文章编号: 1009-6248(2007)04-0087-07

基于小波变换的反射光谱分析在蛇绿 岩识别中的应用研究

——以西准噶尔地区为例

赵同阳¹,周可法²,张晓帆¹,陈川¹,徐仕琪¹

(1. 新疆大学资源与环境科学学院,新疆 乌鲁木齐 830046;2. 中国科学院新疆生态与地理研究所 GIS 重点实验室,新疆 乌鲁木齐 830011)

摘 要: 介绍了基于小波变换的反射光谱分析技术的基本理论和方法; 运用此技术手段对克拉玛依市白碱滩区西侧地区 40 条岩石野外光谱曲线数据进行了定量处理, 总结并分析了蛇绿岩套中常见典型岩石 (基性混杂岩、辉长岩、橄榄岩、蛇纹石)的光谱特征及其产生原因。最后, 结合 ETM + 波段范围提出 了适用于西准噶尔地区多波段遥感影像光谱角 (Spectral Angle Mapper, SAM)提取模型, 从遥感影像 上识别蛇绿岩分布奠定了良好的基础。

关键词:小波变换;蛇绿岩;反射光谱特征;岩矿识别;西准噶尔 中图分类号: P631 文献标识码:A

对岩石矿物的光谱测试与特征分析始于 20 世纪 60 年代末与 70 年代初,以Hunt (Hunt, 1982) 为代表的美国科学家对地球上各大岩类的矿物成分、电子特征与光谱特征进行了详尽的研究; 80 年代中后期,随着多光谱到高光谱技术的开发,Clark 等更深入地研究了岩石矿物的光谱特征与处理技术 (Clark, 2006),并开发出相应的岩石矿物信息识别 提取软件,促进了岩性定量研究。

岩石的反射光谱(光谱特征)取决于组成成分、 内部结构和光照条件等因素,其中岩石组成成分是 主导因素;外部环境和表面特征等因素只会导致岩 石反射率高低的变化,而谱带位置、宽度、吸收深 度和形态等特征一般比较稳(王晓伟等,1995)。此 外,岩石的反射光谱也受岩体内杂质、包体、蚀变 及替代矿物成分等的影响,所以说,基于反射光谱 岩矿的识别主要是一个去除干扰信息,突出主体信 息的光谱处理过程。

近年来,伴随着对小波分析理论及方法研究的 不断深入,小波分析为众多领域提供了一种全新的 工具和方法,它在时域和频域同时具有良好的局部 化性质,可以聚焦到图像的任意细节(陈武凡, 2002)。由于小波变换同时具有时域和频域上的局部 性特性、多分辨分析特性、低熵性、去相关性及选 基灵活性等优点,非常适合于对非平稳信号及图像 进行分析和处理。

蛇绿岩 (ophiolite) 是一组由蛇纹石化超镁铁岩 基性侵入杂岩和基性熔岩以及海相沉积物构成的 岩套。蛇绿岩可以形成于洋中脊、弧后盆地、弧前 盆地、岛弧或活动大陆边缘等构造环境,是寻找古 缝合线的依据,蛇绿岩与大洋岩石圈的演化有密切

收稿日期: 2007-08-01; 修回日期: 2007-09-30

基金项目: 国家重点基础研究发展规划项目(2007CB411308)、国家科技支撑计划重点项目(2006BAB07B07);

作者简介: 赵同阳 (1983-), 男, 河南商丘人, 硕士研究生, 主要研究方向为遥感地质。通讯地址: 830046, 新疆乌鲁木 齐, 新疆大学资源与环境科学学院。E-mail: zhaotongyang2008@163.com。

