## 新疆磁海铁矿床地质特征及矿床成因

## 赵玉社

(冶金部西北地质勘查局,西安,710061)

摘 要 本文通过对磁海铁矿床地质特征、矿体特征、矿物组合、微量元素、稀土元素地球化学和同位素组成的研究表明,磁海铁矿床属于次火山岩 矿浆贯入 热液交代型矿床,其成矿物质和热液来源于上地幔

关键词 哈密 磁海铁矿 地质特征 矿床成因

### 1 矿区地质概况

磁海铁矿床位于北山褶皱带西段火山沉积断陷盆地内。北以星星峡深断裂与中天山隆起带毗邻,南以依格孜塔格头吊泉大断裂与塔里木地台相接(图 1) 矿区内出露地层主要有蓟县系平头山群上岩组,其岩性主要为黑云母石英片(角)岩 炭质黑云母石英片(板)岩,大





图 1 磁海铁矿区大地构造略图

1. 喜马拉雅凹陷; 2. 末华力西褶皱; 3. 晚华力西褶皱; 4. 加里东褶皱; 5. 扬子褶皱; 6. 中天山北缘深断裂; 7. 星星峡深断裂; 8. 柳园深断裂; 9. 疏勒河深断裂; 10. 一般断裂; 11. 花岗岩

收稿日期: 1999-12-22

作者简介: 赵玉社,男,1967年出生,1990年毕业于东北工学院,工程师,现从事矿床地质工作。

(C)1994-2021 China Academic Journal Electronic Publishing House. All rights reserved. http://ww

西

磁海铁矿区勘探范围内主要矿体特征表

| ı  |           |                                         |                  |           |       |                                   | •           |           |       |             | 10/4/ |                        | 2                                     | ۲          | ŀ                                      |               |                         |                                                                                                                  |
|----|-----------|-----------------------------------------|------------------|-----------|-------|-----------------------------------|-------------|-----------|-------|-------------|-------|------------------------|---------------------------------------|------------|----------------------------------------|---------------|-------------------------|------------------------------------------------------------------------------------------------------------------|
|    |           | 14<br>14                                |                  | 発量(       | 万む    |                                   | 1           | ‡<br>*    | TFe 4 | TFe 平均品位(%) | (%)万  | 無<br>動<br>所<br>列       |                                       | 矿体产状       | 44                                     | 4             | 矿体规模(m)                 |                                                                                                                  |
|    | 分布范围      | 工业类型                                    | B<br>\$          | <b>い鉄</b> | O SS  | 合井                                | CH B        | (万t) (万t) | 神物    | 枝节          | 争存    | (E)                    |                                       | <b>井 蘆</b> | <b>北</b><br>名<br>名<br>名<br>名<br>不<br>所 | 用旅            | 厚度                      | 甲存形格                                                                                                             |
| m  | І Е-ч ш   | Fe <sub>1</sub> +Fe <sub>2</sub>        | 31.6             | 63.3      | 43.8  | 43. 8 138. 7                      | 83.9        | 54.8      | 51.16 | 34. 4       | 44. 6 | 1141. 0~960. 0         |                                       | 344° 6     | 64° 52                                 | 525 215. 5    | 5 6.31                  | 总体薄板状,局部膨大收缩、尖灭再观。NE-V线间膨大,VE-V线间膨大,以次可收缩或尖灭,组截标高>960m                                                           |
| 13 | I E-v III | Fe <sub>1</sub> + Fe <sub>2</sub>       | 218.8            | 116. 1    | 14    | 348.9 297.5                       | 297. 5      | 51.4      | 52.8  | 37.1        | 50.5  | 1150~960.0             | · · · · · · · · · · · · · · · · · · · | 344°       | 64° 53                                 | 532 237.5     | 5 8.73<br>0.81 – 47.55  | 总体薄板状,外界面很不规则,多处膨大收缩,局部分叉或尖灭,在1100m中段的 E-V线间、1000m中段的 960m中段的 VE-V 线间、1100m中段的 N线、N线上矿体分支,1050m中段 W线头叉,组囊标高>960m |
| 31 | I E-v III | Fe <sub>1</sub> +Fe <sub>2</sub> 107. 2 | 107. 2           | 28.5      | 13.4  | 13. 4 149. 1                      | 98.6        | 50. 5     | 52.3  | 32. 6       |       | 45.6 1146.0∼960.0 344° | 10.0 34                               | 4.         | 3- 52                                  | 60° 526 210.0 | 0 4.88 0.37 - 14.61     | 总体呈薄板状,NE-NT线向分支复合,矿体形态线商分支复合,矿体形态线部比较部的单,埋藏标高>960 m                                                             |
| 72 | I E-v III | Fe,+Fe, 271.4 131.6                     | 271. 4           |           | 20.3  | 20. 3 423. 3 240. 9 182. 4        | 240.9       | 182. 4    | 51.5  | 32.9        |       | 46.9 1147.0~960.0      |                                       | 341° 59    | 59° 537                                | 7 209         | 9. 06<br>1. 26 — 37. 44 | 总体呈薄板状, V E-V IIE<br>线同矿体膨大, VI线上分两层产出, 向西略有侧两层产出, 向西略有侧伏, 埋藏标高>960 m                                            |
| 77 | I Е-ч III | Fe <sub>1</sub> +Fe <sub>2</sub>        | 393. 1           | 48.9      | 29. 1 | 29. 1 471. 7 349. 1 122. 0 53. 64 | 349.1       | 122. 0    | 53.64 | 34.9        | 49. 5 | 1150.5~960.0           | 10. 0 350°                            |            | 56" 55                                 | 556 218.5     | 5 11.58 0.37 - 58.12    | 总体呈薄板状, V E-4 II<br>线间膨大并分枝,埋戴标<br>高>960 m                                                                       |
| t  | 6.31      | 47 1.0                                  | <b>电电针 4. 手钉</b> |           | 7 0 1 | 1                                 | 20 祖世で国際行う。 |           | 1     | 1           |       |                        |                                       |            |                                        |               |                         |                                                                                                                  |

