阿尔金山东端余石山铌钽矿区霓辉正长岩的 LA-ICP-MS 定年及对成矿时代的制约

杨再朝^{1,2},校培喜^{1,2},高晓峰²,康磊²,谢从瑞²,余君鹏³

(1. 中国地质大学(武汉)地质调查研究院,湖北 武汉 430074;2. 中国地质调查局西安地质调查中心,
 陕西西安 710054;3. 甘肃省地质调查院,甘肃 兰州 730000)

摘 要:余石山铌钽矿床是近年来发现的一大型矿床,位于阿尔金造山带之红柳沟-拉配泉蛇绿构造混杂岩带、祁 连造山带、欧龙布鲁克微陆块的结合部位。对矿区进行成矿背景研究时发现,矿区赋矿地层主要为长城系熬油沟 组,岩性组合为变质火山岩及大理岩,穿插有霓辉正长岩体,其中发育细粒烧绿石与霓辉石等富铌钽矿物。并对霓 辉正长岩进行锆石 LA-ICP-MS 年代学测定,结果表明霓辉石正长岩成岩年龄为(776.8±2.5) Ma,成矿与成岩年 龄相近或稍晚,表明该霓辉正长岩和铌钽矿床可能形成于南华纪 Rodinia 超大陆裂解时所产生的大陆边缘裂谷构 造环境。

关键词:阿尔金东段;余石山铌钽矿床霓辉正长岩;LA-ICP-MS 锆石 U-Pb 定年 中图分类号:P618.86,P597 文献标识码:A 文章编号:1009-6248(2014)04-0187-11

LA-ICP-MS Dating of the Aegirine-Augite Syenite of Yushishan Nb-Ta Deposit in Eastern Altun and Its Constraints on the Metallogenetic Age

YANG Zai-chao^{1,2}, XIAO Pei-Xi^{1,2}, GAO Xiao-Feng², KANG Lei², XIE Cong-Rui², YU Jun-Peng³

 Geological Survey, China University of Geosciences, Wuhan 430074, China; 2. Xi' an Center of Geological Survey, CGS, Xi' an 71005, China; 3. Gansu Geological Survey, Lanzhou 73000, China)

Abstract: Lying in the joint of Hongliugou-Lapeiquan ophiolitic melange zone (eastern part of the Altun Mountains), Qilian orogenic belt and Oulongbuluke microcontinent, Yushishan Nb-Ta Deposit is a large-size deposit recently discovered. Based on the study of its metallogenic background, the major ore-bearing strata is found to be Ao' yougou Formation of Changchengian Period. The lithological association includes metamorphic volcanic rock and marble, mixed with aegirine-augite syenite, where develop minerals rich in Nb-Ta such as fine-grain pyrochlore and aegirine-augite. The LA-ICP-MS dating for zircons from an aegirine-augite syenite sample yields the diagenetic age of 776. 8 ± 2 . 5 Ma, indicating that the metallogenic age is similar or slightly later than the mineralization of the rock. Combined with petrological-mineralogical characteristic under the microscope and metallogenic age, the aegirine-augite syenite and Nb-Ta deposit were probably formed in continental rift tectonic background induced by the breakup of Rodinia supercontinent in Nanhua Period.

收稿日期: 2014-09-12;修回日期: 2014-10-20

基金项目:中国地质调查局国土资源大调查研究(1212011085034,12120113044500)国家自然科学基金(41202044)

作者简介:杨再朝(1988-),男,广西来宾人,壮族,中国地质大学(武汉)地质调查研究院在读研究生,专业方向为构造地质

学。E-mail:yzch2012@163.com

Key words: Eastern Altun; aegirine-augite syenite of Yushishan Nb-Ta deposit; LA-ICP-MS zircon U-Pb dating

甘肃余石山铌钽矿位于阿尔金造山带红柳沟-拉配泉蛇绿构造混杂岩带、祁连造山带和欧龙布鲁 克微陆块结合部位,地质构造复杂多样。红柳沟-拉 配泉蛇绿构造混杂岩带是北阿尔金地区重要的东西 向构造带,北接敦煌-阿北地块,南侧为阿中地块 (米兰河-金雁山地块)。前人通过蛇绿岩、高压变质 岩和相关花岗岩的研究认为其为早古生代缝合带, 同时也是区域上重要的成矿带(刘良等,1996,2002; 许志琴等,1999;zhang et al.,2001; liu et al., 2006;);祁连造山带位于阿尔金山以东,华北板块西 南缘,与秦岭、昆仑一起构成中国大陆中部的秦祁昆 巨型造山带,经历了前寒武纪古陆形成、早古生代裂 解和闭合主造山、华力西一印支早期后造山和中一 新生代叠复造山复杂的地质演化(殷鸿福等,1999; 葛肖虹等,1999;桂棠等,2002;),形成了丰富的矿产 资源(冯益民等,1996;夏林析等,1998;贾群子等, 2007);欧龙布鲁克微陆块地处柴达木盆地北缘,是 柴北缘古老陆块组成部分,基底地层以古元古界末 和中一新元古界为主,盖层为南华系一震旦系浅变 质的全吉群,构成了微陆块典型的双层结构模式(郝国杰等,2004;陈能松等,2007)。受阿尔金断裂 左行走滑断裂带的影响,红柳沟-拉配泉蛇绿构造混 杂岩带、祁连造山带两大成矿带和欧龙布鲁克微陆 块在阿尔金东段交汇,余石山铌钽矿床即处于三者 的结合部位,大地构造位置特殊,矿区地层、构造、岩 浆岩复杂(图1)。

图 1 北阿尔金余石山矿区区域地质图(据 1:5万莫尔坝幅区域地质调查报告,2012 改编)

