李波1, 唐慧2, 罗丽萍3, 陈良1, 吴锦1

# (1. 凉山矿业股份有限公司,四川 会理 615100; 2. 成都理工大学,四川 成都 6100592; 3. 中国地质科学院矿产综合利用研究所,四川 成都 610041)

**摘要**:本文通过对拉拉铜矿流体包裹体拉曼光谱分析,发现拉拉铜矿流体包裹体类型具有多样性,既有 单相纯气相或纯液相、富气相、富液相、含子晶多相包裹体存在,也有流体-熔体包裹体存在。流体包裹体气相 成分中,不限于以往发现的以 CO<sub>2</sub> 为主的包裹体成分,也有以 N<sub>2</sub>、CH<sub>4</sub> 或者三者混合为主。流体包裹体子矿 物中不仅限于卤化物子晶,还发现了方解石及赤铁矿子晶。总之,拉拉铜矿流体包裹体拉曼光谱特征显示拉拉 铜矿成矿流体具有多期次、来源复杂的特点。

关键词: 拉拉铜矿; 流体包裹体; 拉曼光谱

doi:10.3969/j.issn.1000-6532.2023.01.008

中图分类号: TD982 文献标志码: A 文章编号: 1000-6532(2023)01-0063-08

拉拉铜矿是我国西南地区著名的大型铜矿, 自 1956年开展系统地质勘查工作以来,众多学者 对该矿床进行了大量科研工作,在矿物学、成矿 时代、矿床类型及成矿机制等方面取得成果<sup>[1-3]</sup>, 但对矿床的成因仍存在争议,目前主要分为三类, 其一为火山沉积-变质成因铜矿床<sup>[4-5]</sup>,其二为铁氧 化物铜金矿床<sup>[1,6]</sup>,其三为火山块状硫化物矿床<sup>[7]</sup>。

在成岩、成矿过程中,不同阶段矿物中形成 的包裹体成功地记录了不同阶段、不同世代的流 体特征,而不同世代的流体,常有着不同的温 度、压力、盐度、成分和密度等特征。因此,研 究流体世代有利于了解古流体的特征、演化规律 和划分成岩、成矿期次。拉拉铜矿包裹体类型主 要为单相(气体或液体)包裹体、富气体包裹 体、CO,包裹体、富液体包裹体,含盐类子晶多相 包裹体等[8-10],偶有见熔融晶质和玻璃质包裹体[8]。 前人对其流体包裹体成分的研究主要依赖于镜下 观察及群体包裹体测试<sup>[4,11]</sup>。从九十年代起,随着 激光等离子体质谱、离子探针、质子探针、电子 显微探针、激光拉曼光谱仪等新方法的引进,流 体包裹体研究进入单个流体包裹体研究阶段。为 了更充分了解拉拉铜矿成矿流体性质,本文利用 原位激光拉曼光谱对拉拉铜矿单个流体包裹体进 行了进一步研究。

1 地质背景

拉拉铜矿位于扬子西缘康滇铜矿带,矿区出 露地层为古元古代河口群火山沉积岩系,由三个 火山喷发沉积旋回组成。矿体赋存在中旋回上部 的火山变质岩中,含矿岩石为黑云母石英片岩、 二云石英片岩、石榴黑云石英片岩及层纹-条带 状的磁铁钠长岩。矿区地层总的走向近于东西, 倾向南。沿走向和倾向有一些舒缓的波状小型褶 曲,控制着矿区内矿体的产出形态。

## 2 样品采集及分析方法

本次流体包裹体样品采自拉拉铜矿落凼大露 天采场,共采集标本9个(表1,图1)。包裹体 磨片主要选取富方解石或石英脉部位。经过 切片、磨片、抛光、粘片、再次切片、磨抛等工 序<sup>[12]</sup>,制作成厚度为200~300 µm的薄片,最后 用丙酮浸泡,完全除去粘片胶,避免拉曼光谱采 集时胶的荧光影响。

