文章编号: 1009-6248(2008)01-0097-10

察尔汗盐湖钾镁盐矿成矿地质背景

王春男、郭新华、马明珠、李俊德、李健、

(青海省地质调查院,青海西宁 810012)

摘 要:察尔汗盐湖是我国已探明的最大的钾镁盐矿床,其卤水矿物质的来源及形成受周边山区地层及 岩浆岩类物质组分、青藏高原的隆升作用而导致的成山成盆运动、古气候环境等因素控制,具有开采价 值和开采潜力的主要钾镁盐矿层分布于第四纪地层中。

关键词:物质来源;新构造运动;古气候 中图分类号: P619.21⁺1 → 文献标识码:A

察尔汗盐湖位于柴达木盆地东南部,西北为阿尔金山,东北为祁连山,南为昆仑山,地理坐标为 东经 94 15 56~95 \$1 45,北纬 36 42 09~37 12 26,是第四纪期间柴达木盆地沉降最强烈的地区, 柴达木盆地中最大的汇水中心,也是我国已探明的 最大的钾镁盐固液相并存矿床,以液体矿为开发对 象的大型矿床。固体钾盐矿资源量 2.96×10⁸ t,液 体矿资源量 2.44×10⁸ t,合计 5.40×10⁸ t (郭新华 等,2006)。矿床东西长 168 km,南北宽 20~40 km, 面积 5 856 km²。其含盐地层主要产出于第四纪上更 新世—全新世地层中,含盐组分受盆区地层岩性、新 构造运动、气候环境控制。

1 区域地质

1.1 柴达木盆地的形成与演化

柴达木盆地产生于印支运动以后的侏罗纪,大体经历了山前拗陷、整体拗陷和隆起褶皱三个阶段 (张以弗,1997)。 1.1.1 侏罗纪至始新世山前拗陷盆地初始阶段

印支运动以后的陆内造山期,盆地周边古老的 造山带在南北向挤压应力作用下,由于推覆、走滑 及断块抬升,使其活化隆起,形成了一系列诸如阿 尔金山、祁连山、柴北缘各山体、东昆仑山、鄂拉 山等再生山脉链体。始新世中晚期印度古陆向北的 主动挤压和西伯利亚古陆向南的被动楔入,青藏高 原开始隆起,结束了海侵。为了调节来自南方和北 方的双向挤压,阿尔金左行走滑断裂系形成,并伴 有向盆地的逆冲,与此同时活动性加剧了柴北缘断 裂,并和东昆北断裂一起构成3个冲断荷载系列作 用于盆地,使其岩石圈向下弯曲沉陷,山前拗陷盆 地的雏形形成。

1.1.2 渐新世至中新世大型拗陷盆地成熟阶段

该阶段是盆地发展的全盛时期,由边界断裂分 隔的盆山构造轮廓更加清楚。因盆地整体不断沉陷 加深,拗陷中心由山前地带迁移到盆地中心的茫崖 以北至一里坪一带(图1),沉积物不断加厚。

收稿日期: 2007-08-23; 修回日期: 2007-09-24

- 基金项目: 中国地质调查局调查评价项目
- 作者简介: 王春男 (1963-), 女, 山东省栖霞市人, 高工, 中国地质大学 (北京), 工程硕士, 长期从事水工环地质调查工 作。通讯地址: 810012, 青海省西宁市南川西路 107 号, 青海省地质调查院; 电话: 0971-6254714; E-mail: qingddy @ 126.com。

图 1 柴达木盆地古近纪渐新世—中新世等厚度图 (据车自成, 1986)

Fig. 1 Tertiary O ligocene M iocene isopach map of Q aidam Basin

 1.1.3 上新世至第四纪盆地发展—衰亡阶段 中心向东迁移,但拗陷幅度增大,最大沉积厚度可 上新世盆地西部(茫崖以西)开始抬升,沉积 达 6 000 m (图 2),是盆地演化进程中沉积速度最快

图 2 柴达木盆地新近纪上新世等厚度图

(据车自成, 1986)

Fig. 2 Tertiary Pliccene isopach map of Q aidam Basin

时期,表明周缘山区隆升幅度甚大。上新世下细上 粗的进积型地层结构,说明上新世晚期湖水趋于退 缩,沉积速度和周缘山区隆升幅度大为减小。上新 世末和早更新世末的两次构造运动,盆地西部沉积 盖层先后褶皱变形,褶皱构造的性质在盆地边缘多 为同沉积褶皱,盆地内部以表层褶皱为主。由盆地 边缘至中心褶皱构造的形成时间逐渐推迟,表明从 沉积开始到北西西向一系列褶皱构造的完成,一直 处在近南北向的挤压应力场中。