往, 1.19-20.35,6.31 代表平均厚度,1.19 代表最小厚度,20.35 代表最大厚度,

理岩和长英片岩及石英岩等。其次为下二叠统及中酸性火山岩和碎屑岩。

## 2 矿床地质特征

#### 2.1 矿体特征

矿区内已发现铁矿体 73条,彼此平行排列分布在一狭穿范围内,形成一条走向约 7 $^{\circ}$ 的 矿带,矿带长约 1 600 m, 宽 300~ 500 m 其中大矿体平均长 535 m, 小矿体平均长 92. 98 m, 全矿区矿体平均长度 125. 48 m 矿体厚 1. 84~ 11. 58 m, 其中大矿体平均厚 8. 12 m; 小矿体平均厚 4. 5 m 矿体沿倾向延伸范围为 13~ 237. 5 m, 其中大矿体平均 218. 1 m, 小矿平均 98. 43 m 矿体形态主要为似层状、脉状和扁豆状,具有膨大收缩 分枝复合及尖灭再现的特征。矿体产状与矿带产状基本一致,较大的矿体沿走向呈舒缓波状延伸。倾向 NW W,倾角 3 $^{\circ}$ ~ 7 $^{\circ}$ °, 一般 5 $^{\circ}$ ~ 7 $^{\circ}$ °, 平均 5 $^{\circ}$ °, 大矿体略向西南侧伏 主要矿体有 5条,其编号分别是 3,13,31,72,77(表 1),矿体厚度大,其储量也大。

#### 2.2 矿石成分

2.2.1 矿物成分 矿石矿物以磁铁矿为主。其次为赤铁矿、褐铁矿、磁黄铁矿,黄铁矿,黄



表 2 矿物生成顺序表

铜矿和辉砷钴矿。 根据矿物成分及其共生组合的特征和相互关系可以看出,成矿作用主要发生在热液作用阶段。矿物生成顺序见表 2 脉石矿物以辉石、石榴石、闪石类为主。另有少量石英、斜长石,黑云母、绿泥石、方解石和绿帘石等。 辉石常被磁铁矿、磁黄铁矿、角闪石和方解石交代。