的关系,因此研究蛇绿岩的组成、成分及成因是了 解大洋岩石圈结构、变化及动力学的主要途径 。

笔者基于小波变换的光谱处理技术定量分析了 西准噶尔地区蛇绿岩的反射光谱,旨在阐述反射光 谱方法在岩矿识别研究中的应用。

1 理论与方法

1.1 岩石光谱学机理

岩性光谱是岩石、矿物对特定波长范围的电磁 波的反射、吸收和辐射的综合反映。Hunt研究指出, 在可见- 近红外光谱区 (0.4~ 1.3 μm), 岩石吸收 光谱的产生机理、主要是内部金属阳离子的电子跃 迁或振动过程 (Hunt, 1982); 丁喧等研究指出在短 波红外光谱区 (1.3~2.5 µm), 吸收光谱由羟基 水 分子和碳酸根等基团的分子振动引起。其中电子跃 迁包括晶体场效应和电荷迁移、电子跃迁是产生吸 收光谱最主要的原因,物质内部微粒的分裂以及离 子的不同会产生明显不同的吸收。电荷迁移也能产 生吸收光谱、通常电荷迁移产生矿物的诊断性吸收 光谱。在分子和晶体晶格中、倍频和合频的影响使 岩石的光谱更加复杂。王润生等(甘甫平等, 2003) 研究认为、视场几何关系仅影响岩石反射率 大小. 光谱的整体形态和吸收特征基本保持不变: 岩 石表面形态只会对谱带强度产生影响,谱带位置、偏 倚度基本保持不变:风化作用的影响较复杂,由于 风化作用过程中原岩石成分发生改变、导致谱带位 置发生改变、但是、阴离子基团所对应的光谱特征 较为稳定; 混合光谱的整体反射率一般介于参与混 合的单矿物光谱反射率之间,强度与矿物的含量基 本成线性关系(甘甫平等, 2004)。

1.2 一维小波变换技术

小波变换 (w avelet transform) 是 20 世纪 80 年 代后期发展的一门应用数学,其理论框架是由法国 数学家 Y.M eyer、地质物理学家 J.M orlet 和理论物 理学家 A.Grossman 的主要完成。而把这一理论引 入 应 用 范 畴 的 则 是 法 国 学 者 I.D aubechies 和 S.M allat (陈逢时, 1998)。

小波 (w avelet),即小区域的波,是一种特殊的 均值为 0、波长有限的波形。其在时域具有紧支集或 近似紧支集,并且具有正负交替的波动性。小波变换的定义是指把一基本小波(亦称母小波)的函数 $\Psi(t)$ 做位移 b 后,再在不同尺度 a 下与待分析的 图像 x (t)做内积:

$$W T_X(a,b) = \frac{1}{\sqrt{a}} \quad x(t) \Psi^* \left(\frac{t-b}{a} dt, a > 0\right)$$

等效的频域表示为:

$$W T_X(a,b) = \frac{\sqrt{a}}{2\pi} X(\omega) \Psi^*(a\omega) e^{+j\omega} d\omega$$

式中x (ω) 和 Ψ (ω) 分别是x (t) 和 Ψ (t) 的傅 立叶变换。

离散小波变换是对连续小波变换的尺度和位移 按照 2 的幂次进行离散化得到的,又称二进制小波 变换,离散小波变换可以表达为:

$$W_{k}[f(x)] = \frac{1}{2^{k}} f(t) \Psi^{*}(\frac{x-t}{2^{k}}) dt$$

其中是小波母函数(孙兆林, 2002)。

实际上,人们是在一定的尺度上认识信号的,人 的感官和物理仪器都有一定的分辨率,对低于一定 尺度信号的细节是无法认识的,为此应该将信号分 解为对应不同尺度的近似分量和细节分量。小波变 换的意义就在于能够在不同尺度上对信号进行分 析,而且对不同尺度的选择可以根据不同的目的来 确定。

笔者野外采集的样点光谱,是在一定范围内的 混合光谱,其必然包含一定的干扰因素。比如岩石 样点旁的植被,其他岩石碎屑、土壤等随机因素。所 以,利用小波变换在时域和频域上可分解性的特点 可以对野外光谱进行处理,形成代表样品光谱特点 的近似分量和代表受随机因素影响的细节分量。从 而可以提取出能够反映样品主体特征的近似分量, 进行岩石的识别。