第四纪沉积中心迁移到东部东台吉乃尔湖以东 一带(图3),中更新世以后盆地全面隆起和褶皱,基 本进入衰亡期(张以弗, 1997)。

图 3 柴达木盆地第四系厚度图 (据车自成, 1986) Fig. 3 Quaternary thickness map of Qaidam Basin

1.2 地层及侵入岩

1.2.1 前第四纪地层及侵入岩

盆地周边基岩山区除太古宙地层外,各时代地 层均有出露。其中古元古代地层在盆地南、北缘均 有出露、以金水口岩群、达肯大板岩群为主、岩性 以中深度变质的片麻岩、斜长角闪片岩类为主,经 后期构造改造属有层无序地层体; 中元古代地层在 盆地周边均有出露,中晚元古代以万洞沟群、冰沟 群、万保沟岩群和全克群为主,岩性以碎屑岩和碳 酸盐岩和火山岩类为主:古生代地层在盆地周边不 甚发育,寒武系仅出露于欧龙布鲁克山地区,奥陶 系仅发育滩间山群、铁石达斯群和纳赤台群、泥盆 系、石炭系在盆地南、北缘均有出露、岩性以碳酸 盐岩夹碎屑岩为主。中生代三叠系主要发育于宗务 隆山一带,侏罗系在盆地北缘及欧龙布鲁克山出露 较广泛,白垩纪地层在盆地西部及北缘分布较广;新 生代古近系、新近系在盆地西部及北缘广泛分布,岩 性为沉积岩。

柴达木盆地周边基岩山区侵入岩带是青海省侵 入岩最发育、侵入活动最频繁的地区,从超基性岩-酸性岩均有产出,其中以中—酸性岩最为发育,出 露面积约 32 000 km²,约占全省同类岩体总面积 (46 600 km²)的 69%;基性-超基性岩分布较少,出 露总面积约 275.6 km²,占全省同类岩体总面积 (767 km²)的 36%。侵入岩从元古宙到新生代均有 发育。其中,加里东期侵入岩一般为蛇纹石化橄榄 岩、蛇纹岩、辉橄岩、纯橄榄岩、闪长岩、花岗岩; 华力西—喜山期侵入岩多以花岗岩、石英闪长岩类 为主。

1.2.2 第四纪地层

盆地内第四纪地层分布广泛,但发育程度不一, 以沉积序列完整、盐类矿产丰富为特点,自早更新 统开始即为大型古湖盆,一直到全新统才全面干涸 形成多元结构的盐湖沉积盆地。

(1)下更新统七个泉组 (Q₁):主要分布于盆地 西北部和东北部,近盆地边缘区为不整合接触,不 整合于上新统狮子沟组之上。盆地边缘向中心地带 由河流相沉积逐渐过渡到湖相沉积,盆地边缘河流 相沉积岩性以砾岩、砂砾岩为主夹砂岩、泥岩,中 心地带湖相沉积岩性为砂质泥岩、泥岩夹少量粉砂 岩、砂岩、碳质泥岩、泥灰岩及石膏、芒硝等,厚 度 300~1 100 m。

(2) 中更新统湖积 (Q₂): 在盆地内分布广泛, 除碱山、红三旱三号、四号、俄博梁三号以北大面 积出露外,在大浪滩 察汗斯拉图、昆特依等洼地 边部和各构造冀部外围凹陷部位都有出露。地貌特 征平坦开阔,地层产状近于水平,局部形成平缓背 斜构造,沉积物以湖相沉积为主,局部夹有盐类化 学沉积,岩性以泥岩为主夹粉砂岩、砂岩,局部夹 砾岩、泥灰岩、石膏和芒硝,与下伏下更新统七个 泉组整合接触,厚度 27~ 387 m。

(3) 上更新统 (Q₃): 从盆地边缘向中心地带由 洪积逐渐过渡为湖积 化学混合沉积。洪积不整合 于不同时代的地层之上,分布于油泉子西北 大风 山、俄博梁三号西南、鸭子墩四号西侧、黄风山、东 台吉乃尔湖南、无柴沟、绿梁山-阿木尼克山山前等 地,由山前至洪积前缘平原地层岩性由以砾石层为 主,局部夹黏土层过渡到粉细砂砂质黏土。湖积、化 学沉积与中更新统湖积连续沉积,分布于大浪滩 察 汗斯拉图、昆特依、大熊滩、红南洼地、鸭湖、西 台吉乃尔湖西、甘森泉湖西周及涩北构造外围等地, 察汗斯拉图地层岩性以含石膏、石盐粉砂层夹含芒 硝石盐、杂卤石石盐,昆特依地层岩性以含芒硝、白 钠镁矾、杂卤石粉砂石盐层夹含石膏淤泥、黏土和 碳质淤泥层,钻孔揭露厚度一般在 15~ 203 m。