Fig. 1 Reongal geological map of the Yu Shishan mountain mining area in North Arkin
1. 第四系; 2. 石炭一二叠系羊虎沟组; 3. 寒武一奧陶系拉配泉群; 4. 奧陶纪辉长岩体; 5. 蓟县一青白口系冰沟南组; 6. 长城系熬油沟组二段;
7. 长城系熬油沟组五段; 8 长城系熬油沟组六段; 9. 二长花岗岩; 10. 石英闪长岩; 11. 断层及产状; 12 余石山铌钽矿床位置; 13. 采样位置

目前,关于余石山铌钽矿地层主要有3种观点: ①甘肃区调队(1978)在进行1:20万冷湖幅区域地 质调查时,将该区地层划分为青白口系第二岩组。 ②天津地质矿产研究所(2009)1:25万石棉矿幅在 矿区西邻将前人划分的青白口系第二岩组划归为拉 配泉群,自下而上划分出火山岩岩组、碎屑岩岩组、 碳酸盐岩岩组。③甘肃省地质调查院(2011~2014) 1:5莫尔坝等6幅区域地质调查,将矿区赋矿地层厘 定为长城系熬油沟组,该组为板内裂谷拉斑质-碱性 玄武岩夹(叠层石)灰岩-白云岩-泥质岩组合,反映 了长城纪火山活动减弱,构造活动趋于稳定的斜坡-次深海环境。 笔者通过对该矿床含矿地层的野外调查和室内 研究,初步查明赋矿地层主要为长城系熬油沟组一 套变质火山岩、碎屑岩、碳酸盐岩,余石山铌钽矿床 产在熬油沟组二段内铌钽矿床的矿石矿物主要为褐 钇铌矿、铌铁矿、钽铁矿、烧绿石,这些矿物呈稀疏浸 染状分布,(Nb,Ta)₂O₅ 平均品位为0.061×10⁻², 最高品位达0.16×10⁻²;脉石矿物以斜长石、钾长 石、石英、白云母、绿泥石为主(甘肃地调院,2013)。 同时在矿区发现了与铌钽矿关系密切的霓辉石正长 岩、硅化正长斑岩。因此,对矿区霓辉正长岩的研究 是认识矿床成因和成矿时代的关键。

1 区域地质和岩石学特征

1.1 区域地质

霓辉石正长岩分布于余石山铌钽稀有多金属矿 区的中部,其大地构造位置属于阿尔金北缘的红柳 沟-拉配泉东段、祁连造山带和欧龙布鲁克微陆块的 结合部位,区内地层主要为长城系熬油沟组、蓟县— 青白口系冰沟南组、寒武—奥陶系拉配泉群、石炭— 二叠系羊虎沟组,侵入岩为华力西期二长花岗岩、石 英闪长岩和碱性正长岩,发育有北东、北西和近东西 向3组断裂构造(甘肃地调院1:5万莫尔坝幅区域 地质调查为参考)。

1.2 岩石学特征

霓辉石正长岩呈层状、似层状产出,局部变形 强烈,发育揉皱、眼球状构造。与大理岩为断层接 触,断层附近岩体硅化,钾化强烈,与斜长角闪岩 为渐变过渡关系,岩石局部矿物定向,呈弱片麻状 构造。手标本为块状构造,斑状结构,基质为细粒 结构。

岩石中斑晶主要为霓辉石,含量约为12%~ 15%,晶体呈粒状,粒径大小为0.5~1.5 mm,正交 偏光镜下具有明显多色性(绿色-浅黄绿色),辉石式 解理发育,高突起,干涉色达二级,负延性,光轴角较 小约30°;其次为碱性长石,约占10%,矿物种属为 微斜长石与隐纹长石,晶体形态为粒状,粒径大小为 0.5~0.9 mm。基质主要由碱长石组成,其种属有 微斜长石、隐长石及钠长石,更长石少量,粒径大小 为0.1~0.3 mm;副矿物有榍石、磷灰石。金属矿 物为5%~6%,晶体多呈不规则粒状,有些呈板状, 粒径为0.1~1 mm,还有少量黑云母,为高铁型,薄 片中见钙钛矿呈立方晶形以及细粒呈半自形程度的 烧绿石位于霓辉石旁边(图2)。

图 2 余石山铌钽矿床霓辉正长岩宏观特征及岩石学特征图

2 测试分析

锆石挑选由河北省区域地质调查大队地质实验 室完成,锆石 CL 图(阴极发光)拍摄和 LA-ICP-MS 激光剥蚀等离子体质谱)原位微区 U-Th-Pb 同位素 测定在西北大学大陆动力学国家重点实验室完成。 对分离出来的锆石在双目镜下挑选出结晶好、透明 度好、无裂隙、无包裹体的颗粒,用环氧树脂固定并 抛光至颗粒一半露出。锆石样品在测定之前用浓度 为3%的稀 HNO₃ 清洗样品表面,以除去样品表面 的污染物。然后进行阴极发光(CL 图)内部结构和 LA-ICP-MS 原位微量元素分析。锆石阴极发光 (CL 图)分析在 FEI 公司生产的场发射扫描电镜附 属的 Mono CL3 + 系统上进行。锆石定年所用的 ICP-MS 为 Agilient 公司最新一代带有 Shield Torch 的 Agilient7500a。激光剥蚀系统为德国 MicroLas 公司生产的 Geolas200M,该系统由德国 Lambda Physik 公司的 ComPex102Excime 激光器 (工作物质 ArF,波长 193 nm)与 Mi-croLas 公司的 光学系统组成,对样品进行一次性剥蚀,由 ICP-MS 采集各信号。详细分析方法可见参考文献(Yuan et al., 2003)。数据分析前用美国国家标准技术研究 院研制的人工合成硅酸盐玻璃标准参考物质 NIST610 进行仪器的最佳化,使仪器达到最大的灵 敏度、最小的氧化物产率(ThO+/Th+<2%)和最 低的背景值。每测定5个样品点测定1个锆石 91500 和 1 个 NIST610 标样。数据处理采用 GLITTER (ver4.0)程序,年龄计算以标准锆石 91500 为外标进行同位素比值分馏校正;元素浓度 采用 NIST610 作外标, Si 作内标。锆石谐和图用 ISOPLOT(ver3.0)程序(Ludwig et al., 2003)获 得,对于年龄小于1Ga的年轻锆石采用206Pb/238U 年龄(Griffin et al., 2004)。在样品分析过程中, 91500标样的分析结果为(1064.1±3.2) Ma,GJ-1 标样的分析结果为(601.1±3.0) Ma,与对应的年 龄推荐值在误差范围内完全一致(Wiedenbeck et al., 1995; Simon et al., 2004)

