第 57 卷 第 4 期 2024 年 (总 236 期) Vol. 57 No. 4 2024(Sum236)

引文格式: 孟五一, 张振, 高永宝, 等. 南秦岭新发现王庄金矿床矿物成分及其地质意义[J]. 西北地质, 2024, 57(4): 157-169. DOI: 10.12401/j.nwg.2023178

Citation: MENG Wuyi, ZHANG Zhen, GAO Yongbao, et al. Material Composition and Geological Significance of the Newly Discovered Wangzhuang Gold Deposit in South Qinling[J]. Northwestern Geology, 2024, 57(4): 157–169. DOI: 10.12401/j.nwg.2023178

南秦岭新发现王庄金矿床矿物成分及其地质意义

孟五一,张振*,高永宝,魏立勇,贾彬,郑鑫,刘宁波

(中国地质调查局西安矿产资源调查中心,陕西西安 710199)

关键词:王庄金矿;物质组成;黄铁矿;南秦岭

中图分类号: P618.51 文献标志码: A

文章编号:1009-6248(2024)04-0157-13

Material Composition and Geological Significance of the Newly Discovered Wangzhuang Gold Deposit in South Qinling

MENG Wuyi, ZHANG Zhen*, GAO Yongbao, WEI Liyong, JIA Bin, ZHENG Xin, LIU Ningbo

(Xi'an Center of Mineral Resources Survey, China Geological Survey, Xi'an 710199, Shaanxi, China)

Abstract: The Wangzhuang gold deposit is a newly discovered deposit in South Qinling in 2021. The ore type is a fine disseminated type. The ore body is controlled by both structure and stratum, and it is produced in an interlayer fracture zone. The main metallic minerals of the Wangzhuang gold deposit are arsenopyrite and pyrite, According to microscopic identification and electron probe analysis, the gold is mainly invisible gold in arsenopyrite and arsenian pyrite, and no natural gold is found. Based on the field work, the Wangzhuang gold de-

收稿日期: 2023-05-02; 修回日期: 2023-09-12; 责任编辑: 贾晓丹

基金项目:陕西省自然科学基础研究计划项目"南秦岭新发现王庄金矿成矿特征与矿床成因研究"(2023-JC-QN-0363),中国 地质调查局项目"南秦岭旬北地区金锑找矿靶区优选与评价"(DD20230370)、"金锑锂铍矿产找矿靶区调查评价" (DD20230057)、"全国金矿重点调查区调查评价"(DD20230060)联合资助。

作者简介:孟五一(1989-),男,工程师,硕士研究生,研究方向为矿床学及矿床地球化学。E-mail:wuyi4960@163.com。

^{*}通讯作者: 张振(1987-), 男, 高级工程师, 硕士研究生, 主要从事矿产地质调查及成矿规律研究。E-mail: 545003457@qq.com。

posit can be divided into four ore-forming stages: I, the early ore-forming-stage of pyrite quartz veins; II, the main stage of arsenopyrite, pyrite, and quartz veins; III, quartz veins with a small amount of polymetallic sulfide stage; IV, late carbonate stage. The pyrite in different stages has different characteristics of trace elements: stage I pyrite is poor in As and Au, rich in Fe and S; the pyrite of stage II and III are characterized by high As, Au, low S and Fe, and there is a positive correlation between Au and As in pyrite of this stage. The average Co/Ni ratio of pyrite in the Wangzhuang gold deposit is 2.03 and the median is 1.34, indicating that pyrite formed in the oreforming master stage has the addition of magmatic fluid. In addition, there are two gold-bearing areas in the range of Co/Ni < 1 and 1.2 < Co/Ni < 2.5, indicating that there may be mineralization of two different fluids. Based on the geological and mineral fabric characteristics of the deposit, it is preliminarily concluded that there is multi-stage mineralization in the Wangzhuang gold deposit.