(4) 上更新统—全新统冲洪积 (Q₃₋₄): 广布于 盆地边缘山前地带及那陵郭勒 格尔木河等现代河 流两岸, 在地貌上形成冲洪积扇 山前-河谷平原 河 漫滩及低阶地。地层岩性由砾石、砂砾石、粉细砂 及黏土组成, 厚度一般在 20 m 左右。

(5) 全新统 (Q₄): 主要分布于盆地南部地区, 成因类型复杂,有湖积-化学沉积、湖积-沼泽沉积、 湖积、沼泽、化学沉积和风积等。其中,化学沉积 在盆地内随处可见,在现代湖泊及其周围更为集中。 岩性以盐类沉积为主夹淤泥、砂质黏土、粉砂等,地 表往往结成数厘米至数十厘米的盐壳,厚度 1~15 m,达布逊盐湖可达 40~60 m。

2 物质来源

察尔汗盐湖盐类矿产已发现有 27 种(阳立刚 等,2003)(表1),主要化学成分为 K⁺、N a⁺、M g²⁺、 Ca²⁺、CO²⁺、SO²⁺、CI,与柴达木盆地周边山区 的基岩的物质成分密不可分。

表 1 察尔汗盐湖盐类矿物一览表

Tab). I	A	ł	cata	logue	of	salt	y m	inera	ls	in	Q	ar	han	S	Sal	t l	La	ιk	г
-----	------	---	---	------	-------	----	------	-----	-------	----	----	---	----	-----	---	-----	-----	----	----	---

	序号	矿物名称	沉积类型	化学式
	1	石盐		N aC1
	2	水石盐	氯	$N aCl \cdot 2H_2O$
	3	钾石盐	化	KC1
	4	水氯镁石	物	M gC l2 · 6H 2O
	5	光卤石		KC1 · M gC12 · 6H2O
	6	重晶石		BaSO 4
	7	天青石		SrSO 4
	8	硬石膏		CaSO 4
	9	石膏		CaSO 4 • 2H 2O
	10	半水石膏	7+	$CaSO 4 \cdot 1/2H_{2O}$
	11	芒硝	魧	N a2SO 4 · 10H 2O
	12	泻利盐		M gSO 4 · 7H 2O
	13	六水泻盐		M gSO 4 · 6H 2O
	14	钾芒硝	酸	$3K_2SO_4 \cdot Na_2SO_4$
	15	钾石膏		$K_2SO_4 \cdot CaSO_4 \cdot H_2O$
	16	杂卤石		$K_2SO_4 \cdot 2CaSO_4 \cdot M gSO_4 \cdot 2H_2O$
	17	软钾镁矾		K2SO4 · M gSO4 · 6H2O
	18	钾盐镁矾	盐	4KC1 · 4M gSO 4 · 11H 2O
	19	白钠镁矾		N a_2 SO $_4$ · M gSO $_4$ · 4H $_2$ O
	20	钙芒硝		$N a_2 SO_4 \cdot Ca SO_4$
	21	钾镁矾		$K_2SO_4 \cdot M gSO_4 \cdot 4H_2O$
	22	无水钾镁矾		K2SO 4 · 2M gSO 4
-	23	钠镁矾		6N aSO 4 · 7M gSO 4 · 15H 2O
	24	方解石	硡	CaCO 3
	25	白云石	一般の	CaCO ₃ · M gCO ₃
	26	菱镁矿	段 +5	M gCO 3
_	27	文石	畄	CaCO 3

2.1 盆地周边岩石成分

柴达木盆地沉积物主要来自周边基岩山区的剥 蚀,各时代的侵入岩、变质岩、沉积岩在周边山区 均有出露。其中,以侵入岩最为发育,大面积出露 的侵入岩、变质岩中含有丰富的钾、钠、钙镁等物 质成分。柴北缘主要出露的岩石有片麻岩、碎屑岩、 白云岩、石英岩、千枚岩、大理岩、碳酸岩等。东 昆仑出露的主要岩石有深变质岩、混合岩、浅变质 岩、火山岩、碎屑岩及少量碳酸岩,其不同岩带岩 石化学成分(张以弗,1997)见表 2。

表 2 不同岩带岩石化学成分 (w B /%)

