪上对每个切片进 行交变退磁,交变退磁过程中低场以 3 mT 为间隔, 20 mT 以上以 5~10 mT 为间隔。所有样品的剩磁 测量在 2G755 4 K 超导磁力仪上完成。

同样选取一个较为平整且厚度较大的壳层,剔 除表层残留的钙质或者硅质生物遗骸。取样部分 的面积约 2.25 cm²,沿着结壳的生长纹层轻轻刮取 约0.5g的样品,每次刮完样品后用洗耳球吹走多余 的粉末,用酒精清洗取样刀具,并用游标卡尺测量 取样深度,对样品称重,共取得19个分层样品。这 些样品主微量元素测试利用 Thermo Element XR-ICP MS 分析完成,测试元素有 Fe、Mn 和 Al(单位: wt%),以及Co、Ni和Cu(单位:mg/kg)。用于ICP-MS分析的样品处理如下:①将200目样品置于 105 ℃烘箱中烘干 12 h; ② 准确称取粉末样品 50 mg 置于 Teflon 溶样弹中;③先后依次缓慢加入 0.5 mL 高纯 HNO3 和 1 mL 高纯 HF; ④ 将 Teflon 溶 样弹放入钢套,拧紧后置于 190 ℃ 烘箱中加热 48 h 以上; ⑤ 待溶样弹冷却, 开盖后置于 140 ℃ 电热板 上蒸干,然后加入1mL的HNO3蒸干,重复一次; ⑥ 加入 5 mL 30% 的 HNO3, 再次将 Teflon 溶样弹放

入钢套, 拧紧后置于 190 ℃ 烘箱中过夜; ⑦ 将溶液转入聚乙烯塑料瓶中, 加入 Rh内标, 并用 2%的 HNO3 稀释至 100 g 以备 ICP-MS 测试; 多数微量元素的测试精度为 5%。

2 结果

2.1 ¹⁰Be/⁹Be 同位素结果

¹⁰Be/⁹Be 定年法假设进入结壳的¹⁰Be/⁹Be 初始通量 稳定,根据结壳中现存的¹⁰Be/⁹Be 与时间、衰变常数 的函数关系,可以求得结壳生长速率^[20,25]。首先对 所测样品进行深度矫正,以分层样品 1/2 厚度处的 深度作为该样品点的深度,然后以 ln(¹⁰Be/⁹Be)为纵 坐标,以深度为横坐标做图(图 1),然后对 ln(¹⁰Be/⁹Be) 进行分段回归分析得到 10 个对数方程。

由于 ln(¹⁰Be/⁹Be) =ln(¹⁰Be/⁹Be)_{初始通量} $-\lambda_{10}t$, (λ_{10} 是¹⁰Be的衰变常数, ln(¹⁰Be/⁹Be)是各样品的实 测值), 而 *t=X/G*(*X*是深度, *G*是生长速率), 对数方 程的斜率 *k=-\lambda_{10}/G*, 因此根据这些对数方程可以计 算得出结壳各段生长速率分别为 6.25、1.97、10.41、 4.71、16.66、8.77、5.21、22.72、17.85 和 4.764 mm/Ma。

根据各段深度、生长速率来计算各深度段生长 所需的时间,将各段生长所需的时间累加,从而得 到结壳初始生长年龄为7.09 Ma。然后根据 $\ln({}^{10}Be/{}^{9}Be)_{\overline{N}_{\mathrm{M}\overline{u}\overline{u}}\underline{u}}=\ln({}^{10}Be/{}^{9}Be)+\lambda_{10}t$ 计算出 ${}^{10}Be/{}^{9}Be$ 的初始通量(表1)。

表 1 铁锰结壳的¹⁰Be/⁹Be 测试结果以及¹⁰Be/⁹Be 初始通量 Table 1 ¹⁰Be/⁹Be testing results of Fe-Mn crust and initial flux of ¹⁰Be/⁹Be

序号	矫正深度/mm	$^{10}\text{Be}/^{9}\text{Be}/10^{-10}$	年龄/Ma	(¹⁰ Be/ ⁹ Be) _{初始通量} /10 ⁻¹⁰
Dive08-1	0.50	1.535	0.080	1.598
Dive08-2	3.50	1.208	0.560	1.598
Dive08-3	6.50	0.564	2.085	1.599
Dive08-4	11.75	0.439	2.589	1.601
Dive08-5	16.25	0.273	3.544	1.604
Dive08-6	20.75	0.239	3.814	1.605
Dive08-7	25.00	0.187	4.299	1.606
Dive08-8	28.25	0.137	4.923	1.606
Dive08-9	32.50	0.125	5.110	1.607
Dive08-10	36.00	0.113	5.306	1.609
Dive08-11	39.25	0.081	5.989	1.608
空白样		0.002		

2.2 Co 经验公式结果

Co 经验公式假设从海水中进入结壳的 Co 含量 稳定,因此 Co 含量与生长速率之间存在关系^[20]。 Manheim^[31]建立了适用于低 Co 含量结壳的生长速 率 计 算 公 式: *G*=0.68/[Co"]^{1.67},其中 Co"=50×Co/ (Fe+Mn)。19个分层样品的 Co 含量小于 2.4 mg/kg, 根据 Manheim^[31]提出的经验公式得到分层样品的 生长速率为 4.92~7.93 mm/Ma(图 2),同样对各层 样品进行深度矫正,再将各层生长所需的时间累加 得到本研究样品的初始生长年龄为 7.05 Ma。