3 分析结果

选取晶形完整(部分锆石破碎是由于碎样所 致)、自形程度高、颗粒较大、具有明显的震荡环带的 40颗锆石进行剥蚀测试,测试分析的锆石阴极发光 图像见图 3,在进行普通铅校正后,剔除 Pb 丢失严 重的点,最终选择37颗锆石的45个数据参与年龄 计算。这些锆石颗粒比较大,明显大于一般的锆石, 表面锆石在结晶的过程中,熔体中 Zr 元素含量比较 高,锆石中Th/U值都集中为0.33~1.73(表1),环 带结构发育,且含有较高的 REE 和具有陡立的 HREE 模型(Buick et al., 1995)(图 4 左),显示了 岩浆锆石的特征。这 45 个数据给出的锆石 ²⁰⁶ Pb/²³⁸ U 年龄为(616±5)~(844±10) Ma,其中 4、25、42号点年龄约为840 Ma,代表了早期的捕获 锆石年龄,从CL图上可以看出22、26、32、40号点 数据年偏新,从CL图上可以看出,这几个点的锆石 是裂纹过多和变质锆石。最终选择 38 个数据进行 加权平均其加权平均值为(776.8±2.5) Ma。这些 分析点都分布于谐和线上或附近,表明这些锆石几 乎没有 U 或 Pb 的丢失和加入,年龄数据能够代表 锆石的结晶年龄(图 4 右),因此本次测试认为余石 山铌钽矿区霓辉正长岩岩体形成年龄为(776.8±2. 5) Ma,属于早南华世。

4 结论与讨论

4.1 讨论

本次研究在位于阿尔金山主峰南麓的余石山大型 铌钽矿床矿区发现了霓辉正长岩体,并进行了定 年工作,测年结果为(776.8±2.5) Ma,表明该侵入

图 3 余石山铌钽矿床霓辉石正长岩显微结构图 Fig. 3 microphotograph of aegirine-augite feldspar syenite inYu Shishan Nb -Ta ore deposit Pcl. 烧绿石; Mc. 微斜长石; Agt. 霓辉石; Pth. 条纹长石

皆果表
「素測定结
U-Pb 同位
MS 锆石
LA-ICP-
辉正大岩
፩辉石霓
ざ石山铌钽矿区
表1 余

	goo	
-	g	
	ore	
E	-Ta	
Ę	₽	
	g	
	sha	
5	2 N	
× *	ıΥu	
•	Ξ	
	syenite	
	lgite	
•	aegurine-ai	
	from	
	ZITCORS	
ç	5	
	vses	
	anal	
	Isotopes	
7	ą	
F	-	
Ē	5	
CIT	- N N	
C C F	-10-	
-	- V	
,	_	
E	Iab.	
*		