实验在中国地质科学院矿产综合利用研究所 激光拉曼实验室完成,拉曼光谱采集所采用的仪 器是 XploRA PLUS 激光拉曼光谱仪,CCD 信号检

收稿日期: 2022-08-15

**基金项目**: 凉山矿业股份有限公司科技计划项目(202213); 国家自然科学基金(42072108) **作者简介**: 李波(1987-), 男, 工程师, 从事地质找矿和矿山管理。

| 表 1 拉拉铜矿 流体包裹体测试样品                                              |           |            |         |             |
|-----------------------------------------------------------------|-----------|------------|---------|-------------|
| Table 1 Samples of fluid inclusion from the Lala copper deposit |           |            |         |             |
| 序号                                                              | 样品编号      | 采样地点       | 包裹体制片部位 | 岩矿石类型       |
| 1                                                               | SH028-1   | 露天采场       | 石英-方解石脉 | 块状辉绿岩       |
| 2                                                               | SH028-2   | 露天采场       | 石英脉     | 顺层石英脉(未见矿化) |
| 3                                                               | LL2101    | 露天采场       | 石英脉     | 块状黄铜矿       |
| 4                                                               | 210109-3  | 1938平台3号矿体 | 石英-方解石脉 | 浸染状黄铁矿      |
| 5                                                               | 210109-9  | 1938平台2号矿体 | 方解石脉    | 脉体中发育黄铁矿    |
| 6                                                               | 210109-20 | 2058平台     | 石英-方解石脉 | 镜铁矿         |
| 7                                                               | DLT-4-1   | 4号矿体       | 石英脉     | 浸染状黄铁矿      |
| 8                                                               | DLT-4-10  | 4号矿体       | 石英脉     | 含黄铁矿、黄铜矿矿石  |
| 9                                                               | LL02-4    | 1938平台2号矿体 | 石英脉     | 钠长岩         |



a. 辉绿岩中石英方解石脉; b. 石英脉; c. 块状黄铜矿; d. 浸染状黄铁矿; e. 方解石脉中黄铁矿; f. 镜铁矿中石英方解石脉; g. 浸染状黄铁矿中 石英脉; h. 石英脉中黄铁矿、黄铜矿; i. 钠长岩; 矿物缩写: Qtz. 石英; Cal. 方解石; Py. 黄铁矿; Ccp. 黄铜矿; Spe. 镜铁矿

a. quartz-calcite vein in diabase; b. quartz vein; c. massive chalcopyrite; d. Disseminated pyrite; e. pyrite in calcite vein; f. quartz-calcite vein in

specularite; g. quartz vein in Disseminated pyrite; h. pyrite and chalcopyrite in quartz vein; i. albitite

图 1 包裹体测试样品标本

Fig.1 Samples for fluid inclusion from the Lala copper deposit

测系统,灵敏度高,单晶硅三界峰优于 20:1,光 谱分辨率约 1~2 cm<sup>-1</sup>。该仪器采用显微共焦系 统,针孔共焦,横向空间分辨率好于 0.5  $\mu$ m,众 向空间分辨率好于 2  $\mu$ m。实验所用激光光源波长 为 532 nm,共焦孔为 100  $\mu$ m,狭缝 300  $\mu$ m,积 分时间为 5 s,积分次数为 5 次,实验环境温度为 20℃,湿度 40%。

3 结果与讨论

### 3.1 包裹体岩相学特征

经显微镜下观察发现,本批次样品包裹体主

要赋存于石英和萤石矿物中。其中 210109-9 号样 品中,包裹体寄主矿物主要为萤石,包裹体含量 较多,大小主要为 5~40 µm,个别可达 50~ 60 µm,形态极不规则,主要呈串状及团状产出 (图 2a)。子晶呈立方体产出,镜下为淡黄色, 具有典型 NaCl 固定特征(表 2、图 2b)。其他样 品中,包裹体主要呈团状或带状分布,大小不 一,小到 1 µm,大到超过 20 µm,但主要集中在 -5 µm,超过 5 µm大小的包裹体占包裹体总数不 到 5%。包裹体形态方面主要为椭圆型和不规则 型,个体较小的包裹体主要为椭圆型,形态较圆



a. 包裹体呈串状分布; b. 气-液-固三相包裹体, V 表示气相,成分为氮气与甲烷组合, L 表示液相,成分为水,固相成为为石盐

a. inclusions distribute in series; b. V-L-S-type inclusion, vapour (V) contains nitrogen and methane, liquid (L) contains water, solid contains halite 图 2 萤石矿物中包裹体镜下特征

