新疆磁海铁矿床地质特征及矿床成因

赵玉社

(冶金部西北地质勘查局,西安, 710061)

摘 要 本文通过对磁海铁矿床地质特征、矿体特征、矿物组合、微量元素、稀土元素 地球化学和同位素组成的研究表明,磁海铁矿床属于次火山岩 矿浆贯入 热液交代型 矿床,其成矿物质和热液来源于上地幔。

关键词 哈密 磁海铁矿 地质特征 矿床成因

1 矿区地质概况

磁海铁矿床位于北山褶皱带西段火山沉积断陷盆地内。北以星星峡深断裂与中天山隆起 带毗邻,南以依格孜塔格头吊泉大断裂与塔里木地台相接(图1)矿区内出露地层主要有蓟 县系平头山群上岩组,其岩性主要为黑云母石英片(角)岩、炭质黑云母石英片(板)岩,大

图 1 磁海铁矿区大地构造略图

 1. 喜马拉雅凹陷; 2. 末华力西褶皱; 3. 晚华力西褶皱; 4. 加里东褶皱; 5. 扬子褶皱; 6. 中天山北缘深断裂; 7. 星星峡深断裂; 8. 柳园深断裂; 9. 疏勒河深断裂; 10. 一般断裂; 11. 花岗岩

收稿日期: 1999-12-22

作者简介: 赵玉社, 男, 1967年出生, 1990年毕业于东北工学院, 工程师, 现从事矿床地质工作。 (C)1994-2021 China Academic Journal Electronic Publishing House. All rights reserved. http://www.page.com/article//www

袠
邕
垫
¥
1è-
BK
÷.
К
1
范
塈
報
x
1
3 <u>5</u>
<u>*</u>
₩

袠

	矿体形态	本灣板状,局部膨大收 、尖灭再現。NE-V线 で大,VE-N线间收缩 形大,埋藏術高>960	本轉板状,外异面很不 問,多处膨大收缩,局 分叉或尖灭,在1100 中段的 E E-V 线面、 的 m中段的 N线、 M D 00 m中段的 N线、 M L 100 m 的 m中段的 N线、 M L 100 m 的 m g v线尖灭, 總職称函 60 m	本呈薄板状,W E-4 II 同分支复合,矿体形态 8比深部简单,埋藏标 > 960 El	本星溝板状,v E-v ⅢE 司矿体膨大,u线上分 灵产出,向西略有伽 建敷标高>960 罒	本呈蒋板状, V E-r II 11膨大并分枝,埋藏标 >960 m	
[槙(m)	厚度	成4 6.31 1.19-20.35 回 1.19-20.35	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	は 4.88 後 6.37-14.61 浅 浩 (14)	^{9.06} 线 ^向 1.26-37.44 对 质	<u>11.58</u> 总存 0.37-58.12	
矿体期	延深	5 215.5	237.5	5 210.0	509	218.5	
4	均角长度	23	23 	. 52(23	556	
日本	牛飯 朽包 牛 <u>飯</u>	344°	07 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	344° 60	341° 55	350° 56	
埋蕙标髙	(H)	1141. 0~960. 0	1150~960. 0	1146. 0~960. 0	1147. 0~960. 0	1150. 5~960. 0	
Ţ(%)	金林	44. 6	5 Q. 5	45.6	46.9	49.5	
均品(牧 1 00	34.4	37. 1	32.6	32.9	34.9	御殿十
TFe ¥	捕物	51.16	52. 8 51	52.3	51.5	53.64	日本小
41 12	(1 E)	54.8	51.4	50.5	182. 4	122. 0	10 00
推	「 (力 t)	83. 9	297.5	98.6	240.9	349. 1	
	@ #	138. 7	348. 9	149. 1	423. 3	471.7	∎ ¥ ÷
<u></u> Я t)	口级	43.8	14	13. 4	20.3	29. 1	10
结量(い寒	63. 3	116. 1	28.5	131. 6	48.9	崔道
	B 酸	31.6	218. 8	107. 2	271. 4	393. 1	计加丰
\$	工业	Fe ₁ +Fe ₂	Fe ₁ + Fe ₂	Fe1 + Fe2	Fe ₁ +Fe ₂	Fe1+Fe2	47 16 3
	分布范围	I Е-V Ш	I E-V III	IЕ-VШ	I E-V III	I E-Y III	6. 31
¥	: •	e S	13	31	22	12	1

(C)1994-2021 China Academic Journal Electronic Publishing House. All rights reserved. http://ww

