硅藻土对水泥铜尾矿粉胶凝材料性能的影响

付翔12,李香兰1,郭慧1,彭小英12,刘方华12,冯胜雷13

(1. 江西科技学院土木工程学院,江西 南昌 330098; 2. 江西科技学院绿色建筑研究 所,江西 南昌 330098; 3. 河北工程大学土木工程学院,河北 邯郸 056038)

摘要:针对铜尾矿粉-硅酸盐水泥力学强度差的问题,本文拟将硅藻土加入到该胶凝体系中,硅藻土以 0.5%,1.0%,1.5%和 2.0%等质量替代铜尾矿粉-水泥,测试了复合胶凝材料的流动度、凝结时间、吸水率、 孔隙率、体积密度、力学性能和微观性能。结果表明,随着硅藻土掺量的增加,净浆的流动度降低,凝结时间 缩短,吸水率和孔隙率减小,体积密度增大,砂浆的抗压强度和抗折强度增加。净浆养护 28 d 后,硅藻土的加 入使得净浆中的 SiO,和 Ca(OH),晶体含量减少,C-S-H(水化硅酸钙)凝胶增多,整体比较致密。

关键词: 硅藻土; 铜尾矿粉; 硅酸盐水泥; 胶凝材料; 力学强度

doi:10.3969/j.issn.1000-6532.2022.03.005

中图分类号: TD989; TU599 文献标志码: A 文章编号: 1000-6532 (2022) 03-0027-05

随着我国基础建设的迅猛发展,对水泥的需 求日益增加,但是水泥的产量陡增对资源消耗和 环境污染提出了严重的挑战。为此,人们使用诸 如粉煤灰、矿渣、硅灰等具有火山灰活性的工业 废弃物来代替部分水泥,以达到消耗废弃物和降 低环境污染的双赢局面^[1]。江西省铜矿资源丰富, 铜产量居全国之首,同时产生的铜尾矿也是数量 巨大^[2]。据报道我国铜尾矿年产量为 0.31 亿 t, 2012年已累计堆积达到 24 亿 t^[3],这些大量堆存 的尾矿废弃物不仅占用广阔的土地资源,而且尾 矿中的有用矿物得不到有效利用造成资源浪费, 同时尾矿的堆积严重影响着矿区人民的生产生活 安全。

有学者研究了铜尾矿代替水泥的可行性,发现当铜尾矿粉磨后,代替质量为30%的水泥时,力学性能出现严重的恶化,影响了铜尾矿粉-水泥 胶凝材料的使用^[4]。为此,需要加入适当的掺入料 来提高其力学性能。硅藻土是一种主要由水生单 细胞植物硅藻的骨骼组成的沉积岩,这些植物的 骨骼主要由无定型的二氧化硅、碳酸盐、黏土矿 物、石英和长石等组成,其具有多孔、质量轻、 化学性能稳定、价格低廉等特点,而广泛用作吸附材 料^[5]、填充材料^[6]、过滤材料^[7]、绝缘材料^[8]和催 化剂载体等^[9]。曾有学者研究了硅藻土作为矿物掺 合料对水泥性能的影响,结果表明,硅藻土的使 用产生了大量的水化产物,但是加入比例过多的 话,会引起力学强度急剧下降^[10]。但是,硅藻土 对于铜尾矿粉-硅酸盐水泥胶凝材料的研究尚不多 见,为此,本文将硅藻土部分取代铜尾矿粉和硅 酸盐水泥,研究其凝结时间、流动度、力学性 能,分析水化产物的物相组成和微观形貌,为有 效利用工矿废弃物提供技术支持。

1 实验部分

1.1 材料

普通硅酸盐水泥 (P·O 42.5 型)、铜尾矿和硅藻 土的化学组成见表 1,分别取自于安徽海螺水泥 有限公司、江西德兴铜矿有限公司和广州亿拓商 贸有限公司。硅酸盐水泥的比重为 3.16 g/cm³,布