图 2 重石矿 初中巴泰怀境下行证 Fig.2 Microscopic features of inclusions in fluorite minerals

序号样品编号主矿物 包裹体类型 拉曼成分 说明 气-液两相 H<sub>2</sub>O-H<sub>2</sub>O 气液比大致相当,液相比例大于70% SH028-1 石英 CH<sub>4</sub>-CO<sub>2</sub> 液相 CH<sub>4</sub>-H<sub>2</sub>O CH<sub>4</sub>含量较低,气液比变化大,液相比例 气-液两相 SH028-2 石英 2 CH<sub>4</sub>-CO<sub>2</sub>-H<sub>2</sub>O  $10\% \sim 90\%$ 气-液-液三相 CH<sub>4</sub>-CO<sub>2</sub>-H<sub>2</sub>O (CH<sub>4</sub>-CO<sub>2</sub>组合见气液两相) H\_O 液相 气-液两相 H<sub>2</sub>O-H<sub>2</sub>O 气液比变化较小,液相比例80%~95% LL2101 石英 3 气-液-固三相 H<sub>2</sub>O-H<sub>2</sub>O-子晶(石盐、方解石、硅酸盐、赤铁矿) 气-液两相 N<sub>2</sub>-H<sub>2</sub>O 气液比变化较小,液相比例80%~95% 210109-3 石英 气-液-固三相 N<sub>2</sub>-H<sub>2</sub>O-子晶 (石盐、方解石) 气-液两相 N2-CH4-H2O 210109-9 萤石 气-液-固三相 气液比变化不大,液相比例95%左右 5 N<sub>2</sub>-CH<sub>4</sub>-H<sub>2</sub>O-石盐子晶 气液比变化较小,液相比例90%~95% 6 210109-20 石英 气-液两相 N<sub>2</sub>-H<sub>2</sub>O  $H_2O$ CH<sub>4</sub>浓度较小, 富液相, 液相比例 液相 萤石 气-液两相 CH<sub>4</sub>-H<sub>2</sub>O 90%~95%  $CO_2 - N_2$ CH4-H2O 气液比变化大,液相比例10%~90%,同 7 DLT-4-1 气相 CO<sub>2</sub>-H<sub>2</sub>O 石英 气-液-固三相 相中CO<sub>2</sub>-N<sub>2</sub>含量变化较大,CO<sub>2</sub>含量占 N2-CH4-H2O 60%~95% CO<sub>2</sub>-H<sub>2</sub>O-石盐子晶 CO<sub>2</sub>-N<sub>2</sub>-H<sub>2</sub>O-石盐子晶 Ĥ<sub>2</sub>O 液相 H,O-H,O 气-液两相 N<sub>2</sub>-H<sub>2</sub>O 8 DLT-4-10 石英 气液比变化较小,液相比例90%~95% 液-固两相 H2O-石盐子晶 气-液-固三相 N,-H,O-子晶(石盐、方解石、硅酸盐、赤铁矿) CO<sub>2</sub>-N<sub>2</sub> 气相 CO<sub>2</sub>-N<sub>2</sub>相对比例较为一致,CO2含量约占 气-液两相 LL02-4 石英 CO2-N2-H2O 9 95% 气-液-固三相 CO,-N,-H,O-子晶(石盐、方解石)

表 2 包裹体主要类型及拉曼成分 Table 2 Main types and Raman components of inclusions

润,个体较大的包裹体大多形态不规则,个别包 裹体呈近似矩形产出。包裹体类型丰富,主要有 液相单相型、气-液两相型和气-液-固三相型,及 少量气相单相型、液-固两相型及 CO<sub>2</sub>-H<sub>2</sub>O 的气-液-液三相型,其成分较为复杂(表 2、图 3)。

#### 3.2 包裹体激光拉曼光谱特征

通过对样品中大量包裹体进行激光拉曼光谱 仪检测,其成分根据拉曼特征主要分为以下八 类:第一类,该物质去除石英主矿物背景拉曼信 号后,以峰位2330.9 cm<sup>-1</sup>为特征(图 4a,图中圆 点为拉曼采谱位置,下同),是 N<sub>2</sub>的特征峰,表 明该物质成分为 N<sub>2</sub>。第二类,该成分以 3300~ 3600 cm<sup>-1</sup> 形成的宽峰为特征峰(图 4b),是典型 的水的拉曼峰,表明该成分为 H<sub>2</sub>O。第三类,该 物质排除水的干扰后,以峰位 2920.7 cm<sup>-1</sup> 为特征 (图 4c),表明该成分为 CH<sub>4</sub>。第四类,该物质 以波数 1284.5 cm<sup>-1</sup>、1390.2 cm<sup>-1</sup> 为特征峰(图 4d), 表明该成分为 CO<sub>2</sub>。第五类,固体成分 S<sub>1</sub>,该 类型固相在包裹体中主要为柱形或者板形产出。 该物质去除石英背景拉曼信号后,特征峰值为