北地

西

质

理岩和长英片岩及石英岩等。其次为下二叠统及中酸性火山岩和碎屑岩。

2 矿床地质特征

2.1 矿体特征

矿区内已发现铁矿体 73条,彼此平行排列分布在一狭穿范围内,形成一条走向约 75的 矿带,矿带长约 1 600 m,宽 300 500 m 其中大矿体平均长 535 m,小矿体平均长 92.98 m, 全矿区矿体平均长度 125.48 m 矿体厚 1.84~11.58 m,其中大矿体平均厚 8.12 m;小矿体 平均厚 4.5 m 矿体沿倾向延伸范围为 13~237.5 m,其中大矿体平均 218.1 m,小矿平均 98.43 m 矿体形态主要为似层状、脉状和扁豆状,具有膨大收缩 分枝复合及尖灭再现的特 征。矿体产状与矿带产状基本一致,较大的矿体沿走向呈舒缓波状延伸。倾向 NWW,倾角 37° ~72°,一般 50°~70°,平均 56°,大矿体略向西南侧伏 主要矿体有 5条,其编号分别是 3, 13, 31, 72, 77 (表 1),矿体厚度大,其储量也太。

2.2 矿石成分

2.2.1 矿物成分 矿石矿物以磁铁矿为主。其次为赤铁矿、褐铁矿、磁黄铁矿,黄铁矿,黄

成矿		热	液	成	Ø.,	期	
- Hel	气成高温热液		高中	温热液		中低温热液	表生成矿期
矿物	磁铁矿阶段	磁	铁矿ー	碱化物酶	阀	石英一碳酸盐阶段	1
石榴石	<u> </u>	-					
透料在		-					
關伯	_						
初山石	_						
方柱石	-						
磁铁矿							
确东行	_						
钠长白		+					
1 通角闪石			-				
葡萄石		+					
透闪石		-		<u> </u>			
阳起石							
磷酸盐							
黒z,印							
绿帘石。		\vdash					
绿泥石							
医黄铁矿					ļ		
英铁矿							1
黄铜 19					-		,
时 间行句:						-	
白英				-			
41.、け						<u> </u>	
亦铁矿							
酚铁矿							<u> </u>
41 A							

表 2 矿物生成顺序表

铜矿和辉砷钴矿。根据矿物成分及其共生组合的特征和相互关系可以看出,成矿作用主要发 生在热液作用阶段。矿物生成顺序见表 2 脉石矿物以辉石、石榴石、闪石类为主。另有少量 石英。斜长石,黑云母、绿泥石、方解石和绿帘石等。辉石常被磁铁矿、磁黄铁矿、角闪石 和方解石交代。

2.2.2 化学成分 矿石主要化学成分的平均含量见表 3 其中有益组份为铁,伴生有益组份 主要为钻 镍和铜等 有害组份主要为 S P和 Si等。

矿石		组合样分析结果 (wt%)										基本分析结果 (wB%)						
类型	SiO2	TiO2	Al2O3	CaO	MgO	MnO	K2O	Na2 O	Cu	Ni	Р	Ga	Au× 10 ⁻⁶	Ag< 10 ⁶	Ti Fe	mFe	s	Co
富矿	12. 39	0. 23	2. 60	6. 67	2. 54	0. 214	0. 09	0. 12	0. 018	0. 009	0. 097	0. 002	0. 077	0. 734	52.94	49.14	1. 024	0. 014
贫矿	25.36	0. 56	4.86	13.87	3. 94	0. 30	0. 28	0. 154	0. 022	0. 007	0. 117	0. 001	0. 071	1. 003	34. 54	25.10	1. 288	0. 014
平均	18. 68	0. 39	3. 69	10.16	3. 22	0. 26	0. 11	0. 13	0. 0 203	0. 007	0.106	0. 00 1	5 0. 073	0. 849	45.73	39.80	1. 128	0. 014

表 3 磁海铁矿床矿石主要组份平均含量表

有益组份中,铁主要赋存于磁铁矿中,其次为赤(褐)铁矿和硅酸盐中。全区矿石 TFe 含量 2% ~ 6%,平均品位 45.7%,矿石 TFe品位频率直方图呈多峰状(图 2)矿石中 TFe 含量与矿体规模有一定关系,即富矿石主要分布在大矿体内,贫矿石主要分布在小矿体中。主 要伴生有益组份中,Co主要以辉砷钴矿形式出现,含量 0.00% ~ 0.0%,常见于 0.00% ~ 0.02%之间,平均 0.01%。Cu主要生成黄铜矿,Ni未见独立矿物出现。矿石中 Cu Ni的 含量在 0.00% ~ 0.0% 之间。以上主要伴生有益组份均无综合利用价值。