Tab. 2	The rock	chem ical con	ponents in	different	terrain	$(_{WB}/\%)$
--------	----------	---------------	------------	-----------	---------	--------------

r and r a												
岩带	样品数	S D 2	T D 2	A l2O 3	Fe2O 3	FeO	M nO	M gO	CaO	N a2O	K2O	P2O 5
南 祁 连	127.00	64.48	0.57	14.96	1.00	3.69	0.08	3.21	4.01	3.09	3.16	0.14
柴 北 缘	179.00	67.02	0.40	14.71	1.27	2.67	0.11	1.91	3.49	3.53	3.19	0.12
东昆仑	458.00	69.61	0.37	13.66	0.90	2.53	0.06	1.31	2.39	3.34	4.07	0.10
可可西里- 阿尼玛卿	29.00	62.60	0.47	16.24	1.28	3.62	0.10	2.70	4.65	3.83	1.88	0.13
宗务隆山- 青海南山	174.00	71.36	0.28	13.98	1.13	1.55	0.06	1.04	1.51	3.80	3.71	0.12
<u> 华南 (1989, 徐克勤等)</u>	574.00	68.98	0.41	14.28	1.54	2.32	0.08	1.32	2.12	3.46	3.96	0.13

从表 2 可以看出, 柴达木盆地周边基岩山区易 溶盐含量明显高于其他地区, 东昆仑地区 K₂O 含量 最高, 其次为柴北缘, 其含量分别为 4.07%、 3.19%; 与察尔汗盐湖钾离子含量分布情况相吻合
 (图 4)。

柴达木盆地周边基岩山区不同时代岩石化学成

图 4 察尔汗盐湖潜水钾离子含量等值线图

Fig. 4 The contour map of Potassium content of Q arhan Salt L ake underground water
1. 干盐滩界线; 2. 潜水钾离子含量 (g/l) 等值线; 3. 湖水钾离子含量 (g/l) 等值线;
4. 剥蚀区; 5. 地下水流向

分(张以弗, 1997) 见表 3, 从表 3 可看出期印支期 3.63%, 柴达木盆地自盆地形成初期即为盐类矿产 K₄O 含量最高,加里东其次,含量分别为 4.48%, 提供了丰富的物质储备。

表 3 不同时代岩石化学成分 (w B/%)

Tab. 3	The r	rock	chem ical	components	in	different ag	je (v	∨ в/%	,)
--------	-------	------	-----------	------------	----	--------------	-------	-------	-----

时代	样品数	S 10 2	T iD 2	A l ₂ O 3	Fe ₂ O ₃	FeO	M nO	M gO	CaO	N a ₂ O	K ₂ O	P2O 5
元古宙	32.00	60.41	0.78	14.91	1.17	5.50	0.32	4.11	5.91	2.98	2.14	0.14
加里东	184.00	66.29	0.44	14.47	1.17	2.99	0.07	2.34	3.58	3.16	3.48	0.16
华力西早期	58.00	64.90	0.59	15.34	1.36	3.68	0.09	2.38	4.03	3.44	2.82	0.14
华力西中期	113.00	67.02	0.47	14.72	0.76	3.12	0.05	2.12	3.30	3.53	3.36	0.13
华力西晚期	173.00	64.69	0.56	15.34	1.24	3.10	0.09	1.78	3.58	3.62	2.90	0.14
印支期	404.00	68.24	0.38	14.06	1.02	2.81	0.10	1.82	2.90	3.19	3.63	0.11
燕山期	53.00	68.40	0.36	14.82	0.89	2.50	0.07	1.53	2.88	3.61	3.20	0.10
<u> 华南 (1989, 徐克勤等)</u>	574.00	68.98	0.41	14.28	1.54	2.32	0.08	1.32	2.12	3.46	3.96	0.13

柴达木盆地在地史时期属于地质构造活动活跃 区域,构造运动十分强烈,构造裂隙,风化裂隙,节 理发育,印支运动以后的陆内造山期,盆地周边基 岩山区即遭受强烈的剥蚀,大量的碎屑物随着河水 和洪水迁移至盆地,盆地沉积物与基岩山区具有相 同的物质成分 (刘欢等, 2007)。

2.2 盆地中含盐地层及新近纪、古近纪地层高矿化 度卤水

柴达木盆地在侏罗纪前与塔里木盆地连通, 盆 地内水系流向塔里木盆地, 印支运动以后, 柴达木 盆地周边造山带的抬升,阿尔金山左行走滑,渐新 世时柴达木盆地与塔里木盆地分隔,柴达木盆地水 系由外流水系转入内流封闭水系,沉积物由浅海相 -海相沉积转为河湖相沉积。

青藏高原的快速隆升阻隔了印度暖湿气流向北 部的运移,导致了亚洲季风的形成,随着青藏高原 的持续抬升,季风不断加强,青藏高原更加干旱和 寒冷(牟世勇等,2007),柴达木盆地进入干旱、半 干旱时期。

柴达木盆地湖泊水源主要来自于周边山区的降 水,其形成中期周边山区进入快速隆起阶段,新近 纪、古近纪晚期在盆地中沉积了巨厚的含盐砂砾层, 随着盆地西部抬升,沉降中心向东移,但沉降速度 却是柴达木盆地形成过程中沉积速率最快时期,快 速沉积封存了新近纪,古近纪地层中的地下水。