a. 气相包裹体,V表示气相,成分为二氧化碳与氮气组合;b.气-液两相包裹体,V表示气相,成分为氮气与甲烷组合,L表示液相,成分为水; c.气-液-固三相包裹体,V表示气相,成分为氮气,L表示液相,成分为水,固相为方解石和石盐;d.流体-熔体包裹体,熔体为硼钙硅酸盐

a. V-type inclusion, vapour (V) contains carbon dioxide and nitrogen; b. V-L-type inclusion, vapour (V) contains nitrogen and methane, liquid (L) contains water; c. V-L-S-type inclusion, vapour (V) contains nitrogen, liquid (L) contains water, solids contain calcite and halite; d. fluid-melt conclusion, melt contains danburite.

## 图 3 石英矿物中包裹体的镜下特征 Fig.3 Microscopic features of inclusions in quartz minerals

618.6 cm<sup>-1</sup> 1026.4 cm<sup>-1</sup> 3550.2 cm<sup>-1</sup> 3575.3 cm<sup>-1</sup> 3624.8 cm<sup>-1</sup>(图 4e),根据数据库(rruff.info/danbu rite/display=default/R050602)对比,为硼钙硅酸 盐。第六类,固体成分 S,,该物质在包裹体中多 呈淡黄色方形或立方体产出,其拉曼光谱特征与 主矿物石英的拉曼光谱完全一致(图 4f),考虑 到常见氯化钠子晶不具有拉曼活性,根据镜下特 征,该物质成份为氯化钠子晶。第七类,固体成 分 S<sub>3</sub>,该物质镜下呈浅灰色块状,去除石英背景 拉曼信号后,其特征峰值为 282.4 cm<sup>-1</sup>、725.6 cm<sup>-1</sup>、 1084.7 cm<sup>-1</sup>(图 4g),具有典型方解石拉曼光谱 特征,表明该物质成分为方解石。第八类,固体 成分 S₄, 该物质镜下观察为透明红色, 去除石英 背景拉曼信号影响后,其特征峰值为 224.5 cm<sup>-1</sup>、 292.9 cm<sup>-1</sup>  $\sim$  466.7 cm<sup>-1</sup>  $\sim$  610.7 cm<sup>-1</sup>  $\sim$  1315.5 cm<sup>-1</sup> (图 4h),推测该成分为赤铁矿。

#### 3.3 包裹体成分讨论

近三十年来,许多学者从不同角度对拉拉铜 矿的流体包裹体进行了研究<sup>[4,8,9-11,13]</sup>,发现该矿区 包裹体主要为纯气相、纯液相、富气相、富液相 或者含盐类子晶多相等流体包裹体。此外,对于 熔融包裹体仅有个别研究中偶有提及,但是仅限 于纯熔融包裹体<sup>[8]</sup>。本次研究中,通过拉曼光谱对 单个包裹体测试,取得了新的发现。

首先,发现大量含钙硼硅酸盐的流体-熔体包裹体,丰富了该地区包裹体研究类型,也同时证实了该 矿区成矿流体中岩浆—热液过渡性流体的存在<sup>[14]</sup>。

其次,对于子晶的研究,以往学者发现,其 成分主要为盐类子晶 NaCl或者 KCl<sup>[4,9-10,13,15]</sup>。本 次研究发现该批次样品中,方解石碳酸盐型子晶 也较为常见。此外,本次样品中还发现少量包裹 体中含有赤铁矿子晶,并且该类子晶多存在于复 杂成分流体包裹体中。