第4期

		T	ab.1 LA-	-ICP-MS U-	Th-Pb Isoto	opes analyse	s of zirco	ons from	aegirine-a	augite sy	enite inY	u Shisha	un Nb-Ta	ore depo	osit			
			同位	素比值					Ē	位素	年 龄(N	la)			同位	素含量×	10 - 6	
测试编号	$^{207}\mathrm{Pb}_{ m b}$	/ ²⁰⁶ Pb	²⁰⁷ Pl	0∕ ²³⁵ U	$^{206}\mathrm{Pb}$	/ ²³⁸ U	²⁰⁷ Pb/	$^{206}\mathrm{Pb}$	²⁰⁷ Pb/	²³⁵ U	²⁰⁶ Pb/	²³⁸ U	$^{208}\mathrm{Pb/}$	²³² Th	5	Ē	:	Th∕U
	比值	lσ	比值	1σ	比值	lσ	年龄	lσ	年龄	lσ	年龄	lσ	年龄	1σ	Ч	ų.	D	
12A18-01	0.065 00	0.001 39	1.145 35	0.01343	0.12779	0.001 06	774.0	25.0	775.0	6.0	775.0	6.0	752.0	7.0	91.47	384.50	564.16	0.68
12A18-02	0.064 34	0.00143	1.137 66	0.015 00	0.128 23	0.001 10	753.0	27.0	771.0	7.0	778.0	6.0	768.0	7.0	74.15	259.62	433. 64	0.60
12A18-03	0.065 22	0.001 64	1.152 45	0.020 19	0.128 16	0.001 20	781.0	34.0	778.0	10.0	777.0	7.0	768.0	8.0	44.31	244.73	250.16	0.98
12A18-04	0.064 28	0.001 53	1.234 74	0.019 28	0.13932	0.001 25	751.0	29.0	816.0	9.0	841.0	7.0	889.0	9.0	44.57	192.53	245.54	0.78
12A18-05	0.062 90	0.002 31	1.111 58	0.03540	0.128 16	0.001 61	705.0	62.0	759.0	17.0	777.0	9.0	791.0	21.0	14.81	31.11	93.84	0.33
12A18-06	0.06496	0.00177	1.150 24	0.023 62	0.12842	0.001 27	773.0	37.0	777.0	11.0	779.0	7.0	780.0	10.0	22.36	114.56	132.22	0.87
12A18-07	0.065 14	0.00136	1.150 04	0.01249	0.128 03	0.001 05	779.0	21.0	777.0	6.0	777.0	6.0	732.0	6.0	148.33	1069.37	826.65	1.29
12A18-08	0.067 57	0.00179	1.18901	0.023 17	0.127 62	0.001 25	855.0	38.0	796.0	11.0	774.0	7.0	796.0	9.0	23.95	181.41	138. 15	1.31
12A18-09	0.064 00	0.00142	1.134 86	0.01484	0.128 60	0.001 10	742.0	27.0	770.0	7.0	780.0	6.0	755.0	6.0	84.10	616.20	433.96	1.42
12A18-10	0.065 75	0.00177	1.158 50	0.023 26	0.12779	0.001 26	798.0	39.0	781.0	11.0	775.0	7.0	788.0	10.0	23.37	104.34	144.47	0.72
12A18-11	0.063 95	0.00373	1.133 18	0.062 32	0.128 52	0.002 43	740.0	110.0	769.0	30.0	779.0	14.0	739.0	16.0	8.04	61.63	38.57	1.60
12A18-12	0.064 18	0.002 77	1.137 68	0.04431	0.128 56	0.001 78	748.0	77.0	771.0	21.0	780.0	10.0	770.0	11.0	7.94	68.16	39.25	1.74
12A18-13	0.065 54	0.002 21	1.15674	0.032 73	0.128 00	0.001 49	792.0	56.0	780.0	15.0	776.0	9.0	770.0	10.0	13.36	94.19	69.02	1.36
12A18-14	0.064 27	0.002 75	1.119 58	0.043 15	0.12634	0.001 82	751.0	74.0	763.0	21.0	767.0	10.0	759.0	16.0	37.14	193.01	233. 24	0.83
12A18-15	0.064 91	0.001 39	1.150 16	0.01354	0.128 51	0.001 07	771.0	25.0	777.0	6.0	779.0	6.0	755.0	6.0	108.06	616.01	622.51	0.99
12A18-16	0.063 71	0.001 92	1.125 54	0.027 07	0.12812	0.001 37	732.0	47.0	766.0	13.0	777.0	8.0	601.0	14.0	14.79	45.53	100.92	0.45
12A18-17	0.067 81	0.002 57	1.190 73	0.039 35	0.127 35	0.001 66	863.0	64.0	796.0	18.0	773.0	9.0	787.0	11.0	18.00	145.99	93.75	1.56
12A18-18	0.064 76	0.00176	1.143 22	0.023 14	0.128 02	0.001 26	767.0	37.0	774.0	11.0	777.0	7.0	757.0	10.0	21.06	90.01	131.49	0.68
12A18-19	0.066 03	0.003 00	1.160 93	0.048 05	0.127 50	0.001 92	807.0	84.0	782.0	23.0	774.0	11.0	760.0	13.0	8.48	60.96	38.77	1.57
12A18-20	0.067 47	0.002 94	1.193 64	0.04696	0.128 31	0.001 87	852.0	78.0	798.0	22.0	778.0	11.0	778.0	15.0	13.07	74.21	71.18	1.04
12A18-21	0.068 86	0.00174	1.207 53	0.02144	0.127 19	0.001 20	895.0	39.0	804.0	10.0	772.0	7.0	760.0	8.0	50.25	278.16	302.68	0.92
12A18-22	0.064 54	0.00148	1.05646	0.01499	0.118 72	0.001 03	759.0	27.0	732.0	7.0	723.0	6.0	710.0	7.0	88.56	421.49	580.97	0.73
12A18-23	0.06909	0.005 28	1.219 91	0.089 68	0.128 05	0.003 24	901.0	139.0	810.0	41.0	777.0	19.0	788.0	24.0	10.22	69.30	51.64	1.34