有害组份 S主要赋存于磁黄铁矿和黄铁矿中,少数赋存于其它硫化物中。铁矿石中硫化物含量一般 5% ±,高者达 20% ±,含 S 0.017% ~ 14.65%,平均 1.128%。 P主要赋存于磷灰石中。磷灰石在矿石中含量一般 2%,少数 > 5%,总体分布均匀,矿石中 P含量 0.001% ~ 0.44%,全矿区平均 0.106%。 Si主要赋存于透辉石、石榴石、角闪石、长石等硅酸盐中,少量 Si以石英形式存在。SiO2平均含量 18.68%,同时从表 3中可以看出,有害物质 S P

SiO₂等在贫矿石中含量较高,而在富矿石中含量较低。

2.2.3 矿石结构构造 主要结构类型有半自形 他形粒状结构、他形粒状结构 溶蚀结构,交代结构和文象 次文象结构等。次要结构类型有自形粒状结构 半自形粒状结构、嵌晶结构和固溶体分离结构及压碎结构等。

矿石构造主要有角砾状 浸染状和条带 条纹状等 其次有脉状 网脉状斑点状 团块状 及斑染状等

2.2.4 矿体围岩及围岩蚀变 矿体围岩类型及围岩蚀变如下:

(1) 围岩的岩石类型: 矿体的直接围岩主要为辉绿岩和砂卡岩,其次有少量长英质片(角) 岩、辉绿玢岩等。矿体主要围岩化学成分见表 4

岩石类型	Si O ₂	TiO ₂	AbO3	${\rm Fe}_2{\rm O}_3$	FeO	CaO	МgО	MnO	K ₂ O	Na_2O
辉绿岩类	50.06	1. 64	14. 75	2. 02	5.82	11.52	5.01	0.16	1. 47	3. 53
"矽卡岩"类	36. 42	0. 52	7.07	12.00	9.40	22. 89	5.29	0. 39	0. 134	0.50
辉绿玢岩	51. 23	1. 58	14. 33	2.04	5.71	12.22	5.43	0. 169	1.40	3. 44
长英质片岩	60.88	0.84	14. 78	0. 95	3.67	5.15	4.6	0.06	2.89	3. 70

表 4 矿体主要围岩化学成分表 (%)

(2) 矿体与围岩的接触关系:矿体与辉绿岩接触界线清楚且较规则。矿体与矽卡岩接触 界线不规则且呈渐变过渡关系。矿体与长英质片(角)岩。辉绿玢岩的接触呈突变关系,接 触界线较规则。

(3) 围岩蚀变: 矿体围岩普遍发生蚀变,蚀变带的展布主向与区域构造线一致,呈不对称的东西向带状分布,与含矿带的长轴方向基本吻合,中部宽,东 西两端逐渐变穿至尖灭 围岩蚀变类型有砂卡岩化 更 钠长石化、黑云母化 次闪石化 绿泥石化、绿帘石化、绢云 母化和碳酸盐化等。与成矿作用关系密切的蚀变有三种:①更 钠长石化广泛分布于辉绿岩中, 强度不大,且大部分生成于磁铁矿形成之后。② 黑云母化广泛分布于矿体附近的蚀变围岩中, 蚀变强。③ 矽卡岩化分布广,与磁铁矿紧密共生,早于磁铁矿形成,磁铁矿化集中分布地段, "矽卡岩"却不发育。

2.2.5 矿石主要类型 矿石类型主要有以下几种。

(1) 自然类型:有无水硅酸盐磁铁矿矿石、含水硅酸盐磁铁矿故石、硫化物磁铁矿矿石 和氧化半氧化磁(赤)铁矿矿石。

(2) 工业类型:有磁铁矿石富矿(TF≥ 45%)和磁(赤)铁矿石贫矿(2≤ TFe < 45%),
 2.2.6 微量元素特征 矿床主要微量元素有 Mn Cu Co Ni等,其含量见表 5 从表 5中可以看出磁铁矿矿石 Co/Ni= 1.68> 1,可以初步判定磁海铁矿床具有内生热液矿床成矿特征。