2.2.2 化学成分 矿石主要化学成分的平均含量见表 3 其中有益组份为铁,伴生有益组份主要为钻 镍和铜等 有害组份主要为 S P和 Si等

|    |        |       |       |        |       |        |       |        |             |        |        |          |                      | •        |        |        |        |        |
|----|--------|-------|-------|--------|-------|--------|-------|--------|-------------|--------|--------|----------|----------------------|----------|--------|--------|--------|--------|
| 矿石 |        |       |       |        |       | 组台     | 含样分   | 析结具    | <b>果</b> (w | в% )   |        |          |                      |          | 基本     | 分析结    | 果(w    | в% )   |
| 类型 | SiO2   | TiO2  | Al2O3 | CaO    | MgO   | MnO    | K2O   | Na2 O  | Cu          | Ni     | P      | Ca       | Au× 10 <sup>-6</sup> | Ag∕ 10 € | Ti Fe  | m Fe   | s      | Co     |
| 富矿 | 12. 39 | 0. 23 | 2. 60 | 6. 67  | 2. 54 | 0. 214 | 0. 09 | 0. 12  | 0. 018      | 0. 009 | 0. 097 | 0. 002   | 0. 077               | 0. 734   | 52. 94 | 49. 14 | 1. 024 | 0. 014 |
| 贫矿 | 25. 36 | 0. 56 | 4. 86 | 13. 87 | 3. 94 | 0. 30  | 0. 28 | 0. 154 | 0. 022      | 0. 007 | 0. 117 | 0. 001   | 0. 071               | 1. 003   | 34. 54 | 25. 10 | 1. 288 | 0. 014 |
| 平均 | 18. 68 | 0. 39 | 3. 69 | 10. 16 | 3. 22 | 0. 26  | 0. 11 | 0. 13  | 0. 0203     | 0. 007 | 0. 106 | 0. 00 15 | 5 0. 073             | 0. 849   | 45. 73 | 39. 80 | 1. 128 | 0. 014 |

表 3 磁海铁矿床矿石主要组份平均含量表

有益组份中,铁主要赋存于磁铁矿中,其次为赤(褐)铁矿和硅酸盐中。全区矿石 TFe 含量  $2\% \sim 68\%$ ,平均品位 45.7%,矿石 TFe品位频率直方图呈多峰状 (图 2) 矿石中 TFe 含量与矿体规模有一定关系,即富矿石主要分布在大矿体内,贫矿石主要分布在小矿体中。主要伴生有益组份中,Co主要以辉砷钴矿形式出现,含量  $0.003\% \sim 0.09\%$ ,常见于  $0.006\% \sim 0.02\%$ 之间,平均 0.014%。 Cu主要生成黄铜矿,Ni未见独立矿物出现。矿石中 Cu Ni的含量在  $0.003\% \sim 0.04\%$ 之间。以上主要伴生有益组份均无综合利用价值。



图 2 TFe 频率分布直方图

有害组份 S主要赋存于磁黄铁矿和黄铁矿中,少数赋存于其它硫化物中。铁矿石中硫化物含量一般 5% ±,高者达 20% ±,含 S 0.017% ~ 14.65%,平均 1.128%。 P主要赋存于磷灰石中。磷灰石在矿石中含量一般 2%,少数 > 5%,总体分布均匀,矿石中 P含量 0.001% ~ 0.44%,全矿区平均 0.106%。 Si主要赋存于透辉石、石榴石、角闪石、长石等硅酸盐中,少量 S 以石英形式存在。SiO2平均含量 18.68%,同时从表 3中可以看出,有害物质 S R

- SiO<sub>2</sub>等在贫矿石中含量较高,而在富矿石中含量较低。
- 2.2.3 *矿石*结构构造 主要结构类型有半自形 他形粒状结构、他形粒状结构、溶蚀结构,交代结构和文象·次文象结构等。次要结构类型有自形粒状结构、半自形粒状结构、嵌晶结构和固溶体分离结构及压碎结构等。

矿石构造主要有角砾状 浸染状和条带 条纹状等 其次有脉状 网脉状斑点状 团块状及斑染状等

- 2.2.4 矿体围岩及围岩蚀变 矿体围岩类型及围岩蚀变如下:
- (1) 围岩的岩石类型: 矿体的直接围岩主要为辉绿岩和矽卡岩,其次有少量长英质片(角)岩、辉绿玢岩等。矿体主要围岩化学成分见表 4

|        |                   |                  |                    |                                |       | (      | ,     |        |                  |                   |
|--------|-------------------|------------------|--------------------|--------------------------------|-------|--------|-------|--------|------------------|-------------------|
| 岩石类型   | Si O <sub>2</sub> | TiO <sub>2</sub> | A ½ O <sub>3</sub> | Fe <sub>2</sub> O <sub>3</sub> | FeO   | CaO    | МдО   | MnO    | K <sub>2</sub> O | Na <sub>2</sub> O |
| 辉绿岩类   | 50. 06            | 1. 64            | 14. 75             | 2. 02                          | 5. 82 | 11. 52 | 5. 01 | 0. 16  | 1. 47            | 3. 53             |
| "矽卡岩"类 | 36. 42            | 0. 52            | 7. 07              | 12. 00                         | 9.40  | 22. 89 | 5. 29 | 0. 39  | 0. 134           | 0. 50             |
| 辉绿玢岩   | 51. 23            | 1. 58            | 14. 33             | 2. 04                          | 5.71  | 12. 22 | 5. 43 | 0. 169 | 1. 40            | 3. 44             |
| 长英质片岩  | 60. 88            | 0. 84            | 14. 78             | 0. 95                          | 3. 67 | 5. 15  | 4. 6  | 0.06   | 2. 89            | 3. 70             |