2 研究区概况

西准噶尔研究区位于新疆准噶尔盆地的西北缘 (图 1),介于北纬45 10~46 10,东经 83 30~85° 15,即大致南起庙尔沟,北到白杨河,东起克拉玛 依,西至托里县,总面积约 15 000 km²,海拔 700~ 1 800 m,为一西高东低的中山丘陵地带。位于巴尔 喀什成矿带、准噶尔-阿拉套成矿带和成吉思-塔尔 巴哈台成矿带的交汇部位(张驰等,1992)。区内寒 武纪以后地层出露明显,但多为古生界地层。研究 区内岩浆岩活动剧烈,有大规模的岩浆侵入,又有 广泛的火山喷发,从超基性到酸性各种岩浆活动都 有发生。主要的岩体有庙尔沟、阿克巴斯套、哈图 等;区内不仅岩浆活动强烈,构造运动也很剧烈,主 要有:达拉布特、安齐、哈图、巴尔雷克等断裂,主 要为NE 走向,控制着本区的构造格局,另外还广泛 发育着次级断裂(冯益民等,1991)。

西准噶尔地区蛇绿岩分布广泛,主要有唐巴勒 玛依勒 达拉布特 洪古勒楞 克拉玛依(徐新 12, 2006)等蛇绿岩带。其中,克拉玛依蛇绿混杂岩带的岩 石组成有蛇纹石岩、辉石橄榄岩、蛇纹石化橄榄岩、橄 榄辉石等。主要的蚀变类型有绿泥石化、绿帘石化和 绢云母化等等(徐新等,2006;郝倖国等,1989)。

图 1 研究区地质略图 1 250 万 (据新疆矿产研究所修改)

Fig. 1 Geological schematic diagram of research area
1. 板块缝合线 (断裂); 2. 超镁铁岩 (蛇绿岩);
3. 酸性花岗岩侵入体

笔者即以克拉玛依地区所采集的蛇绿混杂岩带 的野外光谱为原始数据,对其进行以小波变换为主 的光谱数据的处理,提取及分析蛇绿混杂岩反射光 谱的近似分量,从而为西准噶尔地区遥感影像的蛇 绿岩的提取提供重要参数。

3 数据的采集与处理

3.1 测试仪器及基本性能

测试仪为美国A nalytical Spectral Devices, Inc 公司的 FieldSpec FR-3 型便携式野外光谱仪。测试 的波谱范围为 350~ 2 500 nm, 即从可见光到短波 红外。其中可见光/近红外 (VN R) 通道的光谱范 围为 350~ 1 000 nm, 2 个短波红外通道 (SW R1 和 SW R2)光谱范围分别为 900~ 1 850 nm 和1 700~ 2 500 nm。3 个通道所测量的光谱范围之间有极小 部分的重叠。VN R 通道的光谱测量间隔为 1.4 nm,分辨率约为 3 nm; SW R 通道的光谱测量间隔 为 2 nm,分辨率的变化范围在 10~ 11 nm 之间,变 化范围取决于仪器测量时的扫描角度 (视场角)。测 试数据直接记录在便携式微机上。

3.2 数据采集

测试的对象主要有:蛇纹石岩、辉石橄榄岩、蛇 纹石化橄榄岩、橄榄辉石以及石英脉岩和火山碎屑 岩等,野外光谱采集路线为两条垂直和平行于蛇绿 岩带走向线。采集岩石天然露头的光谱反射,每个 样点进行一次白板优化以及测试5条光谱曲线,对 同种岩石进行5~10次样点选取和采集。

3.3 光谱数据的处理与分析

众所周知, 蛇绿岩是指一组岩石。故又称蛇绿 岩套。所以识别蛇绿岩的标志是: 在某一特定区域 内连续出现上述岩性的岩石, 而在光谱上就表现为 各种代表岩石反射光谱特征的线形组合。

克拉玛依白碱滩北部蛇绿岩带状分布的有超镁 铁质混杂岩岩、橄榄岩、辉长岩、蛇纹岩、玄武岩 和深海硅质岩。

笔者利用小波变换技术对地物反射光谱特征进 行去噪和近似分量提取 (Rafael, 2005), 再研究不 同岩类的反射光谱特征,进行从遥感影像上提取蛇 绿岩分布信息。由于地表出露岩石受风化、剥蚀情 况比较严重、所以如何把野外试验数据反演到遥感 影像上是本次研究的一大难点。这就需要我们对数 据源进行进一步数字处理、对遥感影像、需要做降 噪 滤波等处理: 对野外光谱数据需要根据统计特 性及结合小波变换进行修正处理。笔者从野外测试 获得的光谱数据中选择最具代表性的 40 个测点数 据和 4 个测场数据进行光谱处理与分析。图 2 为原 始特征光谱经过统计分析后计算出的岩石反射光谱 曲线、由图可知、几种特征岩石的反射光谱特征曲 线含有较多噪声,且在 1.8 μm 附近有明显畸变。由 地物的相关性原理可知这种噪声和岩石光谱信息的 类间影响是不可能在光谱采集时避免的。所以我们 尝试运用小波变换技术对其进行剔除。从而突出反