2.3 ²³⁰Th_{ex}/²³²Th 同位素测试结果

该方法计算原理与¹⁰Be/⁹Be 类似^[20, 32], 首先对样 品进行深度矫正, 然后以 ln(²³⁰Th_{ex}/²³²Th) 为纵坐标, 以深度为横坐标来作图(图 1), 最后对所有样品点 进行回归分析得到对数方程。由于 ln(²³⁰Th_{ex}/²³²Th)= ln(²³⁰Th_{ex}/²³²Th)_{初始通量}- $\lambda_{230}t(\lambda_{230} \neq {}^{230}Th$ 的衰变常 数), 而 $t=X/G(X \neq Re$, *G*是结壳生长速率), 对数 方程的斜率 $k=-\lambda_{230}/G=-0.914$, 所以本研究样品表层 生长速率为 9.90 mm/Ma(图 1), 由此计算出不同深 度所对应的年龄。最后根据 ln(²³⁰Th_{ex}/²³²Th)= ln(²³⁰Th_{ex}/²³²Th)_{初始通量}- $\lambda_{230}t$ 计算出相应的²³⁰Th_{ex}/²³²Th

Fig.2 Comparison of growth rate yielded by Co empirical formula, ¹⁰Be/⁹Be, paleomagnetic stratigraphy and Al content

Gray band areas indicated layers with great growth rate differences.

初始通量(表2)。

2.4 古地磁结果

古地磁定年方法是通过对比标准地磁年代表

和结壳的磁性记录来推断结壳年龄的方法。 D08的薄片样品交变退磁结果显示,大部分薄片样 品可以获得正负两种极性,并且在赤平投影上成对 柘分布,表明这些薄片样品很好地记录了原生特征

表 2 结壳表层²³⁰Th_{ex}/²³²Th 测试结果以及²³⁰Th_{ex}/²³²Th 初始通量 Table 2 Experimental results of ²³⁰Th_{ex}/²³²Th and initial flux of ²³⁰Th_{ex}/²³²Th

序号	深度/mm	质量/g	²³⁸ U /(µg/kg)	²³⁰ Th / ²³² Th/原子数×10 ⁻⁶	²³⁰ Th / ²³⁸ U	230Th _{ex} /232Th	年龄/Ma	(²³⁰ Th _{ex} / ²³² Th) ₀
D08-1	0.08	0.023100	7684.3±36.7	159.015159±3.348	46.7555±0.3114	30.01	0.01	32.25
D08-2	0.27	0.033 700	7459.7±31.2	87.168225±1.812	31.1138±0.1780	16.60	0.03	21.29
D08-3	0.47	0.024700	7467.8±29.3	65.836530±1.362	22.5662±0.1255	12.67	0.05	19.49
D08-4	0.64	0.026800	7715.4±29.0	66.634394±1.405	21.3219±0.1441	12.85	0.06	23.20
D08-5	0.81	0.023 200	7891.3±35.2	60.799142±1.278	17.5236±0.1188	11.83	0.08	24.95
D08-6	0.98	0.027800	7358.8±41.0	23.237013±3.394	8.7137±1.1560	4.74	0.10	11.71
D08-7	1.14	0.021000	8267.8±35.7	45.847210±0.963	13.5603±0.0882	9.05	0.12	26.03
D08-8	1.28	0.020000	6918.1±34.2	35.667330±0.779	11.4776±0.1039	7.12	0.13	23.27
D08-9	1.41	0.019300	6830.7±22.5	37.542399±0.865	12.354 8±0.142 3	7.45	0.14	27.53
D08-10	1.53	0.014 500	6557.2±42.6	30.485152±0.682	9.8458±0.1022	6.16	0.15	25.28
D08-11	1.62	0.014000	10020.1±71.8	24.628982±0.533	7.5091±0.0642	5.10	0.16	22.89
D08-12	1.75	0.023 800	7926.5±44.1	21.876682±0.489	6.3202±0.0604	4.63	0.18	23.34
D08-13	1.87	0.011200	8203.9±48.0	19.038096±0.428	5.5576±0.0583	4.10	0.19	23.05
D08-14	1.95	0.013 800	6689.5±36.2	18.846383±0.411	5.5571±0.0508	4.05	0.20	24.62
D08-14R			6171.4±46.5	16.099030±0.356	4.5886±0.0463	3.56		

注: (²³⁰Th_{ex}/²³²Th)₀代表初始通量, D08-14R为重复样。

剩磁(图 3)。据此,我们建立了 D08 样品生长过程 中从顶面到底面的古地磁极性倒转序列。D08 的 56个切片的特征沉积剩磁共出现 4个正极性期和 3个负极性期,其中 0~8.91 mm为正极性期, 8.91~15.26 mm为负极性期,15.26~24.73 mm为正 极性期,24.73~28.48 mm为正极性期,28.48~ 29.08 mm为负极性期,29.08~33.07 mm为负极性 期,33.07~46.00 mm为正极性期。结合本研究中其 他测年结果,假定结壳生长过程中没有沉积间断, 本研究将切片的地磁极性变化特征与古地磁极性 年代表进行对比,具体的对比方案如下:0~8.91 mm 的正极性期对应于布容正极,8.91~15.26 mm 的负 极性期对应于松山负极,15.26~24.73 mm 的正极性 期对应于高斯正极,24.73~33.07 mm 的大段负极性 期对应于吉尔伯特负极。