第三,包裹体气相成分研究方面,众多学者 通过质谱仪分析或镜下观察,发现其主要以 CO<sub>2</sub>或H<sub>2</sub>O为主,仅有个别研究中表明含有极少 量的N<sub>2</sub>、CH<sub>4</sub><sup>[4,11]</sup>。通过本次拉曼光谱测试发现该 批次样品中单个包裹体气相成分并不固定,不仅 有少量样品中包裹体气相以CO<sub>2</sub>和H<sub>2</sub>O为主,部 分包裹体中气相部分以N<sub>2</sub>或者 CH<sub>4</sub>或者两者共同 组合形式占据了主导地位。并且N<sub>2</sub>与 CH<sub>4</sub>的相对 含量比例并不固定,存在大于1、小于1、近似等 于1三种情况。



图 4 包裹体成分激光拉曼光谱特征 Fig.4 Laser Raman spectroscopy characteristics of inclusions

#### 3.4 地质意义

LL02-4 样品中包裹体富 CO<sub>2</sub>-N<sub>2</sub>-H<sub>2</sub>O, 210109-3、 DLT-4-10 样品中包裹体富 N<sub>2</sub>-H<sub>2</sub>O 成分,在LL2101 样品中,方解石子晶所伴随包裹体成分富 H<sub>2</sub>O 为 主,其成分由含 CO<sub>2</sub> 过渡到完全不含 CO<sub>2</sub>,指示 其流体分别经历了 CO<sub>2</sub> 去气作用,岩浆水与大气 水流体混合作用,混染了沉积地层中碳酸盐组分 过程,这与该地区 C-O 同位素研究一致<sup>[10,15]</sup>。

赤铁矿、方解石子矿物伴随石盐子晶析出,

伴随中低温成矿温度<sup>[9,15]</sup>,这一时期流体呈高盐 度,Fe<sup>3+</sup>、Ca<sup>2+</sup>含量高,处于氧化环境。根据拉拉 铜矿矿物生成顺序显示<sup>[16]</sup>,萤石主要生成于热液 成矿期II 期初期,萤石中包裹体气相部分主要为 CH<sub>4</sub>或者 CH<sub>4</sub>与 N<sub>2</sub>混合物,液相部分主要为 NaCl-H<sub>2</sub>O 体系,并可见 NaCl 子晶,具有中高盐 度流体特征,并处于还原环境。

不同成矿期石英流体包裹体成分较为复杂, 通过大量单个包裹体拉曼测试发现,其组分由富 含 CO<sub>2</sub>-CH<sub>4</sub>-N<sub>2</sub>-H<sub>2</sub>O-多子矿物成分到单一富 H<sub>2</sub>O 成分,其组合形式多种多样,该矿区流体盐度、密度、同位素测试结果均显示该矿区成矿流体来 源广泛,成矿期次复杂<sup>[17]</sup>。

## 4 结 论

(1)通过镜下观察发现,拉拉铜矿单个包裹 体类型多样,既有单一液相或气相类型,也有富 气相、富液相、气-液-固多相型,其中富液相与 气-液-固多相型较为丰富。

(2)通过激光拉曼光谱测试发现,拉拉铜矿 地区单个包裹体成分组合较为复杂,CO<sub>2</sub>、CH<sub>4</sub>、 N<sub>2</sub>、H<sub>2</sub>O及其不同比例组合分别在不同时期占据 了流体成分主导地位。此外,在包裹体内发现前 人鲜有报道的方解石、赤铁矿及硅酸盐子矿物。

(3)单个包裹体成分组合的多样性证明了拉拉 铜矿地区流体来源的多元性及成矿作用的复杂性。

## 参考文献:

[1] 朱志敏, 曾令熙, 周家云, 等. 四川拉拉铁氧化物铜金矿床 (IOCG) 形成的矿相学证据 [J]. 高校地质学报, 2009, 15(4):485-495.

ZHU Z M, ZENG L X, ZHOU J Y, et al. Lala iron oxidecopper-gold deposit in Sichuan Province, evidences from mineralography[J]. Geological Journal of China Universitie, 2009, 15(4):485-495.

[2] 罗丽萍, 朱志敏. 拉拉铜矿铼的分布和潜在资源利用意 义 [J]. 矿产综合利用, 2016(4): 27-30.

LUO L P, ZHU Z M. The distribution of rhenium in theLala copper ore and its potential significance of resource[J]. Multipurpose Utilization of Mineral Resources, 2016(4): 27-30. [3] 陈良, 刘富权, 钱永超, 等. 四川会理红泥坡铜矿工艺矿物 学[J]. 矿产综合利用, 2021(3):200-204.