柴达木盆地地质构造活跃,新老构造运动具有继 承性、复活性,经历多期次的剧烈运动,整个柴达木盆 地构造足迹遍布,尤其是盆地西部地区新近纪、古近 纪地层中构造褶皱发育,一系列的构造裂隙、孔隙为 地下水的储存提供了巨大的空间,地下水在漫长的地 质历史时期不断淋滤,溶滤新近纪、古近纪地层中的 含盐物质,在新近系中存储了高矿化度盐卤水,其主 要化学成分为Na⁺、K⁺、Ca²⁺、Mg²⁺、CT、SO²⁺、 HCO³、(表 4) (李廷伟等, 2006)。

	密度				化学组	分 (g/l)			
件而编写	(g/cm^3)	N a ⁺	K ⁺	Ca ²⁺	$M g^{2+}$	Cl	SO ² -	HCO 3	矿化度
N YS-01	1.21	105.71	4.21	12.92	2.48	194.44	0.66	0.53	198.58
N YS-02	1.20	106.62	3.89	12.88	2.50	195.64	0.67	0.54	199.78
N YS-03	1.32	15.04	43.04	117.91	7.78	296.96	0.03		310.58
N YS-04	1.26	44.84	35.75	69.10	5.05	237.73	0.16	0.29	249.32
YD Z-2-01	1.20	117.77	2.50	4.84	0.84	192.20	1.34	0.23	235.63
YD Z-2-02	1.20	116.60	1.84	4.45	1.79	191.75	1.56	0.31	227.39
YD ZQ 01	1.21	159.51	0.25	4.68	0.82	190.17	1.47	0.08	357.42
YD ZQ 02	1.21	168.00	0.24	4.07	0.83	190.17	1.40	0.09	365.93
KTML KQ 01	1.12	113.06	0.24	2.62	1.61	98.74	3.59	0.22	220.66
KTML KQ 02	1.10	124.27	0.18	2.25	1.68	81.39	4.08	0.35	214.94
KTML KQ 03	1.09	123.66	0.35	2.39	1.23	76.55	3.24	0.29	208.47
YO ZQ 01	1.20	178.31	0.75	13.29	2.54	179.32	0.23	0.08	375.28
YO ZQ 02	1.10	167.05	0.78	13.58	2.06	176.15	0.19	0.00	360.58
YO ZQ 03	1.19	187.47	0.60	13.51	2.13	179.59	0.15	0.00	384.35
7K-5034	1 13	68 18	0.30	6.51	1 30	120.00	0.57	0.07	121 50

表 4 新近系中高矿化度卤水化学成分分析表 Tab.4 Brine chem ical analysis of m iddle-high degree of m ineralization for Tertiary stratum

3 新构造运动

柴达木盆地是一个北西西向近菱形的断陷盆 地,自印支运动独立成盆后一直处于拗陷状态,第 四纪时期,盆地的发展具有很强的继承性。由于盆 地始终处于压扭性应力场中,盆地边部形成陡倾逆 冲断层,盆地基底在边部深 5 000 m 左右,在中心达 17 000 m,大多数基底断裂呈北西向,几乎所有现代 盐类湖泊均处于基底拗陷部位(图 5)(阳立刚等, 2003)。

青藏高原新构造运动在柴达木盆地表现为强烈 的差异升降运动,受南北断裂带的控制,随着青藏 高原的抬升,柴达木盆地发生强烈的沉降,受阿尔 金山走滑断裂和盆地内北北东、北东向断裂控制,盆 地东、西部也发生局部的差异生降运动。上新世末 期至下更新世初期新构造运动使盆地西部抬升,汇 水区向东迁移,在下更新世中期受新构造运动和阿 尔金山左行走滑影响盆地西部进一步抬升,并在狮 子沟—油砂山—茫崖—大沙坪—斧头山一线形成褶 皱隆起背斜构造带,使昆北断陷尕斯库勒盆地与中 央拗陷带的大浪滩-一里坪-三湖凹陷带相对隔离; 中更新世初期柴达盆地受喜马拉雅运动第四幕构造 运动影响,盆地西部继续抬升次级构造相继露出水 面,咸水泉—油泉子—开特米里克—油墩子一线露 出水面与南面的油砂山-茫崖构造隆起连成一片;中 更新世末期至上更新世早期盆地西部抬升进一步加强,在原来褶皱隆起的基础上,下、中更新世全面褶皱隆升,冷湖、碱山等一系列NW—SE 向背斜构造再度隆升,导致柴达木盆地古湖泊解体,形成相对独立沉积盆地。