3 讨论

3.1 ¹⁰Be/⁹Be 生长速率

海水中的 Be 以 Be(OH)⁺或 Be(OH)₂的形式赋 存,具有较强的颗粒活性,在海水中的滞留时间为 200~1000年^[33]。¹⁰Be 和⁹Be 的来源存在差异,稳定 核素⁹Be 在地壳中含量较低,数量级一般为 10⁻⁶ 左右,在陆壳被风化剥蚀后主要经河流搬运进入海 洋^[34]。放射性核素¹⁰Be 是由高能宇宙射线撞击大气 中 O、N 原子而产生,然后随雨水降落进入海水,大 气中¹⁰Be 产率主要取决于地磁场强度^[35],高纬度地

Fig.3 Paleomagnetic results

a. Correlations between magnetic reversals with global magnetic stratigraphy, b-e. alternation demagnetization results of

the 13, 14, 6 and 43 slice from Fe-Mn crust D08.

区地磁场强度较弱,对宇宙射线的屏蔽作用较弱,因此高纬度地区¹⁰Be产率相对较高^[36]。在地磁倒转时期,地磁场强度减弱,对宇宙射线的屏蔽作用降低,宇宙射线可以轻易进入大气层,提高大气中¹⁰Be产率。目前已在湖泊沉积物、深海沉积柱、冰筏这一类高分辨率沉积物中发现¹⁰Be/⁹Be初始通量的峰值与地磁倒转期的对应关系^[29, 37-38]。

¹⁰Be/⁹Be方法假定进入结壳的¹⁰Be/⁹Be初始通量 是恒定的,根据我们的计算发现,在整个结壳的剖 面上,¹⁰Be/⁹Be初始通量为(1.598~1.609)×10⁻¹⁰,即 ¹⁰Be/⁹Be初始通量可视为恒定。尽管结壳中记录了 多次地磁倒转,但结壳¹⁰Be/⁹Be初始通量较为稳 定。这可能与以下两个因素有关:首先,地磁倒转 的时间仅数百年,结壳每百万年生长数毫米,很难 记录下这种"瞬时"的¹⁰Be/⁹Be通量变化;其次, Be在海水中的滞留时间长达数百年,滞留于海水中 的 Be 得到充分混合。

Von blakcenburg^[39]通过研究全球结壳表层的 ¹⁰Be/⁹Be发现,洋盆内现代深层海水的¹⁰Be/⁹Be通量 较为稳定,但不同洋盆存在差异,例如太平洋深层 水¹⁰Be/⁹Be为(0.89~1.42)×10⁻⁷,大西洋深层水的 ¹⁰Be/⁹Be 比太平洋深层水低,为(0.39~0.84)×10⁻⁷,这 是因为大西洋周围大量陆源碎屑物质的输入带来 大量°Be,造成大西洋深层水的10Be/9Be偏低。实际 上,各大洋深层海水10Be/9Be初始通量在地质历史 时期也遵循相似的规律,在过去12 Ma以来,太平 洋深层海水¹⁰Be/⁹Be初始通量 [(0.8~1.7)×10⁻⁷]仍 大于大西洋深层海水¹⁰Be/⁹Be初始通量[(0.2~ 0.7)×10⁻⁷]^[33],各大洋深层海水具有独特的¹⁰Be/⁹Be 初始通量,而且各大洋1°Be/9Be初始通量相对稳 定。Cui 等[40] 对比西太平洋结壳10Be/9Be 初始通量 与其他古气候指标后提出, 2.7 Ma 以来¹⁰Be/⁹Be 初 始通量的降低与上新世暖湿气候向第四纪干冷气 候的转变有关,但我们发现 Cui^[40] 所研究的结壳 ¹⁰Be/⁹Be初始通量 [(0.8~1.6)×10⁻⁷] 也处于太平洋 ¹⁰Be/⁹Be初始通量 [(0.8~1.7)×10⁻⁷] 的变化范围内, 这表明太平洋深层水的¹⁰Be/⁹Be 初始通量也不会受 到气候的影响。

相对于开阔大洋而言,大陆边缘的海域会接受 更多陆源物质(如南海地区结壳的 Al、Th 含量远高 于开阔大洋环境),这些地区深层海水的¹⁰Be/⁹Be 比 开阔大洋低^{139]}。本研究样品的(¹⁰Be/⁹Be)初始通量 数量级为 10⁻¹⁰,而南海、太平洋深层水(¹⁰Be/⁹Be)初 始通量数量级为 10⁻⁷,分别低一个和两个数量级 (表 3),这应该反映了加瓜海脊接受了大量风化物质。