CHEN L, LIU F Q, QIAN Y C, et al. Technological mineralogy of Hongnipo copper mine in Huili, Sichuan[J]. Multipurpose Utilization of Mineral Resources, 2021(3):200-204.

[4] 申屠保涌. 四川会理拉拉厂铜矿床地质地球化学特征及成矿模式[J]. 沉积与特提斯地质, 1997, 17(21):113-115.

SHENTU B Y. Geological geochemical characteristics and metallogenic model of Lala copper deposit in Huili, Sichuan Province[J]. Tethyan Geology, 1997, 17(21):113-115.

[5] 孙燕, 舒晓兰, 肖渊甫. 四川省拉拉铜矿床同位素地球化 学特征及成矿意义[J]. 地球化学, 2006, 35(5):553-559.

SUN Y, SHU X L, XIAO Y F. Isotopic geochemistry of the Lala copper deposit, Sichuan Province, China and its metallogenetic significance[J]. Geochimica, 2006, 35(5):553-559.

[6] 李泽琴, 胡瑞忠, 王奖臻, 等. 中国首例铁氧化物-铜-金-

铀-稀土型矿床的厘定及其成矿演化[J]. 矿物岩石地球化学 通报, 2002, 21(4):258-260.

LI Z Q, HU R Z, WANG J Z, et al. Lala Fe-Oxide-Cu-Au-U-REE Ore Deposit, Sichuan China-An example of superimposed mineralization[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2002, 21(4):258-260.

[7] 陈根文, 夏斌. 四川拉拉铜矿床成因研究[J]. 矿物岩石地 球化学通报, 2001, 20(1):42-44.

CHEN G W, XIA B. Study on the genesis of Lala Copper Deposit, Sichuan Province[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2001, 20(1):42-44.

[8] 金明霞, 沈苏. 四川会理拉拉铜矿床流体特征及成矿条件研究 [J]. 地质科技情报, 1998, 17(增刊): 45-48.

JIN M X, SHEN S. Fluid Features and metallogenic conditions in Lala Copper Deposit, Huili, Sichuan, China[J]. Geological Science and Technology Information, 1998, 17(Supplement): 45-48.

[9] 柯丹丹. 四川会理拉拉铜矿床流体包裹体特征研究 [D]. 成都: 成都理工大学, 2014.

KE D D. Brief Study on the fluid inclusion characteristics of Lala copper-gold deposit in Huili County of Sichuan Province[D]. Chengdu: Chengdu University of Technology, 2014.

[10] 黄丛俊. 扬子地块西南缘拉拉 IOCG 矿床地质地球化学 研究 [D]. 成都: 成都理工大学, 2019.

HUANG C J. Geology and geochemistry study on the Lala IOCG deposit, Southwestern margin of Yangtze Block[D]. Chengdu: Chengdu University of Technology, 2019.

[11] 孙燕, 李承德. 四川拉拉铜矿床成矿机制研究[J]. 成都 地质学院学报, 1990, 17(4):1-9.

SUN Y, LI C D. Mineralization mechanism of Lala Copper deposit in Sichuan Province[J]. Journal of Chengdu College of Geology, 1990, 17(4):1-9.

[12] 王鑫涛, 陈勇, 周瑶琪, 等. 一种有效的岩盐流体包裹体 薄片的制作方法[J]. 矿物学报, 2016, 36(3):397-403.

WANG X T, CHEN Y, ZHOU Y Q, et al. An effective method for making thin section of fluid inclusions in rock salt[J]. Acta Mineralogica Sinica, 2016, 36(3):397-403.

[13] 宋昊. 扬子地块西南缘前寒武纪铜-铁-金-铀多金属矿床 及区域成矿作用 [D]. 成都: 成都理工大学, 2014.

SONG H. Precambrian copper-iron-gold-uranium polymetallic deposits and their regional metallogeny in Southwestern margin of Yangtze Block [D]. Chengdu: Chengdu University of Technology, 2014.

[14] 李保华, 唐菊兴, 董树义. 纳日贡玛铜钼矿床包裹体研究 及其地质意义 [J]. 矿床地质, 2006, 25(增刊): 407-410.

LI B H, TANG J X, DONG S Y. A study of inclusions in the Narigongma Cu-Mo deposit and their significance[J]. Mineral Deposits, 2006, 25(Supplement): 407-410.