射光谱整体的特征。

经过反复试验, 笔者选取Coiflet (Coif N) 小波 对反射光谱数据进行进一步处理。Coiflet (Coif N) 小波是Daubechies 根据R.Coifm an 的要求构造的, 它具有Coif N (N = 1, 2, 3, 4, 5) 一系列。经过 分析计算,我们最终选取Coif 5 小波为基准小波对 数据进行处理。

笔者在M atlab 7.0 中实现了 coif 5 小波对4 种 超基性、基性岩石反射光谱的降噪和近似分量的提 取工作(图 3),在维持反射光谱均值基本不变的情 况下,降低了标准方差,如表1所示。由图3 可知, 4 种超基性、基性岩反射率都偏低,这是因为岩石中 存在着大量暗黑色镁铁矿物,特别是大量磁铁矿所 导致的;而且反射波谱在羟基谱带 1.4 μm 和水谱 带 1.9 μm 处有明显的吸收谷和反射峰,说明岩石

图 3 经小波变换处理后的岩石反射波谱近似分量曲线

Fig. 3 The rock approximate spectral reflectance curve after the wavelet transformA. 基性混杂岩; B. 辉长岩; C. 橄榄岩; D. 蛇纹石

发生了明显的蚀变或风化。根据野外观测和室内鉴 定,确定岩石发生了强烈的绿帘石化、绿泥石化和 蛇纹石化等一系列蚀变,且岩石表面裂隙发育,风 化严重(原地质部情报研究所,1980)。

基性混杂岩: 曲线在 0.35~ 1.8 μm 之间缓斜 上升, 在 2.2 μm 附近出现由粘土矿物引起的吸收 谱带, 在 2.35 μm 附近出现碳酸盐矿物的特征吸收 带。谱形特征与该类岩石的区域性蚀变特征相吻合。

辉长岩: 波形整体特征是可见光波段 0.5 μ m 以下普遍存在由电荷迁移引起的强吸收带, 样品在 0.9 μ m 附近存在较强的 Fe³⁺ 吸收带, 在 1.4 μ m 和 1.9 μ m 附近出现由于蚀变和风化作用产生的羟基 吸收谱带, 2.35 μ m 附近的碳酸盐矿物的吸收谱带 也很明显。

表1 小波变换前后光谱数据的数理统计对比

	基性混杂岩			辉长岩			橄榄岩			蛇纹岩		
	原始	近似	细节	原始	近似	细节	原始	近似	细节	原始	近似	细节
	波谱	波谱	波谱	波谱	波谱	波谱	波谱	波谱	波谱	波谱	波谱	波谱
均值	0.2843	0.2843	3.092e~ 04	0.1701	0.1701	- 4.466e~ 07	0.1267	0.1268	2.502e~ 05	0.08344	0.08343	3.867e~ 05
方差	0.1527	0. 1497	0.02442	0.1091	0.1088	0.005982	0.07671	0.07512	0.01136	0.0523	0.05001	0.0117

Tab. 1 Table of the spectral mathematical statistics contrast

橄榄岩和蛇纹岩:此两种岩石的反射光谱曲线 的波型基本一致,只是蛇纹石的反射率稍低一些;两 组波型在可见光波段 0.5 μm 以下普遍存在由电荷 迁移引起的强吸收带,并且在 0.9 μm 附近出现由 Fe³⁺ 引起的强吸收谱带,光谱曲线从 1.0~ 1.8 μm 之间为缓斜上升,在 1.9 μm 和 2.35 μm 附近出现 吸收带。从岩石鉴定结果看,这类岩石普遍具有碳酸岩化、绿泥石化、绿帘石化、绢云母化、铁化等蚀变,谱形反映出该类岩石具有强烈的混合蚀变特征(吴德文等,2001),与室内光谱分析研究结果一致。