柴达木盆地位于青藏高原北部,构造上处于塔 里木-华北和羌塘-扬子(华南)两大古陆的裂解部 位,在地质史期中属于构造活动区域,断裂构造十 分发育,它们即具有长期发育历史,又具有继承复 活性和改造新生性,盆地内新构造运动十分发育 (表5)(阳立刚等,2003),在盆地整体发生强烈沉 降的同时,盆地内差异升降运动十分活跃,控制盆 地内部地块的抬升速率。

图 5 柴达木盆地断裂构造卫片解译图

Fig. 5 Satellite film interpretation map for rupture in Q aidam Basin
1. 控制柴达木古地块边界的Ⅰ级构造线; 2. 控制柴达木盆地的Ⅱ级构造线; 3. 控制盐湖区(带)的Ⅲ级构造线; 4. 控制成 盐盆地的Ⅳ级构造线; 5. 干盐湖; 6. 卤水湖; 7. 淡水湖或半咸水湖; 8. 主要压应力方向; 9. 第四纪湖泊主要迁移方向

4 盐类矿产形成因素

察尔汗盐湖湖区新构造运动强烈,构造裂隙、节 理发育,增加了降水、融雪水、地表水和地下水与 岩石面的接触面积,为地表水、地下水溶液、溶滤 岩石的易溶盐成分提供了丰富的空间。

察尔汗盐湖湖区水源均来自于盆地周边的基岩 山区的天然降水和融雪水,尤其南部昆仑山区是湖 区主要补给水源。

察尔汗盐湖源汇区地表水、地下水在盆地侵蚀 区即开始溶滤岩石中的易溶盐分,径流过程中随着 地下水的汇聚与沉积盆地中的沉积物不断发生溶 滤、溶解、淋溶作用,使岩石中的易溶组分富集在 地表水和地下水中,最终汇入湖区。

盆地的北部和西部新近系、古近系含盐地层大 面积出露,受新构造运动影响,构造裂隙发育,其 含盐地层中的盐分被地下水或地表水溶淋带入湖 区。

盆地中新近纪 古近纪地层中的高矿化度卤水 通过构造裂隙 孔隙及构造天窗向湖区补给。

柴达木盆地属大陆性干旱气候,寒冷多风少雨, 昼夜温差大,年平均气温1.1~3.9℃,最低气温 - 26.5~ - 34.3℃,最高气温27.7~31.2℃,全年

表 5 察尔汗盐湖区主要活动断裂带一览表

Tab. 5 A catalogue of main active rup ture of Q arhan Salt L ake

新刻带			ŧ	E 要	证打	居	
名称	断裂带特征	地 形变	地球化 学异常	盐溶	地 震	物 探	钻 探
三湖断 裂 带	从达布逊湖北侧至南、北霍布逊湖之间斜贯察尔汗干盐滩,断裂带走向北西西,倾 向北北东,据震源深度推断下切深度 33 km,属压剪性逆冲断裂带,断裂带两盘压 剪、张剪、张性次级断层发育,断裂带被达布逊湖东断裂带和锡铁山-察尔汗断裂带 切错而沿走向分为 3 段						
锡铁山- 察尔汗 断裂带	南北切穿协作湖、察尔汗干盐滩,断裂带走向北北东,倾向南东东,据震源深度分 布范围估计,延深 25~33 km,与新近系、古近系、侏罗系成油地层连通,属张剪 性右旋走滑断裂,断裂南段被团结湖断裂带切错						
达布逊 湖东断 裂 带	沿达布逊湖东侧近南北向展布,倾向西,推断断裂深度 25~33 km,与成油地层连通,属右旋走滑张性断裂,北端与哑西断裂带错列,接合部形成压剪性"岩桥",本断裂北段连通性较强,南段多小震						
团结湖 断裂带	位于团结湖南缘,断裂走向近东西向,倾向北,切割新近系、古近系,左旋走滑张 性断裂,东段切错锡铁山-察尔汗断裂带						
哑西断 裂 带	位于达布逊湖东北部,向湖区以北延伸,走向北北东,倾向北西西,物探资料推断 切割深度 25~33 km,属右旋走滑张性断裂,与达布逊湖东断裂带成异行阶状错列						

盛行西北风,最大风速为40 m/s (柳大纲等, 1996),年均降水量21.9 mm,年均蒸发量3560.1 mm,具备卤水形成的气候环境。

柴达达盆地下部发现宽 300 km、厚 80 km 的地 震波低速异常层体,该地震低速异常层与可可西里 深部大型低速异常体组成地幔羽相连(许志琴等, 2004),表明柴达木盆地深部有热结构,相对于其他 地区来说具有区域热源背景。