	Th/U		1.68	1.11	0.65	0.95	0.58	1.12	0.83	1.08	1.19	0.35	0.86	0.54	0.69	0.59	0.69	0.65	0.65	0.41	1.62	0.62	0.58	1.00
10 -6	-	D	33.99	50.59	163.25	239.33	245.40	55.98	49.37	48.30	128.00	98.46	565.52	272.34	534.86	292.39	166.43	356.00	1402.20	295.14	32.19	86.98	263.70	101.91
素含量×	Th		57.08	56.23	106.37	228.53	141.13	62.83	41.16	52.01	152.18	34.08	488.45	147.54	366.77	173.83	114.54	229.65	906.65	121.14	52.17	54.36	153.12	101.43
同位	2	сд Г	7.72	9.97	27.12	40.46	37.47	10.96	8.74	8.98	22.22	13.99	96.43	44.92	84.56	47.97	28.37	57.83	172.13	48.02	7.39	15.08	41.55	18.44
	/ ²³² Th	lσ	20.0	14.0	8.0	10.0	11.0	27.0	20.0	16.0	8.0	20.0	7.0	10.0	9.0	8.0	15.0	8.0	4.0	10.0	13.0	17.0	10.0	11.0
	²⁰⁸ Pb	年龄	728.0	873.0	749.0	780.0	741.0	795.0	799.0	854.0	710.0	887.0	796.0	837.0	758.0	768.0	794.0	772.0	507.0	797.0	858.0	856.0	757.0	756.0
年 龄(Ma)	√ ²³⁸ U	1σ	17.0	10.0	8.0	8.0	7.0	18.0	13.0	11.0	9.0	9.0	6.0	7.0	7.0	6.0	9.0	6.0	5.0	7.0	10.0	9.0	7.0	8.0
	²⁰⁶ Pb	年龄	774.0	842.0	748.0	774.0	770.0	779.0	773.0	772.0	716.0	770.0	773.0	807.0	771.0	776.0	783.0	776.0	617.0	777.0	844.0	780.0	778.0	776.0
位素	/ ²³⁵ U	1σ	38.0	19.0	18.0	12.0	11.0	41.0	27.0	22.0	21.0	16.0	7.0	9.0	9.0	8.0	17.0	7.0	5.0	8.0	19.0	17.0	10.0	15.0
Ē	$^{207}\mathrm{Pb}$	年龄	773.0	840.0	741.0	763.0	758.0	796.0	796.0	809.0	757.0	802.0	780.0	795.0	752.0	771.0	775.0	766.0	652.0	779.0	838.0	775.0	765.0	788.0
	/ ²⁰⁶ Pb	1σ	134.0	65.0	77.0	46.0	39.0	135.0	86.0	72.0	88.0	56.0	26.0	38.0	42.0	37.0	72.0	35.0	28.0	38.0	78.0	71.0	46.0	62.0
	²⁰⁷ Pb,	年龄	770.0	835.0	720.0	729.0	723.0	842.0	862.0	914.0	878.0	889.0	800.0	759.0	698.0	755.0	754.0	739.0	777.0	783.0	822.0	760.0	726.0	823.0
	^{,238} U	lσ	0.002 98	0.001 82	0.001 36	0.001 34	0.001 26	0.003 22	0.002 21	0.001 86	0.001 52	0.001 53	0.001 08	0.001 19	0.001 16	0.001 12	0.001 60	0.001 10	0.000 81	0.001 14	0.001 82	0.001 59	0.001 23	0.00146
	²⁰⁶ Pb/	比值	0.127 51	0.13954	0.123 08	0.127 58	0.12695	0.12843	0.127 44	0.127 20	0.117 49	0.126 95	0.127 31	0.133 42	0.127 03	0.127 89	0.129 11	0.127 84	0.100 39	0.128 15	0.139 88	0.128 66	0.128 34	0.12788
同位素比值	$^{207}{ m Pb}/^{235}{ m U}$	1σ	0.080 55	0.04299	0.03603	0.02606	0.022 85	0.087 44	0.057 56	0.047 57	0.04341	0.03490	0.015 05	0.018 32	0.018 51	0.01679	0.035 48	0.015 53	0.009 21	0.017 60	0.04360	0.035 18	0.021 33	0.03147
		比值	1.140 32	1.287 51	1.07520	1.119 02	1.11058	1.189 10	1.19114	1.218 98	1.106 68	1.202 32	1.154 98	1.187 27	1.098 21	1.136 01	1.145 92	1.126 55	0.901 05	1.153 38	1.282 55	1.14543	1.124 46	1.173 10
	of Pb	1σ	0.004 77	0.002 55	0.002 24	0.001 88	0.00174	0.005 13	0.003 52	0.003 01	0.002 82	0.002 36	0.00146	0.001 53	0.001 54	0.001 50	0.002 32	0.00144	0.00134	0.00154	0.002 57	0.002 31	0.001 66	0.002 16
	$^{207}\mathrm{Pb/}$	比值	0.064 86	0.06692	0.06336	0.063 61	0.063 45	0.067 15	0.067 78	0.069 50	0.068 32	0.068 69	0.065 80	0.064 54	0.06270	0.064 42	0.064 37	0.063 91	0.065 09	0.065 27	0.066 50	0.064 56	0.063 54	0.066 53
	测试编号	I	12A18-24	12A18-25	12A18-26	12A18-27	12A18-28	12A18-29	12A18-30	12A18-31	12A18-32	12A18-33	12A18-34	12A18-35	12A18-36	12A18-37	12A18-38	12A18-39	12A18-40	12A18-41	12A18-42	12A18-43	12A18-44	12A18-45

2014 年

续表

图 4 余石山铌钽矿区霓辉正长岩体(12A18)锆石阴极发光图像

Fig. 4 CL image of zircon from aegirine-augite syenite in Yu Shishan Nb -Ta ore deposit (12A18)

图 5 余石山铌钽矿区霓辉正长岩岩体锆石稀土元素球粒标准化图(a)及锆石 U-Pb 年龄谐和图(b) Fig. 5 Chondrite-normalzed REE patterns and U-Pb Concordia polt of zircon from aegirine-augite sygenite in Yu Shishan Nb-Ta ore deposit

岩体形成于南华纪,这比刘涵等(2012)在恰什坎萨 伊沟南口发现具大陆裂谷性质的双峰式火山岩年龄 (749.8±4.6) Ma 稍早,与西安地质矿产研究所 (2010)在阔什布拉克区调中所厘定具红海洋盆构造 环境的索拉克组双峰式火山中岩玄武岩锆石中获得 (765±17) Ma 和(754±17) Ma 相近。在区域上, 红柳沟-拉配泉蛇绿构造混杂岩带在南华纪时期发 育有海相火山岩-碎屑岩建造(胡云绪等,2010),阿 北地块则发育有陆缘裂谷火山岩-碎屑岩建造,同时 发育有双峰式火山岩。刘良等(2007)研究南阿尔金 超高压变质岩锆石微区 LA-ICP-MS 定年发现其核 部年龄(754±9)Ma,并且其原岩也已具有洋壳性 质,指示南阿尔金在南华纪可能已经有洋壳出现。 陆松年(2002)获取欧龙布鲁克的全吉群中产出的玄 武安山岩锆石 U-Pb 表面年龄为(738±28) Ma,由 此推断全吉群的底界年龄约为760 Ma,这个年龄代 表了晚元古代 Rodinia 超大陆裂解事件的开始时 间,李怀坤(2003)在全吉群底部发现了冰积砾岩,并 获取火山岩锆石 U-Pb 年龄约为 800 Ma,结合岩石 地球化学特征,认为全吉群沉积序列是 Rodinia 超 大陆在新元古代早期解体阶段的产物。苏建平 (2004)在北祁连造山带西段的吊大阪花岗片麻岩中 报道了一组单颗粒锆石年代(751±14) Ma,曾建元 (2006) 通过 SHRIMP 锆石 U-Pb 定年法, 获得来自 北祁连山牛心山片麻状花岗岩与雷公山片麻状石英 闪长岩的加权平均年龄,分别为(776±10) Ma 和 (774±23) Ma,认为这一次岩浆活动可能与同时期 全球 Rodinia 超大陆裂解有关。上述研究结论表 明,红柳沟-拉配泉蛇绿构造混杂岩带、祁连造山带 和欧龙布鲁克微陆块三者在南华纪时期均存在与 Rodinia 超大陆裂解相关的构造侵入岩浆事件的记 录。多数研究者认为富碱侵入岩是地球上产出环境 特殊和分布较少的一种岩石类型,形成于岩石圈拉 张环境,其物质来源较深。邱家骧等(1993)在研究 秦巴碱性岩时发现,几乎所有的碱性岩均来自拉张 环境或裂谷作用,阎国翰等(2007)认为,在板内拉张 环境下,岩浆作用的产物主要包括碱性岩、基性岩墙 群、双峰式火山岩、斜长岩、环斑花岗岩、层状镁铁 质-超镁铁质岩、火成碳酸岩、金伯利岩、钾镁煌斑 岩、高原溢流玄武岩、裂谷玄武岩等。霓辉正长岩的 发现及年龄数据表明,其形成的构造背景为塔里木-敦煌陆块南缘活动陆缘初始裂解的大陆裂谷时期, 在该时期,由于地幔物质上涌,岩石圈发生拉张,同 时伴有双峰式火山岩的出现,这也与典型大陆裂谷 的岩浆-构造组合是一致的。