Keywords: the Wangzhuang gold deposit; material composition; pyrite; the South Qinling

秦岭造山带是中央造山带的重要组成部分,构造 -岩浆活动强烈,矿产资源丰富,成矿具有多期次、多 作用、多成因等特征,是中国重要的有色金属基地之一 (张国伟,2001;姚书振等,2002;杜玉良等,2003;谢才 富等,2004;徐林刚等,2021;王汉辉等,2023;陈龙龙等, 2024;冉亚洲等,2024)。秦岭成矿带是世界第二大卡 林型-类卡林型金矿省,为秦岭-西亚全球第三大汞锑 矿带的重要组成部分,且蕴含中国最重要的钡矿田和 铅锌矿田(陈衍景, 2010a, 2010b)(图1)。作为秦岭造 山带的主要组成单元,南秦岭地区也赋存众多金、汞 锑、铅锌等矿床(薛春纪等, 2005; Zhang et al., 2014; Ma et al., 2020)。自20世纪80年代以来,该区金矿找矿 工作取得了较好进展,相继评价了金龙山、烂木沟、 淋湘等一批金矿床(刘新会等, 2008; 沙亚洲等, 2013), 使南秦岭成为中国微细浸染型金矿床重要矿集区 之一。

镇旬盆地是南秦岭成矿带中极具潜力的 Au-Hg-Sb-Pb-Zn-Cu 多金属成矿带(邹海洋等, 2001; 唐永忠 等, 2016; 孟五一等, 2021), 盆地南侧发育以泗人沟、 关子沟等为代表的志留纪—中泥盆世热水沉积改造 型铅锌矿床, 北部沿板岩镇断裂发育有金龙山超大型 金矿床, 盆地中部分布有小河、惠家沟等中小型金矿 床及公馆、青铜沟超大型汞锑矿床等, 构成沿南羊山 断裂东西展布的重要金汞锑成矿带。由于盆地中部 存在两个超大型汞(锑)矿(Zhang et al., 2014),导致过 去金矿床的调查研究一直被忽视,随着近年汞矿勘查 工作的逐渐停止,王庄金矿、老君庙金矿等多个具有 大型资源前景金矿床的新发现,使得此区域逐渐具备 形成大型金资源基地的潜力。

王庄金矿床是近年地质调查工作新发现的金矿 床,对其开展矿物组构、物质组成方面的研究,可以查 明该矿床载金矿物类型、是否存在自然金等重要信息, 对于该矿床的理论研究、指导下步找矿工作均具有实 际意义。

1 区域地质地球化学特征

王庄金矿床位于南秦岭造山带镇旬裂陷盆地之 旬阳盆地晚古生代热水沉积盆地北部。区域古生代 地层出露较为齐全,从寒武纪到三叠纪均有出露, 中生代地层仅有三叠纪。围绕南羊山断裂带产出的 矿床主要赋存于上泥盆统星红铺组(D₃x)、中上泥 盆统古道岭组(D₂₋₃g)、中泥盆统大枫沟组(D₂d)、中 泥盆统西岔河组(D₂x),而王庄金矿床位于上泥盆统— 下石炭统铁山组中(D₃C₁t),拓展了区内的含矿地层 (图 2a)。区内的含矿建造主要为中上泥盆统碳酸 盐岩和细碎屑岩建造,主要赋矿岩性为灰岩、砂屑 灰岩、含泥质粉砂质灰岩、泥质板岩、钙质板岩等, 均为碳酸盐岩、细碎屑岩互层,表现为物理化学界 面成矿。

图2 镇旬盆地中带矿产地质图(a)与 Au-As-W 异常分布图(b) Fig. 2 (a) Mineral geological and (b) Au-As-W anomaly distribution map in the middle zone of Zhenan-Xunyang Basin