3.2 Co经验公式法得到的生长速率

根据 Co 经验公式测年法的假设,结壳生长速 率越快, Co 含量越低^[20]。Puteanus 和 Halbach^[43] 根 据这一假设,率先提出结壳生长速率的计算公式: *G*=1.28/([Co]-0.24),其中 [Co] 是结壳中 Co 的质量 百分含量,该公式适用于 Co 的百分含量为 0.24%~ 2.0% 的结壳。由于本研究样品的 Co 含量较低,所 以在计算结壳生长速率的时候采用了 Manheim^[31] 提出的公式。

根据 Co 经验公式得到的结壳年龄为 7.05 Ma, 而根据¹⁰Be/⁹Be 得到的结壳年龄为 7.09 Ma,两者相 近。但进一步比较两种方法得到的生长速率后发 现, Co 经验公式得到的结壳生长速率为 4.92~ 7.93 mm/Ma, ¹⁰Be/⁹Be 得到的生长速率为 4.71~ 22.72 mm/Ma,这两种方法得到的生长速率差别较

表 3 南海和太平洋深层水¹⁰Be/⁹Be 初始通量 Table 3 Initial flux of ¹⁰Be/⁹Be in SCS and Pacific

序号	年龄/Ma	¹⁰ Be/9Be/10 ⁻⁹	(¹⁰ Be/ ⁹ Be) _{初始通量} /10 ⁻⁹
J158-1	0.390	5.160	6.270
J158-2	1.330	3.230	6.279
J158-3	2.170	2.130	6.300
J158-4	3.170	1.290	6.289
J158-5	4.520	0.660	6.318
05E-1	0.250	5.420	6.141
05E-2	0.550	4.650	6.121
05E-3	1.060	3.610	6.131
05E-4	1.870	2.400	6.110
05E-5	2.340	1.900	6.118
05E-6	2.71	1.58	6.121
MDD46-1-1	0.96	65.48	106
MDD46-1-5	1.370	68.32	135
MDD46-1-10	1.750	60.89	146
MDD46-1-15	2.320	47.56	152
MDD46-1-20	2.750	24.31	96
MDD46-1-25	3.190	19.79	97
MDD46-1-30	3.680	7.93	50
MDD46-1-35	4.150	11.10	88
MDD46-1-40	4.560	14.99	147
MDD46-1-41	4.650	14.29	146

注: J158^[41]和05E^[42]记录南海深层水¹⁰Be/⁹Be初始通量,结壳 MDD46-1^[40]记录太平洋深层水¹⁰Be/⁹Be初始通量。

大(图 3)。在本研究样品中,在 Co含量较低的层 位,1ºBe/PBe确定的生长速率远高于Co经验公式得 到的生长速率,由于10Be/9Be初始通量变化较小, ¹⁰Be/⁹Be得到的生长速率应该更为准确。进一步的 比较发现结壳 Co含量与 Al含量存在明显的负相 关关系。结壳中的 Al 主要赋存于硅铝氧化物中, 这些硅铝氧化物主要来自陆源碎屑,而Co是海水 自生组分,主要来自海水中颗粒物的降解[44-45]。 Co、Al含量的负相关关系应该反映了陆源碎屑组 分对海水自生组分的"稀释"。根据我们对全球各 大洋、边缘海中结壳主微量元素的统计结果(表 4), 加瓜海脊结壳中平均 Al 含量, 显著高于菲律宾海 盆和北太平洋 Prime Zone 结壳, 在开阔大洋环境 中, Co 经验公式和10Be/9Be 得到的结壳生长速率较 为接近^[8,46],这可能是开阔大洋的结壳受到陆源物 质的干扰相对较少所致。而在加瓜海脊地区,大量 陆源物质的输入使得 Co 经验公式、10Be/9Be 得到的 生长速率差异较大,因此 Co 经验公式并不完全适 用于边缘海环境中的结壳。

3.3 ²³⁰Th_{ex}/²³²Th 生长速率

由于²³⁴U在结壳中的扩散速率较快,U系衰变 系列中的²³⁴U/²³⁸U、²³⁰Th/²³⁴U和²³²Th/²³⁴U并不能得到 结壳表层准确的生长速率^[47-48],Th在结壳中的扩散 速率极低,所以²³⁰Th_{ex}和²³⁰Th_{ex}/²³²Th都能得到相对 准确的结壳表层生长速率,其中²³²Th的引入能够降 低²³⁰Th含量变化所造成的测年误差^[20]。本研究通 过²³⁰Th_{ex}/²³²Th法得到样品表层 2 mm的生长速率为 9.90 mm/Ma,而同一样品段¹⁰Be/⁹Be定年方法所得到 的结壳生长速率为 6.24 mm/Ma,两种方法得到的生 长速率之间存在较大差别。²³⁰Th_{ex}/²³²Th定年方法假 定这些核素进入结壳的初始通量恒定,但是通过计 算发现²³⁰Th_{ex}/²³²Th的初始通量并不恒定,其活度为 11.71~32.25。Liu 等^[32] 通过²³⁰Th_{ex}/²³²Th 得到两个太 平洋结壳的生长速率分别为 2.07 和 1.57 mm/Ma, 两 个结壳的²³⁰Th_{ex}/²³²Th初始通量的活度范围分别为 179.10~268.22(METG03) 和 140~188(MP3D07), 比本研究样品²³⁰Th_{ex}/²³²Th 初始通量的活度高出一个 数量级,为了准确衡量两个不同地区样品中 ²³⁰Th_{ex}/²³²Th 初始通量的离散程度, 我们分别计算了 METG03 和本研究样品²³⁰Th_{ex}/²³²Th 初始通量的变异 系数,分别为0.23和0.19,这表明太平洋地区 ²³⁰Th_{ex}/²³²Th 初始通量的变化更为剧烈, 认为 METG03 初始通量的波动可能是缘于 Liu^[32] 的取样方法,其 取样点数目较少,在1.5 mm范围内仅有4个取样 点,而且分层取样的样品质量之间可相差2倍。相 对而言,本研究的取样分辨率更高,分层样品质量 相差不大,数据更为准确。