收稿日期: 2020-04-25

基金项目: 江西省教育厅科技项目基金 (GJJ180981, GJJ190997, GJJ191002); 江西省卫生健康委科技项目 (20202019); 江西科技学院自然科学项目基金 (ZR1812, ZR1915) 作者简介: 付翔(1987-),男,硕士,讲师,从事工矿固体废弃物资源化研究。 通信作者: 冯胜雷(1980-),男,博士,副教授,从事工矿固体废弃物资源化、新型建筑材料研究。 莱恩比表面积为 3.34 m²/g。铜尾矿粉取粉磨 30 min 后的粉体, BET 法测得其比表面积 S.S.A 为 0.043 m²/g,通过比重瓶法测试粉体的密度为 ρ=2.91 g/m³。硅藻土使用前先在 100 ℃ 干燥 24 h, 其比表面积 S.S.A 为 19.32 m²/g。粉磨后的铜尾矿 粉呈不规则形状,硅藻土呈圆盘状,内部富含孔

隙。铜尾矿粉主要晶相包括石英、白云母、钛酸 铁和氢氧化铝钙,在 2θ= 21°处的宽峰表明硅藻土 中的 SiO₂ 为无定型态,还有少量钠盐。铜尾矿粉 粒径主要分布在 5-25 μm 之间,硅藻土的平均粒 径为 25 μm。

表 1 水泥、铜尾矿和硅藻土的化学组成/%

Table 1 Chemical composition of cement, copper tailing powder and diatomite										
名称	SiO ₂	CaO	Al_2O_3	Fe ₂ O ₃	SO3	MgO	P_2O_5	Na ₂ O	K ₂ O	LOI
水泥	20.87	62.66	4.14	5.12	2.32	4.08	0.08	0.11	0.28	0.34
铜尾矿	3.56	63.84	19.65	2.37	0.36	3.16	0.15	0.30	4.67	1.94
硅藻土	78.24	1.06	0.55	1.12	0.98	0.87	0.25	0.89	0.75	15.29

1.2 胶凝体系的组成设计

根据表 2 为硅藻土-铜尾矿粉-水泥净浆的组成 设计,其中铜尾矿粉和硅酸盐水泥粉体的质量比 为 3:7^[4],在参考相关资料^[11] 及预实验基础上将硅 藻土按 0.5%、1.0%、1.5% 和 2.0% 等质量代替铜 尾矿粉-水泥复合粉体,水胶比为 0.35,成型 24 h 后脱模,在标准养护箱 (20 ± 2℃, RH≥ 95%) 养护的砂浆用于测试抗压强度和抗折强度。抗压 和抗折强度测试使用的砂浆样品,除需另加入胶 砂比为 1:3 的标准砂外,其他组成设计及制备工 艺均与净浆样品相同。

表 2 硅藻土-铜尾矿粉-水泥净浆的组成设计 Table 2 Composition design of diatomite- copper tailing

powder- cement pastes										
样品	水泥/g	铜尾矿粉/g	硅藻土/g	自来水/g						
СТ	840	360	-	420						
CTD0.5	835.8	358.2	6	420						
CTD1.0	831.6	356.4	12	420						
CTD1.5	827.4	354.6	18	420						
CTD2.0	823.2	352.8	24	420						

1.3 性能测试

净浆的流动度依据 GB/T 2419—2016《水泥胶 砂流动度测定方法》进行测试。凝结时间根据 GB/T 1346—2001《水泥标准稠度用水量、凝结时 间、安定性检验方法》,使用维卡仪来进行测 定。测试净浆样品的体积密度前,先将样品在 60℃干燥 24 h,然后称量样品的质量,测量其尺 寸,用测得的质量除以体积后得到体积密度,每 种样品测试 6 个平行样,以平均值±方差表示体积 密度。 使用 X 射线衍射仪 (XRD, Bruker D8, 德国 Bruker 公司)测试净浆水化产物的物相组成,步速 为 0.013°/s,扫描范围为 10~ 60°。通过扫描电镜 (SEM, Quanta 250FEG,美国 FEI 公司)观察水泥 净浆的微观形貌,测试电压为 20 V,电流为 20 A, 测试前样品喷金。