从光谱数据谱形分类和岩矿鉴定结果分析,本 区蛇绿岩套的整体反射率较低,且风化、蚀变作用 显著,主要的蚀变有: 0.9 μm 附近的铁化、1.4 μm 处绿泥石及绿帘石化、2.2 μm 附近的粘土矿化和 2.35 μm 处的碳酸盐化。研究区内岩石较强的谱带 特征对于利用遥感影像提取该区的蛇绿岩分布是很 有利的。

4 应用实例

地物的光谱特征是相当复杂的,并受到诸多因 素的干扰,在利用多变量(通道)图像区分不同的 目标地物时,不能孤立地根据个别变量的数据进行 分类,而要从整个向量数据的特征出发,即像元在 多维特征空间中的位置关系及聚类情况进行分类。 从西准噶尔地区所采集的特征岩石光谱特征分析可 以看到,波型在 ETM + 波段有明显的起伏和差异, 基于光谱矢量分类可以提取出研究区的相关岩体的 出露情况(张玉君等, 1998; 2002)。

取岩石光谱数据在对应 TM 波段范围的均值 作为相应波段的光谱反射值 (表 2),图 4 为根据光 谱均值绘制的光谱曲线。

表 2 不同岩石光谱数据在对应 ETM 波段上的光谱均值

Tab. 2 The spectrum mean of different rock spectral data in the corresponding ETM band

_	混杂岩	蛇纹石	橄榄岩	辉长岩
ETM 1	0.156 26	0.104 42	0.13676	0.260 83
ETM 2	0.202 03	0.17018	0.216 74	0.416 57
ETM 3	0.256 59	0.137 99	0.166 87	0.323 24
ETM 4	0.281 95	0.089 18	0.106 63	0.19877
ETM 5	0.430 69	0.107 85	0.183 39	0.288 26
ETM 7	0.39092	0.093 60	0.198 55	0.145 09

由图 4 可知, 混杂岩在 ETM 1、ETM 2、ETM 3、 ETM 4、ETM 5 波段的反射值是逐渐增大的, 是可见 光短波段电荷迁移引起的吸收带和碳酸盐化在 ETM 7 波段引起的吸收带共同作用的结果; 而辉长 岩除了受可见光短波段电荷迁移吸收和碳酸盐化影响之外,在 ETM 4 也有明显因铁化而引起的吸收带;橄榄岩和蛇纹岩与辉长岩的波型特征类似,只是反射率在 ETM 波段比较低,这主要是由于橄榄岩和蛇纹石表面所含的暗色矿物造成的。

通过以上分析可知,可以运用对ETM + 光谱角 (Spectral Angle Mapper, SAM)分类的方法,来从 ETM + 影像上提取能反映蛇绿岩分布的一些特征 岩石,比如,基性混杂岩、蛇纹石、辉长岩和橄榄 岩等等。

笔者处理的野外采集的岩石光谱数据是岩石的 光谱反射率,而 ETM + 图像可见光-中红外波段 数据是遥感器接收像元总反射能量的量化(称灰度 值),明确两者之间的关系是利用测量光谱对 ETM + 图像进行分类的必要前提。研究表明, ETM 波段 (经过大气校正)像元的灰度值仅取决于覆盖像元的 地物光谱反射率,两者有明确的函数关系,相互之 间可以进行换算。

图 4 不同岩石 ETM 波段光谱曲线

明确了反射率与遥感影像灰度值的关系后,就 可以利用 ETM + 影像和经过小波处理的光谱曲线, 对遥感影像进行特征岩石的提取了。通过实验可得 知,波谱角分类识别(SAM)在研究区内能最大限 度的提取出特征岩石的分布信息。波谱角分类识别 算法是将两个波谱当作矢量空间的两个矢量,其维 度等于波段数,通过计算两者间的"波谱角",来确 定它们的相似程度。