Th 有较强的颗粒活性,主要以 ThO₂形式赋存, 在海水中滞留时间仅有数月^[49],无法进行长距离的 搬运,²³⁰Th和²³²Th的来源存在差异。²³⁰Th_{av}是 ²³⁴U的衰变子体,结壳中²³⁰Th 通量可以看成是稳定 的^[47], 而²³²Th来自河流和风尘物输入^[50]。Huh和 Ku^[51] 通过对比北太平洋结核与周围沉积物,发现结 核中 0.1~0.3 Ma 和 1~3 Ma 时期²³²Th 的增加与风 成物质的输入有关。在开阔大洋环境,²³²Th主要来 自风尘物^[52],陆源输入的影响相对较弱,因此 ²³⁰Th_{av}/²³²Th 和¹⁰Be/⁹Be 得到的生长速率较接近, 在赤 道太平洋地区,两种测年方法得到的结壳表层生长 速率分别为 3.05 和 2.37 mm/Ma^[48, 53]。Liu^[32]研究的 两个样品的²³²Th含量分别为 18.9~47.3 和 21.8~ 45.3 mg/kg,相比之下,本研究样品的表层 2 mm 的 ²³²Th 含量为 290.02~503.71 mg/kg, 比太平洋结壳高 出一个数量级,结合对全球结壳元素含量的统计

表 4 全球大洋、边缘海结壳主微量元素平均含量 Table 4 Major and trace elements content of Fe-Mn crust from oceans and marginal seas

			_							
元素		大西洋	印度洋	南大洋	Non-Prime Zone	北太平洋Prime Zone	加瓜海脊*	菲律宾海盆	加利福利亚湾	南海**
主量元素/%	Fe	20.9	22.3	18.1	22.5	16.8	23.92	21.16	23.8	16.01
	Mn	14.5	17	21.7	23.4	22.8	18.59	5.08	19.5	15.43
	Al	2.2	1.83	1.28	1.8	1.01	5.80	4	1.79	2.02
微量元素/(mg/kg)	Co	3 608	3 2 9 1	6167	3 7 3 3	6655	2 2 5 8.95	1 450	3 1 3 1	1 639.25
	Cu	861	1 1 0 5	1 0 8 2	1 074	982	1077.06	815.3	383	484.88
	Ni	2581	2 563	4643	3 4 9 5	4216	2286.86	886.15	2269	2992.88
	Th	52	56	15	36	12	63.03	31.66	48	8.68

注: *数据来自Chen^[28]以及本研究, **数据来自Guan^[54], 其他数据来自Hein^[1]。

(表 4),加瓜海脊结壳 Th 的平均含量为 63 mg/kg, 远大于北太平洋和菲律宾海结壳。在大量陆源碎 屑物质的影响下,本研究样品表层的²³⁰Th 含量远高 于开阔大洋结壳,结壳表层的²³⁰Th_{ex}/²³²Th 的初始通 量受到影响,其定年结果并不准确。

3.4 古地磁地层学沉积速率

结合 Co 经验公式、¹⁰Be/⁹Be 的定年结果, 根据 古地磁地层学的结果对比确定了 4 个年龄控制点: 8.91 mm 处的年龄为 0.781 Ma, 12.26 mm 处对应年 龄为 2.581 Ma, 24.73 mm 处对应的年龄为 3.506 Ma, 33.07 mm 处对应的年龄为 6.033 Ma。由此得到结 壳沉积速率为 3.30~11.41 mm/Ma, 这与 Be 同位 素、Co 经验公式得到的沉积速率相比存在较大差异。

前人利用古地磁地层学和 Be 同位素方法对太 平洋结壳进行的年代学研究,表明这两种方法得到 的生长速率较接近^[22-25]。进一步比较交变退磁结 果,我们发现这些样品的交变退磁能够有效地消除 次生剩磁的影响,这些样品的交变退磁曲线可以指 向原点。在本研究的样品切片中,虽然薄片都有明 显的极性变化,但是这些薄片的退磁曲线并未趋近 原点。

岩石磁学实验已经证实,结壳天然沉积剩磁的 载磁矿物为磁铁矿和钛铁矿^[22],然而对于结壳中天 然剩磁的成因仍不明确,Yuan^[55]等在结壳中发现了 趋磁细菌形成的磁小体,这表明结壳的天然剩磁是 生物成因的,而磁铁矿是低矫顽力矿物,退磁曲线 通常会趋于原点。本研究样品的退磁曲线特点表 明,结壳中存在高矫顽力的磁性矿物。