表 4 矿体主要围岩化学成分表 (%)

- (2) 矿体与围岩的接触关系: 矿体与辉绿岩接触界线清楚且较规则 矿体与矽卡岩接触界线不规则且呈渐变过渡关系 矿体与长英质片 (角) 岩 辉绿玢岩的接触呈突变关系,接触界线较规则。
- (3) 围岩蚀变: 矿体围岩普遍发生蚀变,蚀变带的展布主向与区域构造线一致,呈不对称的东西向带状分布,与含矿带的长轴方向基本吻合,中部宽,东 西两端逐渐变穿至尖灭围岩蚀变类型有矽卡岩化 更 钠长石化、黑云母化 次闪石化 绿泥石化 绿帘石化 绢云母化和碳酸盐化等 与成矿作用关系密切的蚀变有三种:①更 钠长石化广泛分布于辉绿岩中,强度不大,且大部分生成于磁铁矿形成之后。②黑云母化广泛分布于矿体附近的蚀变围岩中,蚀变强。③ 矽卡岩化分布广,与磁铁矿紧密共生,早于磁铁矿形成,磁铁矿化集中分布地段,"矽卡岩"却不发育。
- 2.2.5 矿石主要类型 矿石类型主要有以下几种。
- (1) 自然类型: 有无水硅酸盐 磁铁矿矿石、含水硅酸盐 磁铁矿故石、硫化物磁铁矿矿石和氧化 半氧化磁 (赤) 铁矿矿石。
- (2) 工业类型: 有磁铁矿石富矿 (TF≥ 45%) 和磁 (赤)铁矿石贫矿 (2≤ TFe < 45%), 2.2.6 微量元素特征 矿床主要微量元素有 Mn Cu Co Ni等,其含量见表 5 从表 5中可以看出磁铁矿矿石 Co/Ni= 1.68> 1,可以初步判定磁海铁矿床具有内生热液矿床成矿特征。
- 2.2.7 稀土元素及同位素特征 从表 6及图 3可以看出磁铁矿矿石与辉绿岩的  $\Sigma$  REE相近,且都为 Eu异常,表明它们具有同源性质。

磁海铁矿床中硫同位素分析结果 (表 7) 表明: 三种主要硫化物的  $\delta^4$  S  $(\times 10^{-3})$  变化于 -1.36~ 4.14之间,平均+ 2.20,与陨石的  $\delta^4$  S (-1.68~  $3.36) \times 10^{-3}$  变化范围基本 重叠,而且与玄武岩  $\left\{\delta^{34}$  S  $\left(-3.84\right)$   $\left(-3.84\right)$ 

#### 深的来源

| 岩 矿石类型       | Mn   | Cu  | Co  | Ni  | As   | В   | Ga | Ве | W    | Sn | Pb | Zn  |
|--------------|------|-----|-----|-----|------|-----|----|----|------|----|----|-----|
| 长英质片岩 (23)   | 520  | 110 | 30  | 50  | -    | 100 | 20 | 10 | 2. 1 | -  | -  | 70  |
| 辉长岩 (20)     | 580  | 200 | 90  | 200 | -    | 100 | 30 | 2  | 2    | 5  | 26 | 45  |
| 辉绿岩 (40)     | 535  | 40  | 34  | 61  | 82   | 45  | 30 | 10 | 2    | 15 | 85 | 88  |
| 透辉石斜长石岩 (7)  | 680  | 130 | 50  | 30  | 1000 | 120 | 10 | -  | -    | -  | -  | 100 |
| 石榴石透辉石岩 (22) | 2300 | 330 | 150 | 110 | 2100 | 101 | _  | -  | -    | -  | -  |     |
| 磁铁矿矿石 (54)   | 2700 | 360 | 168 | 100 | 392  | 92  | 20 | 8  | 2    | 25 | 33 | 430 |