依据铌钽矿石所赋存的岩石类型可以划分为沉 积岩型和岩浆岩型,Pollard(1986)将岩浆岩型矿床 分为伟晶岩型、花岗岩型、正长岩型和碳酸岩型。根 据余石山矿区内发现的稀有、稀土矿物主要为易解 石、褐钇铌矿、氟碳铈矿、铌(钽)铁矿,独居石呈自形 半自形-他形粒状集合体与磁铁矿、锆石连生,分布 在石英及碱性长石中(余君鹏等,2012),且在矿体内 发现含钙钛矿、烧绿石的霓辉石正长岩,在正长岩附近的二长岩中,发现含铌钽矿物的烧绿石,推测余石山铌钽矿可能为正长岩型和岩浆热液交代复合型 矿床。

虽然矿区内出现有花岗闪长岩和二长花岗岩, 但距离矿体比较远,对其进行研究表明,岩体的形成 年龄约为480 Ma,形成于北阿尔金洋盆俯冲碰撞时 期,岩体主微量元素表明,分异程度不高,稀土配分 与华南典型稀有金属花岗岩对比差异大(另文介 绍)。因此,表明铌钽矿床的形成可能是由于霓辉石 正长岩上侵过程中,携带有铌钽的成矿物质,随着岩 浆的冷凝结晶而成矿,而在区域上,根据分析该类型 的构造-成岩-成矿与 Mitchell & Garson(1981)划分 的大陆裂谷和坳拉槽及翟裕生(1999)所论述的成矿 系统特有的矿床相一致。综上所述,余石山铌钽矿 床形成年龄与霓辉石正长岩成岩年龄(776.8±2.5) Ma 相近或稍微晚一点,成岩成矿与南华纪 Rodinia 超大陆裂解相关联,即产于塔里木-敦煌陆块南缘的 裂谷环境。

4.2 结论

(1)余石山铌钽矿区发现的霓辉石碱性正长岩, 岩浆结晶年龄为(776.8±2.5) Ma,表明侵入岩体 形成于南华纪。

(2)余石山铌钽矿床形成与碱性岩的侵位密切 相关,成矿可能与碱性岩的形成年代(776.8±2.5) Ma相近或者稍晚些。

(3) 铌钽矿床形成的构造背景与南华纪 Rodinia 超大陆裂解相关联,及产于塔里木-敦煌陆块南缘的 裂谷构造环境之中。

致谢:笔者得到中国地质调查局西安地质调查 中心老师们的关心和帮助,甘肃省地调院余石山项 目组工作人员野外的帮助和指导,以及审稿人细致 修改,再次一并谨致谢意。

参考文献(References):

- 崔军文,唐哲民,邓晋福,等. 阿尔金断裂系[M].北京:地质 出版社,1999;137-213.
- Cui Junwen, Tang Zhemin, Deng Jinfu, et al. Altyn fault Svstem [M]. Geological Publishing House, Beijing, 1999,137-213(in Chinese with English abstract).

车自成,刘良,罗金海. 中国及其邻区区域大地构造学[M].

北京:科学出版社,2002:207-369.

- Che Z C, Liu L, Luo J H. Regional China and adjacent area geotectonics[M]. Science Publishers, Beijing, 2002, 207-369 (in Chinese with English abstract).
- 陈能松,王勤燕,陈强,等.柴达木和欧龙布鲁克陆块基底的 组成和变质作用及中国中西部古大陆演化关系初探 [J].地学前缘,2007,14(1):43-55.
- Chen N S, Wang Q Y, Chen Q, Li X Y. Components and metamorphism of the basements of the Qaidam and Olongbuluke micro-continental blocks, and a tentative interpretationof paleocontinental evolution in NW-Central China[J]. Earth Scine-ce Frontiers, 2007, 14(1): 043-055 (in Chinese with English abstract).
- 高晓峰,校培喜,过磊,等.北阿尔金地区早古生代有限洋盆 开启时限:来自斜长花岗岩的证据[J].中国科学:地球 科学,2012,42(3):359-368.
- Gao XF, Xiao PX, Guo L, et al. Opening of an Early Paleozoic limited oceanic basin in the northern Altyn area: Constraints from plagiogranites in the Hongliugou-Lapeiquan ophiolitic mélange[J]. Scientia Sinica (Terrae), 2012,42(3): 359-368(in Chinese).
- 葛肖虹,刘俊来.北祁连造山带的形成与背景[J].地学前缘,1999,6(4):223-230.
- Ge XH, Liu JL. Formation and tectonic background of the northern qilian orogenic belt[J]. Earth Science Frontiers, 1999,6(4): 223-230. (in China with English abstract)
- 冯益民,何世平.祁连山大地构造与造山作用[M].北京:地 质出版社,1996.
- Feng YM, He SP. Mother earth structure and orogenesis in Qiling[M]. The Geological Publishing House, Beijing, 1996 (in Chinese with English abstract).
- 刘良,张安达,陈丹玲,等.阿尔金江尕勒萨依榴辉岩和围 岩锆石 LA-ICP-MS 微区原位定年及其地质意义[J].地 学前缘,2007,14(1):98-107.
- Liu L, Zhang A D, Chen D L, et al. Implications Based on LA-ICP-MS Zircon U-Pb Ages of Eclogite and Its Country Rock from Jianggalesayi Area, Altyn Tagh, China[J]. Earth Science Frontiers, 2007,14(1): 98-107. (in Chinese with English abstract).
- 郝杰,王二七,刘小汉,等.阿尔金山脉中金雁山早古生代碰 撞造山带:弧岩浆岩的确定与岩体锆石 U-Pb 和蛇绿混