4 结论与展望

(1)对于边缘海铁锰结壳来说,陆源输入对 ²³⁰Th_{ex}/²³²Th、¹⁰Be/⁹Be、Co 经验公式定年方法都存在 显著影响,相对而言,¹⁰Be/⁹Be 定年方法能够得到相 对准确的结壳年龄;

(2)通过对比不同定年方法得到的结壳生长速 率和年龄,我们确定本研究样品的年龄为7.09 Ma, 这是迄今为止该地区获得的最老的结壳。

基于以上讨论,对今后铁锰结壳的测年提出以下几点建议:① 在保证测试精度和准确度的前提下,优化各种同位素的湿化学前处理流程,降低样品消耗量;同时对结壳进行高精度取样,尽可能提高取样分辨率;② 利用电子探针或者 LA-ICP-MS 这些原位分析技术,获取结壳剖面上高分辨率的元

素或者同位素变化。不同核素在铁锰结核中的赋 存状态应该是今后研究的一个重要方向。

致谢:感谢西安交通大学张芬、宁有丰老师在 U-Th同位素测试工作方面的指导,感谢同济大学 海底观测大科学工程的乔志国老师在样品采集和 处理过程中给予的帮助。

参考文献 (References)

- [1] Hein J R, Mizell K, Koschinsky A, et al. Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: comparison with land-based resources [J]. Ore Geology Reviews, 2013, 51: 1-14.
- Hein J R, Koschinsky A. Deep-ocean ferromanganese crusts and nodules[M]//Holland H D, Turekian K K. Treatise on Geochemistry.
 2nd ed. Amsterdam: Elsevier, 2014, 13: 273-291.
- [3] Koschinsky A, Hein J R. Marine ferromanganese encrustations: archives of changing oceans [J]. Elements, 2017, 13 (3): 177-182.
- [4] Koschinsky A, Halbach P. Sequential leaching of marine ferromanganese precipitates: Genetic implications [J]. Geochimica et Cosmochimica Acta, 1995, 59 (24): 5113-5132.
- [5] Christensen J N, Halliday A N, Godfrey L V, et al. Climate and ocean dynamics and the lead isotopic records in Pacific ferromanganese crusts [J]. Science, 1997, 277 (5328): 913-918.
- [6] Burton K W, Ling H F, O'Nions R K. Closure of the Central American Isthmus and its effect on deep-water formation in the North Atlantic [J]. Nature, 1997, 386 (6623): 382-385.
- [7] Ling H F, Jiang S Y, Frank M, et al. Differing controls over the Cenozoic Pb and Nd isotope evolution of deepwater in the central North Pacific Ocean [J]. Earth and Planetary Science Letters, 2005, 232 (3-4): 345-361.
- [8] Klemm V, Levasseur S, Frank M, et al. Osmium isotope stratigraphy of a marine ferromanganese crust [J]. Earth and Planetary Science Letters, 2005, 238 (1-2): 42-48.
- [9] Klemm V, Frank M, Levasseur S, et al. Seawater osmium isotope evidence for a middle Miocene flood basalt event in ferromanganese crust records [J]. Earth and Planetary Science Letters, 2008, 273 (1-2): 175-183.
- [10] 王洋,方念乔. 80Ma以来海水Os同位素组成曲线的精细特征:中、 西太平洋多金属结壳的记录[J].海洋科学,2020,44(9):21-28.
 [WANG Yang, FANG Nianqiao. Precise characteristics of Os isotopic composition of seawater since 80 Ma: recorded in polymetallic crusts from CW Pacific [J]. Marine Sciences, 2020, 44(9):21-28.]
- [11] Cowen J P, Decarlo E H, Mcgee D L. Calcareous nannofossil biostratigraphic dating of a ferromanganese crust from Schumann Seamount [J]. Marine Geology, 1993, 115 (3-4): 289-306.
- [12] 苏新, 马维林, 程振波. 中太平洋海山区富钴结壳的钙质超微化石地 层学研究[J]. 地球科学——中国地质大学学报, 2004, 29(2): 141-147. [SU Xin, MA Weilin, CHENG Zhenbo. Calcareous nannofossil

biostratigraphy for Co-rich ferromanganese crusts from central Pacific seamounts [J]. Earth Science—Journal of China University of Geosciences, 2004, 29 (2): 141-147.]