砂浆的抗折强度在水泥电动抗折试验机 (DKZ-5000)上测试,试块的尺寸为40mm×40 mm×160mm,每种样品测试3个平行样。抗压强 度在全自动压力试验机上(YAW-300B)测试,试 块的尺寸为40mm×40mm×40mm,每种样品测 试6个平行样。抗压强度和抗折强度以平均值±方 差来表示。

2 结果与讨论

2.1 流动度和凝结时间

图 1 是硅藻土对铜尾矿粉-水泥净浆流动度和凝结时间的影响。图 1(a)显示铜尾矿粉-水泥净浆的流动度为 89 mm,加入硅藻土后流动度逐渐降低,CTD0.5、CTD1.0、CTD1.5 和 CTD2.0 的流动度分别为 86、81、78、72.5 mm。硅藻土内部富含孔隙,比表面积较大,需水量较大,在相同水胶比条件下,加入的硅藻土越多,净浆的流动度越低。在图 1(b)凝结时间测试中,CT、CTD0.5、CTD1.0、CTD1.5 和 CTD2.0 的初凝时间分别为300、280、275、270、260 min,终凝时间365、315、310、305、295 min,随着硅藻土内掺量的增加,净浆的凝结时间缩短,说明硅藻土促进了铜尾矿粉和水泥的水化进程,生成了更多的凝胶产物,缩短了凝结时间。

2.2 吸水率、孔隙率和体积密度

图 2 是硅藻土对铜尾矿粉-水泥净浆吸水率、 孔隙率和体积密度的影响。从图 2(a)可以看到, 在养护 3 d 后,随着硅藻土掺量的增加,净浆的吸 水率逐渐减小,从 CT 的 21.25% ± 0.32% 减小到 CTD0.5 的 20.25% ± 0.29%,说明硅藻土促进了铜 尾矿粉-水泥的水化,生成的水化产物更加致密。 从养护 3 d 到 7 d 和 28 d,生成的 C-S-H 凝胶和 Ca(OH)₂ 晶体彼此交错,使得水化产物更加致密, 吸水率随养护时间延迟而降低,CT 这三个龄期的 吸水率分别为 21.25% ± 0.32%、17.87% ± 0.22% 和 6.70% ± 0.33%,CTD0.5 的吸水率分别为 20.25% ± 0.29%、16.13% ± 0.54% 和 4.81% ± 0.56%。从第 7 d 到第 28 d 的吸水率减小值要比第 3 d 到第 7 d 的减 小值大,这是因为第 7 d 到第 28 d 的养护时间 (21 d) 比第 3d 到第 7 d 的养护时间 (4 d) 更久。

图 2(b)的孔隙率表现出了与吸水率相同的规律,即在同一个龄期,随着硅藻土掺量的增加, 孔隙率逐渐减小;随着养护龄期延长,吸水率逐 渐减小;从第7d到第28d吸水率减小值要大于 从第3d到第7d的吸水率减小值。不同的是,孔 隙率值要大于吸水率值,这是因为吸水率是在没 有外压条件下的测试值,而孔隙率是在抽真空的 条件下,使得更多的水分进入了内部的孔隙,所 以测得的孔隙率要大于吸水率。