杂岩⁴⁰ Ar/³⁹ Ar 年代学研究的证据[J]. 岩石学报, 2006, 22(11): 2743-2752.

- Hao J, Wang E Q, Liu X H, et al. Jinyanshan collisional oroginic belt of the early Paleozoic in the Altun Mountains: evidence from single zircon U-Pb and ⁴⁰ Ar/³⁹ Ar isotopic dating for the arc magmatite and ophiolitic melange[J]. Acta Petrologica Sinica, 2006,22 (11): 2743-2752. (in Chinese with English abstract).
- 胡云绪,校培喜,高晓峰,等.东昆仑西段—阿尔金地区区域 地层划分及地层时空格架建立[J].西北地质,2010,44 (4):152-158.
- Hu Y X, Xiao P X, Gao X F, et al. Division and Space-Time Frame Foundation of Regional Stratum in the Western Sector of East Kunlun and the Altun Region[J] Northwestern Geology, 2010, 44(4): 152-158. (in Chinese with English abstract).
- 郝国杰,陆松年,王惠初,等.柴达木盆地北缘前泥盆纪构造 格架及欧龙布鲁克古陆块地质演化[J].地学前缘, 2004,11(03):115-122.
- Hao G J, Lu S N, Wang H C, et al. The Pre-Devonian tectonic framework in the northern margin of Qaidam basin and geological evolution of Olongbuluck palaeo-block [J]. Earth Sciences Frontiers, 2004, 11(03): 115-122 (in Chinese with English abstract).
- 贾群子,杨忠堂,肖朝阳,等.祁连山铜金钨铅锌矿床成矿规 律和成矿预测[M].北京:地质出版社,2007.
- Jia Q Z, Yang Z T, Xiao C Y, et al. Tungsten, lead zinc deposit copper-gold Qilian metallogenic regularity and metallogenic prediction [M]. Geological Publishing House, BeiJing, 2007.
- 刘永顺,于海峰,辛后田,等. 阿尔金山地区构造单元划分和 前寒武纪重要地质事件[J]. 地质通报, 2009,28(10): 1430-1438.
- Liu Y S, Yu H F, Xin H T, et al. Tectonic units division and Precambrian significant geologic-al events in Altyn Tagh Mountain, China. Geological Bulletin of China, 2009, 28(10): 1430-1438 (in Chinese with English abstract).
- 刘函,王国灿,曹树钊,等.北阿尔金南华纪双峰式火山岩的 发现及构造意义[J].地球科学(中国地质大学学报), 2012,37(5):52-63.
- Liu H, Wang G C, Cao S Z, et al. Discovery of Nanhuaian Bimodal Volcanics in Northern Altyn Tagh and Its Tec-

2014 年

tonic Significance[J]. Earth Science Journal of China University of Geosciences. 2012,37(5):52-63 (in Chinese with English abstract).

- 陆松年.青藏高原北部前寒武纪地质初探[M].北京:地质 出版社.2002:1-125.
- Lu S N. Prinutry Study of Precambrian Geology in the Northern Qinghai-Tibet Plateau[M]. Geological Publishing House, Beijing, 2002:1-125 (in Chinese with English abstract).
- 李怀坤,陆松年,王惠初,等.青海柴北缘新元古代超大陆裂 解的地质记录一全吉群[J].地质调查与研究,2003,26 (01):27-37.
- Li HK, Lu SN, Wang HC, et al. Quanji Group: The geological record of the Rodinia superc-ontinent break-up in the Early Neoproterozoic preserved in the northern Qaidam margin, Qinghai, Northwest China[J]. Geological Survey and Research, 2003, 26(1): 27-37 (in Chinese with English abstract).
- 潘桂棠,李兴振,王立全,等. 青藏高原及邻区大地构造单元 初步划分[J]. 地质通报,2002,21(11): 701-707.
- Pan G T, Li X G, Wang L Q, et al. Praliminary division of tartnnicnits of the QingHai-Tibet Plateau and its adjacent regions[J]. Geological Bulletin of China, 2002, 21 (11):701-707(in China with English abstract).
- 苏建平,胡能高,张海峰,等.北祁连山西段吊大坂花岗片麻 岩的锆石 U-Pb 年龄及地质意义[J].地质科技情报, 2004,23(03):11-14.
- Su J P, Hu N G, Zhang H F, et al. Single-zircon U-Pb dating and Geological signifi-cance of the diaodaban granitic gneiss in the wes-tern segment of north qilian mountains [J]. Geological Science and Technology Information, 2004,23(3): 11-14.
- 邱家骧.秦巴碱性岩[M].北京:地质出版社,1993.
- Qiu JX. The alkaline rocks in Qin-Bashan area[M]. Geological Publishing House, Beijing, 1993 (in Chinese).
- 戚学祥,吴才来,李海兵.北阿尔金喀孜萨依花岗岩锆石 SHRIMP U-Pb 定年及其构造意义[J].岩石学报, 2005,21(3):859-866.
- Qi X X, Wu C L, L i H B. SHRIMP U-Pb age of zircons from Kazisayi granite in the northern Alty Tagh mountains and its significations [J]. Acta Petrologica Sircica, 2005, 21(3) :859-866(in Chinese with English

abstract).