- [13] 张海生,韩正兵,雷吉江,等.太平洋海山富钴结壳钙质超微化石生物地层学及生长过程[J].地球科学——中国地质大学学报,2014, 39(7): 775-783. [ZHANG Haisheng, HAN Zhengbing, LEI Jijiang, et al. Calcareous nannofossil biostratigraphy and growth periods of Corich crusts from Pacific seamounts [J]. Earth Science—Journal of China University of Geosciences, 2014, 39(7): 775-783.]
- [14] 任向文, Pulyaeva I, 吕华华, 等. 麦哲伦海山群MK海山富钴结壳钙 质超微化石生物地层学研究[J]. 地学前缘, 2017, 24 (1): 276-296.
 [REN Xiangwen, Pulyaeva I, LÜ Huahua, et al. Calcareous nannofossil biostratigraphy of a Co-rich ferromanganese crust from seamount MK of Magellan Seamount Cluster [J]. Earth Science Frontiers, 2017, 24(1): 276-296.]
- [15] Han X Q, Jin X L, Yang S F, et al. Rhythmic growth of Pacific ferromanganese nodules and their Milankovitch climatic origin [J]. Earth and Planetary Science Letters, 2003, 211 (1-2): 143-157.
- [16] Josso P, van Peer T, Horstwood M S A, et al. Geochemical evidence of Milankovitch cycles in Atlantic Ocean ferromanganese crusts [J].
 Earth and Planetary Science Letters, 2021, 553: 116651.
- [17] Ku T L, Kusakabe M, Nelson D E, et al. Constancy of oceanic deposition of ¹⁰Be as recorded in manganese crusts [J]. Nature, 1982, 299 (5880): 240-242.
- [18] Von Blanckenburg F, O'Nions R K. Response of beryllium and radiogenic isotope ratios in Northern Atlantic Deep Water to the onset of northern hemisphere glaciation [J]. Earth and Planetary Science Letters, 1999, 167 (3-4): 175-182.
- [19] Somayajulu B L K. Growth rates of oceanic manganese nodules: implications to their genesis, palaeo-earth environment and resource potential [J]. Current Science, 2000, 78 (3): 300-308.
- [20] 方志浩, 屠霄霞, 乔志国, 等. 铁锰结壳年代学方法及其应用[J]. 海 洋科学, 2019, 43 (9): 104-113. [FANG Zhihao, TU Xiaoxia, QIAO Zhiguo, et al. Review and application of dating methods of ferromanganese crusts [J]. Marine Sciences, 2019, 43 (9): 104-113.]
- [21] Crecelius E A, Carpenter R, Merrill R T. Magnetism and magnetic reversals in ferromanganese nodules [J]. Earth and Planetary Science Letters, 1973, 17 (2): 391-396.
- [22] Oda H, Usui A, Miyagi I, et al. Ultrafine-scale magnetostratigraphy of marine ferromanganese crust [J]. Geology, 2011, 39(3): 227-230.
- [23] Noguchi A, Yamamoto Y, Nishi K, et al. Paleomagnetic study of ferromanganese crusts recovered from the northwest Pacific-Testing the applicability of the magnetostratigraphic method to estimate growth rate [J]. Ore Geology Reviews, 2017, 87: 16-24.
- [24] Yuan W, Zhou H Y, Zhao X X, et al. Magnetic stratigraphic dating of marine hydrogenetic ferromanganese crusts [J]. Scientific Reports, 2017, 7(1): 16748.
- [25] Yi L, Medina-Elizalde M, Kletetschka G, et al. The potential of marine ferromanganese nodules from eastern pacific as recorders of earth's magnetic field changes during the past 4.7 Myr: a geochronological study by magnetic scanning and authigenic ¹⁰Be/⁹Be dating [J]. Journal of Geophysical Research:Solid Earth, 2020, 125 (7) : e2019JB018639.

- [26] Ling H F, Burton K W, O'Nions R K, et al. Evolution of Nd and Pb isotopes in Central Pacific seawater from ferromanganese crusts [J]. Earth and Planetary Science Letters, 1997, 146 (1-2): 1-12.
- [27] Chen S, Yin X B, Wang X Y, et al. The geochemistry and formation of ferromanganese oxides on the eastern flank of the Gagua Ridge [J]. Ore Geology Reviews, 2018, 95: 118-130.
- [28] Du Y J, Zhou W J, Xian F, et al. ¹⁰Be signature of the Matuyama-Brunhes transition from the Heqing paleolake basin [J]. Quaternary Science Reviews, 2018, 199: 41-48.
- [29] Tu X X, Zhou H Y, Wang C H, et al. Basin-scale seawater lead isotopic character and its geological evolution indicated by Fe-Mn deposits in the SCS [J]. Marine Georesources & Geotechnology, 2020, 38 (7): 876-886.
- [30] Cheng H, Edwards R L, Shen C C, et al. Improvements in ²³⁰Th dating, ²³⁰Th and ²³⁴U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry [J]. Earth and Planetary Science Letters, 2013, 371-372: 82-91.
- [31] Manheim F T, Lane-Bostwick C M. Cobalt in ferromanganese crusts as a monitor of hydrothermal discharge on the Pacific sea floor [J]. Nature, 1988, 335 (6185): 59-62.
- [32] Liu R L, Wang M Y, Li W Q, et al. Dissolved thorium isotope evidence for export productivity in the subtropical North Pacific during the Late Quaternary [J]. Geophysical Research Letters, 2020, 47 (11): e2019GL085995.
- [33] Frank M. Radiogenic isotopes: tracers of past ocean circulation and erosional input [J]. Reviews of Geophysics, 2002, 40 (1): 1001.
- [34] Von Blanckenburg F, Bouchez J. River fluxes to the sea from the ocean's ¹⁰Be/⁹Be ratio [J]. Earth and Planetary Science Letters, 2014, 387: 34-43.
- [35] Beer J, Muscheler R, Wagner G, et al. Cosmogenic nuclides during Isotope Stages 2 and 3 [J]. Quaternary Science Reviews, 2002, 21 (10): 1129-1139.
- [36] Frank M, Porcelli D, Andersson P, et al. The dissolved Beryllium isotope composition of the Arctic Ocean [J]. Geochimica et Cosmochimica Acta, 2009, 73 (20): 6114-6133.
- [37] Suganuma Y, Yokoyama Y, Yamazaki T, et al. ¹⁰Be evidence for delayed acquisition of remanent magnetization in marine sediments: Implication for a new age for the Matuyama-Brunhes boundary [J]. Earth and Planetary Science Letters, 2010, 296 (3-4): 443-450.
- [38] Simon Q, Thouveny N, Bourlès D L, et al. Increased production of cosmogenic ¹⁰Be recorded in oceanic sediment sequences: Information on the age, duration, and amplitude of the geomagnetic dipole moment minimum over the Matuyama–Brunhes transition [J]. Earth and Planetary Science Letters, 2018, 489: 191-202.
- [39] Von Blanckenburg F, O'Nions R K, Belshaw N S, et al. Global distribution of beryllium isotopes in deep ocean water as derived from Fe-Mn crusts [J]. Earth and Planetary Science Letters, 1996, 141 (1-4): 213-226.
- [40] Cui L F, Hu Y, Dong K J, et al. ¹⁰Be⁹Be constrain of varying weathering rate since 5 Ma: evidence from a Co-rich ferromanganese crust in the western Pacific [J]. Science Bulletin, 2021, 66 (7): 664-666.