[15] 路远发, 吴越, 王亚东. 四川省会理县拉拉铜矿接替资源 勘查项目综合研究课题研究报告 [R]. 荆州: 长江大学, 2015.

LU Y F, WU Y, WANG Y D. Report on the comprehensive research project of Lala Copper Mine in Huili County, Sichuan

Province[R]. Jinzhou: Yangtze University, 2015.5.

[16] ZHU Z M, TAN H Q, LIU Y D, et al. Multiple episodes of mineralization revealed by Re-Os molybdenite geochronology in the Lala Fe-Cu deposit, SW China[J]. Mineralium Deposita, 2018, 53(3):311-322.

[17] 唐慧, 刘顺, 钱永超, 等. 四川拉拉铜矿构造变形与成矿

的关系[J]. 矿产综合利用, 2022(4):87-93.

TANG H, LIU S, QIAN Y C, et al. Relation between structural deformation and mineralization in Lala copper deposit, Sichuan[J]. Multipurpose Utilization of Mineral Resources, 2022(4):87-93.

# Fluid Inclusion Raman Spectrometry and Geological Implications of the Lala Copper Deposit in Sichuan

Li Bo<sup>1</sup>, Tang Hui<sup>2</sup>, Luo Liping<sup>3</sup>, Chen Liang<sup>1</sup>, Wu Jin<sup>1</sup>

(1.Liangshan Mining Co., Ltd., Huili, Sichuan, China; 2.Chengdu University of Technology, Chengdu,

Sichuan, China; 3.Institute of Multipurpose Utilization of Mineral Resources, CAGS,

#### Chengdu, Sichuan, China)

**Abstract:** In this paper, through the Raman spectroscopy analysis of fluid inclusions in Lala copper deposit, it is found that the types of fluid inclusions are diverse, including not only single pure gas phase or pure liquid phase, gas-rich phase, liquid-rich phase, and many daughter crystals, but also melt-fluid inclusions. The gas phase components of fluid inclusions are not limited to the  $CO_2$ , but also include  $N_2$ ,  $CH_4$  or a mixture of the three. Not only halide daughter crystals but also calcite and hematite daughter crystals are found in fluid inclusion daughter minerals. In conclusion, the Raman spectroscopy characteristics of fluid inclusions show that the ore-forming fluids of the Lala copper deposit have the characteristics of multiple stages and complex sources.

Keywords: Lala copper deposit; Fluid inclusion; Raman spectroscopy

#### 

#### (上接第54页)

and belong to low salinity and low temperature fluid. The results of C-H-O isotope test show that the  $\delta D/\%$ of spotamene in the Redamen rare metal deposit ranges from -97.5 to -104.7 (average of -102.8). Compared with the Lijiagou deposit in the southeast of the ore field, the  $\delta D/\%$  of spodumene is obviously smaller, with the  $\delta^{18}O_{H2O}/\%$  ranging from -0.34 to 2.88 (average of 1.032). However, it is basically consistent with the main metallogenic period of spodumene in Lijiagou deposit, indicating that the ore-forming fluid of late mineralization (that is, the main metallogenic period of spodumene) is mixed with meteoric water. The  $\delta^{13}C_{V-PDB}/\%$  of spodumene in the Redamen rare metal deposit ranges from -10 to -16.6, with an average of -12.7, indicating that the carbon source in the main mineralization period (spodumene formation period) has a mixed nature of magmatic system and meteoric precipitation system, which is related to the low temperature alteration of magmatic mantle source (granite, mantle multi-phase system) and may be mixed with CO<sub>2</sub> generated by the decarboxylation of deposited organic materials. Through the study of mineral C-H-O isotopes and fluid inclusions, the source and evolution process of ore-forming fluids were further clarified. **Keywords:** Pegmatite type; Rare metal; Spodumene; C-H-O isotopee; Redamen

## 

#### (上接第 62 页)

alteration zones, and the remote sensing alteration anomaly information could effectively indicate the mineralization location. Based on the comprehensive alteration anomaly information, anomaly verification analysis results and regional geological background, five metallogenic prospects were delineated, which provided reference for further prospecting work in this area.

**Keywords:** MPT method; Mask technology; Principal component analysis; Threshold classification; Alteration information extraction; Metallogenic prediction