注: 由国家地质测试中心测定: ( ) 内为样品数: - 代表未测。

表 6 磁海铁矿床岩、矿石的稀土元素分析结果 (10 6)

| 岩、矿石类型 | La    | Ce     | Pr    | Nd     | Sm    | Eu    | Gd    | Tb    | Dy    | Но    | Er    | Tm    | Yb    | Lu    | Σ REE  |
|--------|-------|--------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|
| 磁铁矿矿石  | 7. 42 | 10. 28 | 0. 95 | 2. 47  | 0. 21 | 0. 13 | 0. 41 | 0.04  | 0.06  | 0.02  | 0.04  | 0. 01 | 0. 04 | 0. 01 | 22. 09 |
| 磁铁矿矿石  | 6. 38 | 9. 49  | 1. 03 | 3. 55  | 0. 62 | 0. 42 | 0. 63 | 0. 09 | 0. 21 | 0.04  | 0. 12 | 0. 02 | 0. 11 | 0. 02 | 22. 73 |
| 辉绿岩    | 5. 63 | 14. 48 | 1. 80 | 11. 03 | 3. 69 | 1. 70 | 4. 96 | 0. 70 | 4. 78 | 1.02  | 2. 86 | 0. 39 | 2. 54 | 0. 37 | 55. 95 |
| 辉长岩    | 9. 66 | 37. 01 | 2. 44 | 10. 81 | 2. 89 | 0. 97 | 3. 25 | 0. 48 | 3. 31 | 0. 68 | 1.87  | 0. 27 | 1. 74 | 0. 20 | 75. 58 |

辉绿岩铷、锶含量及其同位 300 素比值 (表 8) 表明,该矿床含矿 200 辉绿岩的初始值 87 Sr /6 Sr值介于 100 0.70785~ 0.71317之间,略高于 150 上地幔的 0.703的相应值,而明 50 显低于地壳平均值 0.720 说明 50 辉绿岩来源很深,具有幔源玄武 1210 将 50 原始岩浆特征。

根据矿区内 22件火山岩样的分析结果,作成海恩德蔓的SiO2对 Na2O+ K2O的变异图件(图 4),有 16件样品落入高铝玄武岩区,有 6件样品落入碱性玄武岩区,说明矿区原始岩浆为高铝玄武岩浆

## 3 成矿作用及矿床成因



图 3 磁海铁矿床岩、矿石的稀土元素配分模式 2.磁铁矿矿石; 3.辉绿岩; 4.辉长岩

磁海铁矿床内矿石 REE和 U的分布特征与其围岩 (辉绿岩) 相近,矿石稳定同位素  $\delta^4$  S平均 2.2%,辉绿岩 Sr同位素初始比  $\delta^8$  Sr介于 0.70785~ 0.71317之间,明显低于地壳岩石 0.720±,表明成矿物质及其直接围岩 (辉绿岩) 具有幔源特征。铁矿体基本都产于辉绿岩中,矿体与围岩接触界线清楚规则,矿体与围岩产状基本一致。矿石具海绵陨铁结构。文

| 样品编号 | 样品性质 | 32 S /34 S | 8 <sup>4</sup> S (× 10−3) | 取样位置             |
|------|------|------------|---------------------------|------------------|
| 8001 | 磁黄铁矿 | 22. 150    | 3. 16                     | V线 ZK12, 687 m   |
| 8002 | 黄铁矿  | 22. 158    | 2. 81                     | V线 ZK28, 58 m    |
| 003  | 黄铁矿  | 22. 250    | - 1.36                    | III线 ZK2, 41 m   |
| 004  | 黄铁矿  | 22. 179    | 1. 48                     | VII线 ZK3,160 m   |
| 005  | 黄铜矿  | 22. 156    | 2. 90                     | VI线 ZK47,439 m   |
| 109  | 磁黄铁矿 | 22. 152    | 3. 07                     | V线 ZK34, 426 m   |
| 112  | 磁黄铁矿 | 22. 128    | 4. 14                     | V线 ZK34, 507 m   |
| 132  | 磁黄铁矿 | 22. 152    | 3. 07                     | V线 ZK218, 335 m  |
| 139  | 磁黄铁矿 | 22. 207    | 0. 59                     | 南矿段 ZK102, 153 m |
| 平均   |      | 22. 181    | 2. 20                     |                  |