察尔汗盐湖沉积物的主要物质来源为周边山区 的火山岩带,盆地沉积物比周围基岩山区更富放射 性元素,其所产生的热会逐渐聚集(张以弗, 1997),从而使盆地内的地温梯度相对高于其他地 区,加剧湖区地表水和地下水的蒸发。

察尔汗盐湖新老构造运动强烈,受南北向挤压 应力场作用,断裂面摩擦剪切累加生热(李廷伟等, 2006)提高盆地地温梯度。

察尔汗盐湖成盐盆地位于柴达木盆地东南部, 是第四纪期间柴达木盆地沉降最强烈的地区,也是 柴达木盆地最大的汇水中心,大量的易溶盐被地表 水、地下水携带径流至察尔汗盐湖。汇入察尔汗盐 湖湖区的湖水在地质历史时期穿越不同的气候环 境,干旱寒冷环境期湖泊补给量小于蒸发量,经长 期蒸发和高地温的烘托浓缩形成巨大的盐湖矿床 (表 6)(阳立刚等,2003)。

表 6 察尔汗盐湖南侧现代河水浓缩实验结果

Tab. 6 Experiment result for modern river water concentrated in South Qarhan Salt Lake

河流	冲 停停带	密度	总盐量			化	学组:	分 (g/l)		
名称	浓缩倍数	(g/cm^3)	(g/l)	\mathbf{K}^+	N a ⁺	Ca ²⁺	M g ²⁺	Cl	SO ²⁻ ₄	HCO $3 + CO_{3}^{2}$
左按 位	河水	1.01	3.57	0.05	0.88	0.02	0.20	1.25	0.67	0.51
东伯小	浓缩 45 倍	1.09	122.00	2.10	34.20	0.14	5.21	48.15	25.71	6.53
小 河	浓缩 90 倍	1.15	199.30	3.50	62.00	0.16	8.56	89.41	35.69	
	河水	1.01	12.52	0.10	3.16	0.57	0.43	4.18	3.93	0.10
收工河	浓缩 45 倍	1.15	206.70	2.57	61.00	0.53	9.79	96.57	34.21	1.89
	浓缩 90 倍	1.24	355.40	4.50	102.50	0.14	18.71	171.20	58.38	

5 盐类矿产的形成

柴达木盆地第四纪古气候是干冷湿暖交替,为 柴达木盆地盐类矿物的沉积和卤水矿的形成提供了 条件,柴达木盆地第四纪古气候经历3次干旱寒冷 气候环境,第一次发生在上新世晚期3.30~3.00 Ma,第二次始于第四纪初期2.48~0.03 Ma,第三 次始于0.03 Ma至今(沈振枢等,1993)。

察尔汗盐湖盐类矿产的形成,受上述因素控制 之外,其古气候起着主导作用,在干旱寒冷气候环 境下湖水浓缩,盐类沉积,湿润温暖气候环境,湖 水浓度淡化,沉积碎屑物。

察尔汗盐湖从距今 3.7 M a 独立成盆后, 在东、 西、南三面大量水源的补给和极端干旱的气候条件 下经过约 6 000 a 的时间, 便进入析盐阶段, 这时由 于汇水中心位于东测达布逊一带, 地下水和地表水 流经察尔汗汇入达布逊湖和别勒滩湖, 盐类沉积主 要发生在达布逊和别勒滩一带, 盐层厚 2~ 16 m (郭 新华等, 2006)。

距今 2.46 M a 左右盐湖湖水发生第二次浓缩, 在达布逊、别勒滩大约经历了 6 800 a 的盐类沉积, 盐层平均厚度为 11 m , 最大厚度 30 m。

盆地西部随着青藏高原和阿尔金山的抬升而抬 升,汇水中心向察尔汗盐湖区迁移,在距今15000 年左右察尔汗盐湖析盐进入鼎盛阶段,沉积了巨厚 的盐层,层厚几米至十几米,最大可达50m,距今 7000年左右气候进一步干旱,周边山区补给量减 少,湖泊蒸发量远远超过补给量,盐湖进入干盐湖 阶段(阳立刚等,2003)。

6 结论

(1)察尔汗盐湖之所以蕴藏着丰富的盐类矿产, 其主要原因是盆地周边山区火山岩发育,为湖区盐 类矿产提供了丰富的化学组分。

(2) 察尔汗盐湖区位于差异性运动的构造凹陷 部位,为盐类矿产的汇聚、沉积提供了空间。

(3) 柴达木盆地气候干旱, 蒸发量大于降水量, 为盐类矿产的形成提供了外部必备条件。

致谢: 论文在编写过程中得到青海省地质调查

院矿产地质专业包存义高级工程师 区域地质调查 专业阿成业高级工程师的悉心指导,在此表示衷心 的感谢。

参考文献 (References):