2.2.7 稀土元素及同位素特征 从表 6及图 3可以看出磁铁矿矿石与辉绿岩的 Σ REE相近, 且都为 Eu异常,表明它们具有同源性质。

磁海铁矿床中硫同位素分析结果 (表 7) 表明: 三种主要硫化物的 δ^4 S (× 10⁻³) 变化于 - 1.36~4.14之间,平均+2.20, 与陨石的 δ^4 S ((-1.68~3.36)×10⁻³) 变化范围基本 重叠,而且与玄武岩〔 δ^4 S= (-3.84~ -8.16)×10⁻³〕也十分相近,说明矿床中 S具有很 深的来源

表 5 磁海铁矿床岩、矿石的微量元素含量 (10⁻⁶)

	Mn	Cu	Co	Ni	As	В	Ga	Be	W	Sn	Pb	Zn
长英质片岩 (23)	520	110	30	50	_	100	20	10	2.1	_	_	70
辉长岩 (20)	580	200	90	200	-	100	30	2	2	5	26	45
辉绿岩 (40)	535	40	34	61	82	45	30	10	2	15	85	88
透辉石斜长石岩 (7)	680	130	50	30	1000	120	10	-	-	-	-	100
石榴石透辉石岩 (22)	2300	330	150	110	2100	101	-	-	-	-	-	
磁铁矿矿石 (54)	2700	360	168	100	392	92	20	8	2	25	33	430

注: 由国家地质测试中心测定: ()内为样品数: - 代表未测。

表 6 磁海铁矿床岩、矿石的稀土元素分析结果 (10 %)

岩、矿石类型	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	Σ REE
磁铁矿矿石	7.42	10.28	0.95	2.47	0. 21	0. 13	0.41	0.04	0.06	0.02	0.04	0. 01	0. 04	0. 01	22. 09
磁铁矿矿石	6.38	9.49	1. 03	3. 55	0.62	0.42	0. 63	0.09	0.21	0.04	0.12	0. 02	0.11	0. 02	22. 73
辉绿岩	5.63	14. 48	1.80	11. 03	3. 69	1. 70	4.96	0.70	4.78	1.02	2.86	0.39	2.54	0.37	55. 95
辉长岩	9.66	37.01	2.44	10. 81	2.89	0.97	3. 25	0.48	3.31	0.68	1.87	0. 27	1. 74	0. 20	75. 58

辉绿岩铷、锶含量及其同位 300 素比值 (表 8)表明,该矿床含矿 200 辉绿岩的初始值⁸⁷ Sr /⁶ Sr值介于 100 0.70785~0.71317之间,略高于 100 上地幔的 0.703的相应值,而明 20 显低于地壳平均值 0.720 说明 220 辉绿岩来源很深,具有幔源玄武 101 岩的原始岩浆特征. 105

根据矿区内 22件火山岩样 的分析结果,作成海恩德蔓的 SiO2对 Na2O+ K2O的变异图件 (图 4),有 16件样品落入高铝玄 武岩区,有 6件样品落入碱性玄 武岩区,说明矿区原始岩浆为高 铝玄武岩浆

1~ 2. 磁铁矿矿石; 3. 辉绿岩; 4. 辉长岩

3 成矿作用及矿床成因

磁海铁矿床内矿石 REE和 U的分布特征与其围岩(辉绿岩)相近,矿石稳定同位素 δ³⁴ S平均 2 2%,辉绿岩 Sr同位素初始比⁸⁷ Sr /⁶⁶ Sr介于 0.70785~0.71317之间,明显低于地壳 岩石 0.720±,表明成矿物质及其直接围岩(辉绿岩)具有幔源特征。铁矿体基本都产于辉绿 岩中,矿体与围岩接触界线清楚规则,矿体与围岩产状基本一致。矿石具海绵陨铁结构 文 (C)1994-2021 China Academic Journal Electronic Publishing House. All rights reserved. http://ww

样品编号	样品性质	³² S/ ³⁴ S	ð⁴S (× 10-3)	取样位置
ർ001	磁黄铁矿	22. 150	3.16	V线 ZK12, 687 m
8002	黄铁矿	22. 158	2.81	V线 ZK28, 58 m
003	黄铁矿	22. 250	- 1.36	III线 ZK2, 41 m
004	黄铁矿	22. 179	1.48	VII线 ZK3, 160 m
005	黄铜矿	22. 156	2.90	VI线 ZK47, 439 m
109	磁黄铁矿	22. 152	3.07	V线 ZK34, 426 m
112	磁黄铁矿	22. 128	4.14	V线 ZK34, 507 m
132	磁黄铁矿	22. 152	3.07	V线 ZK218, 335 m
139	磁黄铁矿	22. 207	0. 59	南矿段 ZK102, 153 m
平均		22. 181	2.20	