表 7 磁海铁矿床硫同位素组成

表 8 磁海铁矿床辉绿岩的锶同位素组成

| 样品号   | W (Rb) /10 <sup>-6</sup> | W (Sr) /10 <sup>-6</sup> | <sup>87</sup> Rb / <sup>86</sup> Sr | <sup>87</sup> Sr / <sup>86</sup> Sr |
|-------|--------------------------|--------------------------|-------------------------------------|-------------------------------------|
| JR-2  | 38. 08                   | 127. 7                   | 1. 538                              | 0. 71317± 0. 00002                  |
| JR-3  | 73. 26                   | 345. 4                   | 0. 6116                             | 0. 70946± 0. 00001                  |
| JR-7  | 70. 03                   | 437. 8                   | 0. 4612                             | 0. 70991 ± 0. 00002                 |
| JR-11 | 38. 22                   | 576. 6                   | 0. 4931                             | 0. 7080 <u>2</u> ± 0. 00004         |
| JR-l  | 52. 78                   | 308. 6                   | 0. 1911                             | 0. 70919± 0. 00004                  |
| JR-12 | 55. 64                   | 441. 5                   | 0. 3633                             | 0. 70785± 0. 00002                  |

象 次文象结构和固溶体分离结构,表明矿床经过正岩浆矿床或熔离矿床阶段。矿体的围岩均有不同程度的蚀变,并呈环带状分布,矿石具有交代溶蚀结构和压碎结构,表明矿床又具有岩浆期后热液交代特征,并在成矿作用过程中伴有构造作用发生。从矿石品位频率直方图也可以看出,成矿作用不是一次完成,而是经历了 3~ 4次。

从以上特征可以看出,磁海铁矿床的成矿作用经历了深处玄武岩浆分异-次火山岩侵入-铁矿浆贯入-后期热液交代,是早期铁矿加富的过程。即来自上地幔的富铁玄武岩浆在地下某处发生分异,或在向上运移过程中



图 4 哈恩德蔓火山岩分类图解 据 Hyndman, 1972)

°.M磁海辉绿岩平均值;°.火山熔岩

发生分异,生成了贫铁富碱的基性岩浆和原始铁矿浆 (或富铁成矿熔液)。贫铁富碱的基性岩浆在构造应力的作用下,沿断裂破碎带侵入定位形成次火山岩 (即辉绿岩),随后,岩体在冷却过程中生成原生裂隙。此后,在构造应力的再次作用下,先前分异形成的富铁矿浆沿辉绿岩内部构造裂隙或岩体边部贯入,沉淀生成贫铁矿,同时对矿体的围岩进行渗滤交代,残余

# 蓝田现代所产蓝田玉的矿物学特征 及其社会经济意义

于俊清 张光荣

(中国建材地勘中心陕西总队,西安,710003)

苏山立

(国家建材局地质工程勘查研究院,北京,100102)

摘 要 本文介绍了陕西省蓝田县现代所产蓝田玉原料的矿物学特征,提供了多种手段所测试的数据资料,指出了某些对蓝田玉这一名称的混淆概念和商业误导,确立正名了蓝田玉这一名称的历史传统美名及其社会效益,实事求是地评价蓝田现代所产蓝田玉的经济意义和商业、艺术价值及其乐观的发展前景。

关键词 蓝田玉 方解石 叶蛇纹石 古代 现代 陕西蓝田

## 1 概述

1) 蓝田玉是我国四大名玉之一(其他三种为和田玉,南阳玉或独山玉、岫玉) 对于历代蓝田玉的产地有两种观点: 其一认为是历代产于蓝田县而得名,现代已开采用尽至今无存;

收稿日期: 1999-12-05

作者简介:于俊清,男,1961年元月出生,1982年毕业于长春地质学院金属及非金属矿勘探专业。一直从事非金属矿 勘查工作,高级工程师,现任中国建材地勘中心陕西总队总工程师。

的成矿热液在构造应力作用下继续从深处向上运移,沿前期侵入体的内部裂隙及岩体边部裂隙对矿体和围岩进行交代,萃取出围岩中的铁质,并进入铁矿体,使铁矿石增富,也使围岩发生了明显的蚀变。这种交代作用可能是脉动式的,其间断续加强,形成几次交代 – 萃取高潮,最后形成了 TFe约 56% 的富铁矿体,内生成矿作用从此结束 磁海铁矿床的成因可以归结为次火山岩 矿浆贯入 热液交代矿床。

新疆东部富铁矿成矿条件及资源总量预测研究报告.拟写本文时曾参阅了姬金生等 (1996)、新疆维吾尔自治区哈密县磁海铁矿矿床地质特征 (李增明等, 1983)、新疆磁海铁矿床成矿模式研究 (姬金生等, 1998),以及新疆磁海铁矿II 期露天采区地质勘探报告 (于守南等, 1999)等研究成果,笔者在此深表谢意

(参考文献略)