夏林析,夏祖春,任友祥,等.祁连山及邻区火山作用与成矿 [M].北京:地质出版社,1996.

- Xia L Q X, Xia Z C, Xu X Y, et al. Marine Volcanics NorthQilian [M]. Geological Publishing House, Bei-Jing, 1996.
- 许志琴,杨经绥,张建新,等. 阿尔金断裂两侧构造单元的对 比及岩石圈剪机制[J]. 地质学报, 1999, 73(3): 193-205.
- Xu Z Q, Yang J S, Zhang J X, et al. A Comparison between the Tectonic Units on the Two Sides of the Altun Sinistral Strike-slip Fault and the Mechanism of Lithospheric Shearing [J]. Acta Geologica Sinica, 1999,73(3):193-205. (in Chinese with English abstract).
- 阎国翰,蔡剑辉,任康绪,等.华北克拉通板内拉张性岩浆作 用与三个超大陆裂解及深部地球动力学[J].高校地质 学报,2007,(2):161-174.
- Yan G H, Cai J H, Ren K X, et al. Intraplate Extensional Magmatism of North China Craton and Break-up of Three Supercontinents and Their Deep Dynamics [J]. Geological Journal of China Universities, 2007, (2): 161-174. (in Chinese with English abstract).
- 殷鸿福,张克信.中央造山带的演化及其特点[J].地球科 学,1998,23(5):438-442.
- Yin H F, Zhang K X. Volution and characteristics of the central orogenic belt[J]. Earth Science, 1998,23 (5): 438-442(in Chinese withEnglish abstract)
- 翟裕生. 论成矿系统[J]. 地学前缘, 1999, 6(1): 72-88.
- Zhai Y S. Study of Regional Mineral Deposit[J]. Geological Publishing House, 1999,6(1)72-88. (in Chinese with English abstract).
- 余君鹏,张新虎,赵国建,等.甘肃阿尔金山余石山铌钽稀有 金属矿找矿发现及意义[J].矿床地质.2012,31(增刊): 391-392.
- Yu J P,Zhang X H,Zhao G J. et al. Nb-Ta rare meta deposits prospecting discovery and significance of the Yu Shi Shan mountain in the Gan Shu[J]. Mineral Deposits. 2012,31(sup.):391-392.
- 张志诚,郭召杰,宋彪.阿尔金山北缘蛇绿混杂岩中辉长岩锆石 SHRIMP U-Pb 定年及其地质意义[J]. 岩石学报, 2009,25(3):568-576.
- Zhang Z C, Guo Z J, Song B. SHRIMP zircon dat-ing of

gabbro from the ophiolite melange in the northern Altyn Tagh and its geological implications[J]. Actor Petrologica Sinica, 2009,25(3); 568-576 (in Chinese with English abstract).

- 曾建元,杨宏仪,万渝生,等. 北祁连山变质杂岩中新元古代 (~775 Ma)岩浆活动纪录的发现:来自 SHRIMP 锆石 U-Pb 定 年 的 证 据 [J]. 科 学 通 报,2006,51(05): 575-581.
- Zeng J Y, Yang H Y, Wang Y S, et al. Finding of Ncoprotcrozoic (~775Ma) magmatism recorded in the metamorphic complexes from North Qilian orogen: evidence from SHRIMP zircon U-Pb dating. Science Bulletin, 2006,51(5):575-581.
- Buick R, Thomett J R, M C Naughton N J, Smith J B. 1995. Barley ME. Savage M. Record of emergent continental crust similar to 3.5 billion years agoin the Pilbaracraton of Australia [J]. Nature, 375:574-575.
- Liu L, Zhou D W, Wang Y, et al. Study and implication of the high-pressure felsic granulite in the Qinling complex of East Qinling[J]. Science in China (Series D), 1996, 26(Sup): 60-68.
- Liu L, Che Z C, Wang Y, et al. The petrological characters and geotectonic setting of high-pressure metamorphic rock belts in Altun Mountains[J]. Acta Petrologica Sinica, 1999,15(1): 57-64.

- Liu L, Che Z C, Luo J H, et al. A discussion on the structure and tectonic evolution of the Altyn Tagh orogenic Zone [J]. Earth Sci Fron, 2000,7: 206.
- Simon E J, Norman J P, William L G. The application of laser abla-tion-inductively coupled plasma-mass spectrometry to in-situ U-Pb zircon geochronology [J]. Chemical Geology, 2004,211: 47-69.
- Wiedenbeck M, Alle P, Corfu F, et al. Three natural zircon stan-dards for U-Th-Pb, Lu-Hf, trace element and REE analyses [J]. Geostandards and Geoanalyt-cal Research, 1995, 19(1):1-23.
- Griffin W L,Belousova E A,Shee S R,et al. Archean crustal evo-lution in the northern Yilgarn Craton: U-Pb and Hf-isotope evi-dence from Detrital zircons [J]. Precambrian Research, 2004, 131(3/4): 231-282.
- Ludwig K R. Isoplot 3.0 A geochronological toolkit for MicrosoftExcel[M]. Berkeley Geochronology Center, 2003: 1-70.
- Mitchell A H G, Garson M S. Mineral deposits and global tectonic settings[M]. Academic Press, London, 1981.
- Pollard P J. Geologic characteristics and genetic problems associated with the development of granite hosted deposits of tantalum and niobium [J]. Springer, 1986: 240-256.