- 郭新华, 王春男, 马明珠. 青海省柴达木盆地察尔汗盐湖首 采区钾镁盐矿床开发及老卤排放对液体钾矿的影响现 状 [J]. 西北地质, 2006, 30 (1): 98-104.
- 张以弗.1 50万青海省东昆仑-柴达木盆地北缘区域地 质图及金、银、铜、铅、锌矿产图说明书 [R].青海省 区调综合地质大队,1997,10.
- 李廷伟,谭红兵,樊启顺.柴达木盆地西部地下水水化学特 征及成因分析 [J].盐湖研究,2006,14 (4):26-32.
- 沈振枢,程果,乐昌硕,等.柴达木盆地第四纪含盐地层划 分及沉积环境 [M].北京:地质出版社 1993,8.
- 阳立刚,徐维成,任万英,等,青海省格尔木市察尔汗盐湖 钾镁盐矿床补充勘探和综合评价报告[R].青海省地质 调查院,2003,12.
- 柳大纲,陈敬清,张长美.柴达木盆地盐湖类型和水化学类型 [J].盐湖研究,1996,16 (9):9-16.
- 牟世勇, 贺永忠, 朱勋, 等. 西藏改则西北部喀湖错把拉湖 区 13 kaBP 以来的湖泊沉积与环境溶化 [J]. 地质通 报, 2007, 26 (1): 94-99.
- 刘欢, 刘永江, 袁四化, 等. 柴达木盆地西北部红三旱地区 始新世- 渐新世砂岩物源分析 [J]. 地质通报, 2007, 26 (1): 100-107.
- 许志琴,曾令森,杨经绥,等.走滑断裂、"挤压性盆-山构造"与油气资源关系的探讨 [J].地球科学,2004,29
 (6):631-643.
- GUO Xinhua, WAN G Chunnan, MA M ingzhu. Influence on the ore of development of the potash ore and the L aolu D isposing in the first m ine area of Q arhan Saline L ake, Q inghai [J] .Northwestern Geology, 2006, 30 (1): 98-104.
- ZHANG Yifu. 1 500000 geological map of east Kunlun-Chaidamu basin north edge area in Qinghai Province and mineral deposits map instructions of gold, silver, lead and zinc [R] .Qinghai Regional Geological Survey and Comprehensive Research Team, 1997.
- L I Tingwei, TAN Hongbing, FAN Q ishun Hydrochem ical characteristics and origin analysis of the underground brines in West Q aidam Basin [J] Journal of Salt Lake Research, 2006, 14 (4): 26-32

SHEN Zhenshu, CHENG Guo, LE Changshuo, et al

Quaternary stratum saliferous strata division and sedimentary environment of chaidam basin [J] Geological Publishing Hourse, Beijing, 1993

- YANG Ligong, XU Weicheng, REN Wanying, MA Mingzhu, et al Supplement exploration and comprehensive assessment report of magnesium salt deposit in Chaerhan salt lake of Golmud city Qinghai province [J] Qinghai Geological Survey Institute, 2003
- L U Dagang, CHEN Jingqing, ZHANG Changmei Salt lakes types and hydrochemical types in Qaidam basin [J] Journal of Salt Lake Research, 1996, 16 (9): 9-16
- MOU Shiyong, HE Yongzhong, ZHU Xun, et al Lake deposits and environmental evolution of the Bala lake

area, Kahu Co, northwestern G êz ê Tibet, China, since 13 kaBP [J] Geological Bulletin of China, 2007, 26 (1): 94-99.

- L U Huan, L U Yongjiang, YUAN Sihua, et al Provenance analysis of Eocene O ligocene sandstones in the Hongsanhan area, northwestern Q aidam basin, Q inghai, China [J] Geological Bulletin of China, 2007, 26 (1): 100-107.
- XU Zhiqin, ZENGL ingsen, YANG Jingsui, et al Role of large-scale strike-slip faults in the formation of petroleum bearing compressional basin-mountain range systems [J] Earth Science-Journal of China University of Geosciences, 2004, 29 (6): 631-643

Ore-form ing Geological Background of K-Mg Salt in Qarhan Salt Lake

WANG Chun-nan, GUO Xin-hua, MA Ming-zhu, L IJun-de, L IJian (Qinghai Geological Survey Institute, Xining 810012, China)

Abstract Q arhan Salt L ake is the largest K-M g salt deposit with proven reserves in China The formation of K-M g salt deposit is controlled by several factors: strata and magmatite material components of surrounding mountain area, the mountain-building and basin-formation movement caused by Q inghai-Tibet Plateau movement, paleoclimate and paleoenvironment, and other factors Promising K-M g salt deposit is mainly distributed in Q uaternary stratum.

Key words: matter source; neotectonic movement; paleoclimate