- [41] Zhong Y, Chen Z, Hein J R, et al. Evolution of a deep-water ferromanganese nodule in the South China Sea in response to Pacific deep-water circulation and continental weathering during the Plio-Pleistocene [J]. Quaternary Science Reviews, 2020, 229: 106106.
- [42] Zhong Y, Liu Q S, Chen Z, et al. Tectonic and paleoceanographic conditions during the formation of ferromanganese nodules from the northern South China Sea based on the high-resolution geochemistry, mineralogy and isotopes [J]. Marine Geology, 2019, 410: 146-163.
- Puteanus D, Halbach P. Correlation of Co concentration and growth rate: a method for age determination of ferromanganese crusts [J].
 Chemical Geology, 1988, 69 (1-2): 73-85.
- [44] Wen X, De Carlo E H, Li Y H. Interelement relationships in ferromanganese crusts from the central Pacific ocean: Their implications for crust genesis [J]. Marine Geology, 1997, 136 (3-4): 277-297.
- [45] 周怀阳. 深海海底铁锰结核的秘密[J]. 自然杂志, 2015, 37(6): 397-404. [ZHOU Huaiyang. Metallogenetic mystery of deep sea ferromanganese nodules [J]. Chinese Journal of Nature, 2015, 37(6): 397-404.]
- [46] Burton K W, Lee D C, Christensen J N, et al. Actual timing of neodymium isotopic variations recorded by Fe-Mn crusts in the western North Atlantic [J]. Earth and Planetary Science Letters, 1999, 171 (1): 149-156.
- [47] Neff U, Bollhöfer A, Frank N, et al. Explaining discrepant depth profiles of ²³⁴U/²³⁸U and ²³⁰Thexc in Mn-crusts [J]. Geochimica et Cosmochimica Acta, 1999, 63 (15): 2211-2218.
- [48] Henderson G M, Burton K W. Using $(^{234}U/^{238}U)$ to assess diffusion

rates of isotope tracers in ferromanganese crusts [J]. Earth and Planetary Science Letters, 1999, 170 (3): 169-179.

- [49] Hayes C T. Marine thorium and protactinium distributions: Tools for past and present chemical flux[D]. Doctor Dissertation of Columbia University, 2013.
- [50] Claude C, Suhr G, Hofmann A W, et al. U-Th chronology and paleoceanographic record in a Fe-Mn crust from the NE Atlantic over the last 700 ka [J]. Geochimica et Cosmochimica Acta, 2005, 69 (20): 4845-4854.
- [51] Huh C A, Ku T L. Distribution of thorium 232 in manganese nodules and crusts: Paleoceanographic implications [J]. Paleoceanography, 1990, 5 (2): 187-195.
- [52] Hsieh Y T, Henderson G M, Thomas A L. Combining seawater ²³²Th and ²³⁰Th concentrations to determine dust fluxes to the surface ocean [J]. Earth and Planetary Science Letters, 2011, 312 (3-4): 280-290.
- [53] O'Nions R K, Frank M, Von Blanckenburg F, et al. Secular variation of Nd and Pb isotopes in ferromanganese crusts from the Atlantic, Indian and Pacific Oceans [J]. Earth and Planetary Science Letters, 1998, 155 (1-2): 15-28.
- [54] Guan Y, Sun X M, Ren Y Z, et al. Mineralogy, geochemistry and genesis of the polymetallic crusts and nodules from the South China Sea [J]. Ore Geology Reviews, 2017, 89: 206-227.
- [55] Yuan W, Zhou H Y, Yang Z Y, et al. Magnetite magnetofossils record biogeochemical remanent magnetization in hydrogenetic ferromanganese crusts [J]. Geology, 2020, 48 (3): 1-1.