通过光谱角方法提取 ETM + 遥感影像中的蚀 变和岩性信息后 (图 5),可知克拉玛依市白碱滩区 以北地区及沿达拉布特断裂区域均出现了基性混杂 岩、蛇纹石、橄榄岩和辉长岩的组合信息。再加上 野外地质调查,证实上述两地区均有蛇绿岩套出露。 证明笔者的基于小波变换的光谱反射处理技术是有 效、可行的。

图 5 特征岩石的 SAM 提取图

Fig. 5 The extractive map of feature rocks based on SAM 黑.未分类; 红.混杂岩; 蓝.蛇纹石; 绿.橄榄岩; 白.辉长岩

5 结论

通过对研究区野外采集的蛇绿岩套相关岩石原 始光谱数据进行一维小波变换分析,提取其近似分 量,可以准确地分析出蛇绿岩的反射光谱特征,即 岩石整体反射率较低,蚀变比较发育等等;再结合 遥感图像处理技术,对ETM + 遥感影像进行光谱增 强和空间增强处理;然后采用光谱角分类识别技术 (SAM)提取ETM + 遥感图像中反映蛇绿岩的光谱 信息。试验证明,此方法特别适用于植被稀少、岩 石裸露率高的西北干旱地区。

地表覆盖物(如植被、土壤等)以及同质异谱 和异质同谱等问题存在,对遥感信息的提取造成一 定的影响,另外,研究区内断裂的展布对于蛇绿岩 的分布也有很大的制约和影响作用,这些都将进一 步进行深入研究。

参考文献 (References):

- 丑晓伟,傅碧宏.干旱区 TM 图像岩石地层信息提取与分析 方法研究 [J].沉积学报,1995,13 (增刊):164-170.
 陈武凡.小波分析及其在图像处理中的应用 [M].北京:科 学出版社,2002:51-89.
- 甘甫平, 王润生, 马蔼乃, 等. 遥感地质信息提取集成与矿物遥感地质分析模型[J]. 遥感学报, 2003, 7. (3): 207-

213.

- 甘甫平, 王润生. 遥感岩矿信息提取基础与技术方法研究[M].北京: 地质出版社, 2004: 23-42.
- 陈逢时.小波变换理论及其在信号处理中的应用 [M].北 京:国防工业出版社,1998:112-156.
- 孙兆林 MATLAB 6.x 图像处理 [M] 北京:清华大学出版社, 2002: 213-236.
- 张弛,黄萱.新疆西准噶尔蛇绿岩形成时代和环境的探讨[J].地质论评,1992,38 (6): 509-523.
- 冯益民,朱宝清,肖序常,等.中国新疆西准噶尔山系构造 演化 [A].见:古中亚复合巨型缝合带南缘构造演化论 文集 [C].北京:北京科学技术出版社,1991:66-91.
- 徐新,何国琦,李华芹,等.克拉玛依蛇绿混杂岩带的基本 特征和锆石 SHR M P 年龄信息 [J].中国地质,2006, 33 (6):470-475.
- 郝 倖国, 王希斌, 鲍佩声, 等. 新疆西准噶尔两类蛇绿岩的 岩石学研究 [J]. 矿物岩石学报, 1989: 33-54.
- 飞思科技产品研发中心 · MATLAB 7.0 辅助小波分析与应用 [M] · 北京: 电子工业出版社, 2005: 23-112.
- 地质部情报研究所.遥感专辑,第一辑:矿物岩石的可见-中红外光谱及其应用 [M].北京:地质出版社,1980: 144-157.
- 吴德文,朱谷昌,吴健生,等.青海芒崖地区岩石光谱特征 分析及应用 [J].国土资源遥感,2001,12(4):28-34.
- 张玉君,杨建民.基岩裸露区蚀变岩遥感信息的提取方法[J].国土资源遥感,1998,(2):45-53.
- 张玉君,等.ETM+(TM)蚀变遥感异常提取方法研究与应用——地质依据和波谱前提[J].国土资源遥感,2002,12(4),30-37.
- Hunt G R. Spectroscopic properties of rocks and minerals in handbook of physical properties of rocks: Volume I
 [M] .Boca Raton: CRC Press, 1982, 51-73.
- Clark N R. Spectroscopy of rocks and minerals, and principles of spectroscopy [J]. 2006, http://speclab. Cr. usgs. gov.
- CHOU Xiaowei, FU Bihong. The method of abstracting stratigraphical information of the rocks in the uncovered area [J]. A cta Sedimento logical Sinica, 1995, 13 (supplement): 164-170.
- CHEN W ufan W avelet analysis and its application to digital in age processing [M] · Science Press, Beijing, 2002: 51-89.
- GAN Fuping, WANG Runsheng, MA Genai, et al. Intergration for extracting and mineral analysis models for geological application using remote sensing data [J] Journal of Remote Sensing, 2003, 7 (3): 207-

213.