表 7 磁海铁矿床硫同位素组成

表 8 磁海铁矿床辉绿岩的锶同位素组成

样品号	W (Rb) /10 ⁻⁶	W (Sr) /10 ⁻⁶	⁸⁷ Rb / ⁸⁶ Sr	⁸⁷ Sr / ⁸⁶ Sr
JR–2	38. 08	127. 7	1.538	0. 71317± 0. 00002
JR-3	73. 26	345. 4	0. 6116	0. 70946± 0. 00001
JR-7	70. 03	437. 8	0.4612	0. 70991
JR-11	38. 22	576.6	0. 4931	0. 70802± 0. 00004
JR-1	52. 78	308. 6	0. 1911	0. 70919± 0. 00004
JR-12	55. 64	441. 5	0. 3633	0. 70785± 0. 00002

象 次文象结构和固溶体分离结构,表 明矿床经过正岩浆矿床或熔离矿床阶 段。矿体的围岩均有不同程度的蚀变, 并呈环带状分布,矿石具有交代溶蚀 结构和压碎结构,表明矿床又具有岩 浆期后热液交代特征,并在成矿作用 过程中伴有构造作用发生 从矿石品 位频率直方图也可以看出,成矿作用 不是一次完成,而是经历了 3~4次。

从以上特征可以看出,磁海铁矿 床的成矿作用经历了深处玄武岩浆分 异 – 次火山岩侵入 – 铁矿浆贯入 – 后 期热液交代,是早期铁矿加富的过程。 即来自上地幔的富铁玄武岩浆在地下 某处发生分异,或在向上运移过程中

发生分异,生成了贫铁富碱的基性岩浆和原始铁矿浆(或富铁成矿熔液)。贫铁富碱的基性岩浆在构造应力的作用下,沿断裂破碎带侵入定位形成次火山岩(即辉绿岩),随后,岩体在冷却过程中生成原生裂隙。此后,在构造应力的再次作用下,先前分异形成的富铁矿浆沿辉绿岩内部构造裂隙或岩体边部贯入,沉淀生成贫铁矿,同时对矿体的围岩进行渗滤交代,残余

(C)1994-2021 China Academic Journal Electronic Publishing House. All rights reserved. http://www

蓝田现代所产蓝田玉的矿物学特征 及其社会经济意义

于俊清 张光荣

(中国建材地勘中心陕西总队,西安,710003)

苏山立

(国家建材局地质工程勘查研究院,北京,100102)

摘 要 本文介绍了陕西省蓝田县现代所产蓝田玉原料的矿物学特征,提供了多种手段所测试的数据资料,指出了某些对蓝田玉这一名称的混淆概念和商业误导,确立正名 了蓝田玉这一名称的历史传统美名及其社会效益,实事求是地评价蓝田现代所产蓝田 玉的经济意义和商业、艺术价值及其乐观的发展前景。 关键词 蓝田玉 方解石 叶蛇纹石 古代 现代 陕西蓝田

1 概述

 1) 蓝田玉是我国四大名玉之一(其他三种为和田玉,南阳玉或独山玉、岫玉) 对于历 代蓝田玉的产地有两种观点:其一认为是历代产于蓝田县而得名,现代已开采用尽至今无存;

收稿日期: 1999-12-05

作者简介:于俊清,男,1961年元月出生,1982年毕业于长春地质学院金属及非金属矿勘探专业。一直从事非金属矿 勘查工作,高级工程师,现任中国建材地勘中心陕西总队总工程师。

的成矿热液在构造应力作用下继续从深处向上运移,沿前期侵入体的内部裂隙及岩体边部裂隙对矿体和围岩进行交代,萃取出围岩中的铁质,并进入铁矿体,使铁矿石增富,也使围岩发生了明显的蚀变。这种交代作用可能是脉动式的,其间断续加强,形成几次交代 – 萃取高潮,最后形成了 TFe约 56% 的富铁矿体,内生成矿作用从此结束 磁海铁矿床的成因可以归结为次火山岩 矿浆贯入 热液交代矿床。

新疆东部富铁矿成矿条件及资源总量预测研究报告.拟写本文时曾参阅了姬金生等 (1996)、新疆维吾尔自治区哈密县磁海铁矿矿床地质特征(李增明等,1983)、新疆磁海铁矿 床成矿模式研究(姬金生等,1998),以及新疆磁海铁矿II期露天采区地质勘探报告(于守南 等,1999)等研究成果,笔者在此深表谢意

(参考文献略)