图 2(c) 是硅藻土对铜尾矿粉-水泥净浆体积密

度的影响。可以看到,从第3d到第7d和第28d,随着养护龄期延长,净浆的体积密度也逐渐增大,CT的体积密度由1.584±0.011 g/cm³增加到1.655±0.023和1.821±0.020 g/cm³,CTD2.0的体积密度由1.751±0.013 g/cm³增加到1.812±0.010和1.951±0.012 g/cm³。在相同的龄期,随着硅藻土掺量的逐渐增加,净浆的体积密度也逐渐增加,这也反映了硅藻土促进了铜尾矿粉和水泥的水化,使得净浆的水化产物更加密实,体积密度逐渐增大。

2.3 抗压强度和抗折强度

图 3 是硅藻土对铜尾矿粉-水泥砂浆抗压强度 和抗折强度的影响。从图 3(a)可以看到,在养护 7 d 后,铜尾矿粉-水泥砂浆的抗压强度为 31.12 ± 0.90 MPa,随着硅藻土掺量的增加,砂浆的抗压 强度逐渐增加,当硅藻土对铜尾矿粉和水泥的 替代量为 2% 时, CTD2.0 的抗压强度为 34.80 ± 0.82 MPa。随着养护时间的延长,砂浆抗压强度也 在增加,并且随着硅藻土掺量的增加,砂浆抗压 强度依次增加,养护 28 d 后, CT 和 CTD2.0 的抗 压强度分别增加到 40.93 ± 0.80 MPa 和 44.53 ± 0.61 MPa。

图 3 硅藻土对铜尾矿粉-水泥砂浆抗压强度和抗折强的影响 Fig.3 Effect of diatomite on compressive strength and flexural strength of copper tailing powder- cement mortars

图 3(b) 是抗折强度曲线,抗折强度的演化规 律与抗压强度相同,在相同的龄期,随着硅藻土 掺量的增加,砂浆的抗折强度依次增加,养护 7 d 后抗折强度从 CT 的 6.73 ± 0.18 MPa 增加到 CTD2.0 的 8.38 ± 0.24 MPa,养护 28 d 后抗折强度 从 CT 的 7.35 ± 0.29 MPa 增加到 CTD2.0 的 9.08 ± 0.30 MPa。抗压强度和抗折强度的演化规律再次证 明了,随着硅藻土的加入促进了铜尾矿粉和水泥 的水化,产生了更多的水化产物,砂浆更加致 密,因此,抗压强度和抗折强度也在逐渐加大。

2.4 物相组成及微观形貌

图 4 为硅藻土-铜尾矿粉-水泥净浆养护 28 d 后

的 XRD。养护 28 d 后,所有净浆样品的主要晶相 包括 SiO₂、Ca(OH)₂、C-S-H 凝胶、钙矾石和未反 应的铁酸钛。SiO₂和铁酸钛主要来自于铜尾矿 粉,这些物相为晶态,在净浆的高碱性环境中也 难以发生化学反应,而 Ca(OH)₂、C-S-H 凝胶和钙 矾石都是水化反应的产物。随着硅藻土掺量的增 加,XRD 图中 SiO₂ 的衍射峰强度逐渐减弱而 C-S-H 的衍射峰逐渐增强,说明硅藻土的加入,减少 了体系中晶态 SiO₂ 的含量,并且硅藻土中高活性 的无定型 SiO₂ 参与了二次水化反应,与 Ca(OH)₂ 反应生成了更多的 C-S-H 凝胶。

图 5 为硅藻土-铜尾矿粉-水泥净浆养护 28 d 后的 SEM 图。养护 28 d 后,铜尾矿粉-水泥净浆的水化产物包括板状的 Ca(OH)2 晶体、块状 C-S-H凝胶和针状的钙矾石晶体,CTD0.5 和 CTD2.0 的水化产物中 Ca(OH)2 和钙矾石晶体较少,整体更加致密,显示相应的砂浆力学强度 会更大。

3 结 论

(1)随着硅藻土掺量的增加,净浆的流动度降低,凝结时间缩短,孔隙率和吸水率减小,体积密度增加。

(2) 随着硅藻土掺量的增加,砂浆的抗压强度

图 5 硅藻土-铜尾矿粉-水泥净浆养护 28 d 后的 SEM Fig.5 SEM images of diatomite- copper tailing powder- cement pastes after 28 d curing

和抗折强度依次增加。

(3) 净浆养护 28 d 后, 硅藻土的加入使得净浆 水化产物中的 SiO₂和 Ca(OH)₂晶体含量减少, C-S-H 凝胶增多, 整体更加致密。

参考文献:

[1] 刘振宇. 硅藻土-钢渣基复合胶凝材料的制备及机理研究 [D]. 邯郸: 河北工程大学, 2019.