- GAN Fuping, WANG Runsheng. A study of the method and the analysis for extraction of ore and rocks information from remote sensing images [M]. Geology Press, Beijing, 2004: 23-42.
- CHEN Fengshi.Wavelet transform theory and signal processing applications [M].Defense Industry Press, Beijing, 1998: 112-156.
- SUN Zhaolin-MATLAB 6.X and image processing [M]. T singhua University Press, Beijing, 2002. 213-236.
- ZHAN G Chi, HUAN G Xuan. The ages and tectonic settings of ophiolites in west Junggar, Xinjiang [J]. Geological Review, 1992, 38 (6): 509-523.
- FEN Yimin, ZHU BaoQing, XAO Xuchang, et al-West Junggar mountain structural evolution in Xinjiang, China [A] · Science Press, Beijing, 1991: 66-91.
- XU Xin, HE Guoqi, L IHuaqin, et al.Basic characteristics of the Kraamay ophiolitic m dange, Xinjiang, and its zircon SHR M P dating [J].Geology in China, 2006, 33 (6): 470-475.
- HAO Xiguo, Wang Xibin, Bao Peisheng, et al. Study of mineralogy of the metamorphic peridotite in the two types of ophiolote in the western Junggar, Xinjiang [J].Journal of mineralogy and petrology, 1989, 33-54.

- MATLAB. 7.0 auxiliary wavelet analysis and application[M]. Publishing House of Electronics Industry, Beijing, 2005: 23-112.
- Rafael C. Gonzalez, Richard E. Woods. Digital image processing using MATLAB [M] . Publishing House of Electronics Industry, Beijing, 2005: 179-210.
- Geological Institute of the M inistry of Intelligence. Remote sensing album: minerals and rocks visible-infrared spectroscopy and its application [M]. Geological Publishing House, Bejing, 1980: 144-157.
- WU Dewen, ZHU Guchang, WU Jiansheng, et al. The analysis and application of spectral characteristics of rock samples from M angya area, Q inghai province [J]
 Remote sensing for land & resources. 2001, 12 (4): 28-34.
- ZHANG Yujun, YANG Jianm in The method of abstracting remote sensing information of alterated rocks in the uncovered bedrocks area [J] . Remote sensing for land & resources, 1998, (2): 45-53.
- ZHANG Yuru, YANG Jianmin, Chen Wei A study of the method for extraction of alteration anomalies from the ETM + (TM) data and its application [J] Remote Sensing for L and & Resources, 2002, 12 (4): 30-37.

Application of Ophiolite Reflectance Spectra in West Junggar Area Based on Wavelet Transform

ZHAO Tong-yang¹, ZHOU Ke-fa², ZHANG Xiao-fan¹, CHEN Chuan¹, XU Shi-qi¹

(1. College of Resource & Environmental Science, X injiang University, Urum qi 830046, China; 2.X injiang Institute of Ecology and Geography Chinese A cadeny of Sciences, Urum qi 8300411, China)

Abstract This paper is based on the wavelet transform Reflectance Spectroscopy the basic theories and methods; Then use of this technology by means of 40 rock Karamay field spectral curve for the quantitative data, summary and analysis of the ophiolite common typical rock (basic m éange, gabbro, peridotite, Serpentine) and the spectral characteristics of the cause. Finally, with the ETM + bands scope of the application areas in the West Junggar multi-band image and Spectral Angle Mapper (SAM) model for the remote sensing images from the identification ophiolite distribution laid a good foundation.

Key words: wavelet transform; ophiolite; Reflectance spectral characteristics; rock identification; West Junggar