LIU Z Y. Preparation and characterization of composite cementitious materials based on diatomite [D]. Handan: Hebei University of Engineering, 2019.

[2] 田键, 申盛伟, 叶斌, 等. 铜尾矿资源化利用与处置新工 艺[J]. 矿产综合利用, 2016(3):5-9.

TIAN J, SHEN S W, YE B, et al. New technology for utilization and disposal of copper tailings[J]. Multipurpose Utilization of Mineral Resources, 2016(3):5-9.

[3] 陈甲斌,李瑞军,余良晖.铜尾矿资源调查评价方法及其应用[J]. 自然资源学报, 2012, 27(8):1373-1381.

CHEN J B, LI R J, YU L H. Investigation and evaluation method of copper tailings resources and its application[J]. Journal of Natural Resources, 2012, 27(8):1373-1381.

[4] 宋军伟,朱街禄,刘方华,等.铜尾矿粉对复合胶凝体系强 度和微结构的影响[J].建筑材料学报,2019,22(6):846-852.

SONG J W, ZHU J L, LIU F H, et al. Effect of copper-tailing powder on the strength and microstructure of composite cementification system[J]. Journal of Building Materials, 2019, 22(6):846-852.

[5] 成奖国. 球磨混合硅藻土/坡缕石的吸附性能研究[J]. 矿 产综合利用, 2018(2):130-134.

CHENG J G. Study on the adsorption performance of mixed

diatomite/palozozite by ball mill[J]. Multipurpose Utilization of Mineral Resources, 2018(2):130-134.

[6] Lamastra F R, Mori S, Cherubini V, et al. A new green methodology for surface modification of diatomite filler in elastomers[J]. Materials Chemistry and Physics, 2017, 194:253-260.

[7] 任子杰, 高惠民, 柳溪. 硅藻土提纯及制备助滤剂研究进展[J]. 矿产综合利用, 2013(5):9-13+16.

REN Z J, GAO H M, LIU X. Research progress of purification of diatomite and preparation of filtration aid[J]. Multipurpose Utilization of Mineral Resources, 2013(5):9-13+16.

[8] Han L, Li F, Deng X, et al. Foam-gelcasting preparation, microstructure and thermal insulation performance of porous diatomite ceramics with hierarchical pore structures[J]. Journal of the European Ceramic Society, 2017, 37(7):2717-2725.

[9] 白春华, 徐志永, 李光辉, 等. 纳米 TiO2 负载硅藻土及改性研究进展[J]. 矿产综合利用, 2016(6):8-12.

BAI C H, XU Z Y, LI G H, et al. Research progress of nano-TiO₂ supported diatomite and its modification[J]. Multipurpose Utilization of Mineral Resources, 2016(6):8-12.

[10] Aydin A C, Gül R. Influence of volcanic originated natural materials as additive on the setting time and some mechanical properties of concrete. Construction and Building Materials, 2007(21): 1277-1281.

[11] 罗小宝,马芹永,顾皖庆,等. 硅藻土掺量和硅粉掺量对 混凝土抗压强度影响的试验与分析[J]. 科学技术与工程, 2018(18):315-319.

LUO X B, MA Q Y, GU W Q, et al. Experimental and analysis of the influence of diatomite and silica powder on the compressive strength of concrete[J]. Science Technology and Engineering, 2018(18):315-319.