王庄金矿位于白石河-冷水河复向斜之砂硐沟背 斜的北西端, NW 向送驾园断层、干沟台-青沟断层切 过背斜转折端, 经遥感解译这些断层向北西方向延伸 至矿区,构成了褶皱+断层的有利成矿构造样式组合。 王庄、小河金矿床构成的弧形构造带与南羊山断裂相 交,区内1:5万水系沉积物异常W-Au-Hg-Sb呈EW 向展布,亦受控于南羊山断裂,且含矿地层有一定相 似性,成为岩性+构造的有利成矿条件。区内金成矿 作用与断裂构造关系密切,与成矿作用有关的断裂多 具有先张后压多期活动的特点。NE 向主干断裂以及 层间破碎带控制金矿床的分布,金矿体多赋存于近 EW 向次级断裂构造破碎带中,并且沿断裂破碎带常 出现膨胀收缩、尖灭再现等特点。

笔者依托在镇旬盆地开展的1:5万矿产地质 调查工作,发现区内金、钨元素EW向展布呈现出 西部为钨异常、东部为金钨异常(图2b),矿产的分 布由西向东为松树湾钨矿、小河金(钨)矿、王庄金 矿、老君庙金矿(图2a),明显存在规律性。金矿床 当中金钨异常关系密切,互相嵌合叠加,从宏观层 面显示金钨相关性,进而呈现区内W→Au、As(W)→ Hg、Sb(Au、W)异常分带。矿区范围未发现岩浆岩 出露,但区内1:5万水系沉积物测量工作显示王庄 金矿西部有 Cu-Cr-Co-Ni-W 异常组合,指示矿区西侧存在隐伏岩体。

2 矿区地质特征

矿区主要分布有上泥盆统—下石炭统铁山组 (D₃C₁t)、上泥盆统星红铺组(D₃x),铁山组以碳酸 盐岩为主夹少量细碎屑岩, 星红铺组主要为灰岩 和浅变质细碎屑岩建造。矿体主要赋存于砂硐沟 背斜西沿轴部延伸部位的铁山组中, 向西延伸进 入星红铺组(图3)。矿体整体呈 NE 向展布, 主体 受控于灰岩千枚岩构成的层间破碎带(片理化 带), 主要矿石矿物毒砂、黄铁矿呈浸染状、星点状 分布。

根据目前已见矿槽探、老硐(WZTC16、WZBT02、 WZLD02、WZLD04)和钻孔(ZK7-1、ZK7-2、ZK7-3、 ZK15-1、ZK103-1、ZK103-2)共10个工程,其中ZK7-1、 ZK7-2 均见两层矿化体, 赋矿地层均为碎裂岩化泥钙 质千枚岩,发育强烈的硅化,金属矿物主要为针状毒 砂、他形微细粒黄铁矿,呈微细浸染状、星点状分布。 结合区内成矿认识,划分为两条矿体,地表出露矿体 整体为 K1 矿体, 深部为盲矿体 M1(图 4)。K2 矿(化) 体未做深部验证, 仅有地表槽探(WZTC07)控制矿化, 矿体的产态整体均以舒缓波状展布,K1矿体的整体 产状为 120°~165°∠30°~40°, 由于矿体产态呈波浪 状,在波峰和波谷位置倾角较陡,走向与地表垂交,如 在 WZBT02 位置, 矿体产状约为 236° ∠ 79°。K1 矿体 EW 向在地表延伸约 480 m, 块段平均品位为 1.41×10⁻⁶, 平均厚度为 1.13 m, 控制潜在资源为 596 kg, M1 矿体 平均品位为1.51×10⁻⁶,平均厚度为5.45×10⁻⁶,控制潜

在资源为1977kg,合计控制潜在资源为2.57t。

3 矿石矿物及物质组成

王庄金矿矿石类型以碎裂岩化含毒砂泥钙质(碳质)千枚岩型(图 5a、图 5d)、石英硫化物型(图 5a)、 毒砂黄铁绢云岩型(图 5d)为主,其中以碎裂岩化含毒 砂泥钙质(碳质)千枚岩型矿石为主。矿石矿物组成 以黄铁矿、含砷黄铁矿、毒砂、闪锌矿、方铅矿、褐铁 矿为主,脉石矿物以石英、方解石、高岭石等为主 (图 5)。矿石结构以细脉状、微细浸染状、似层状为 主,金属矿物当中黄铁矿多为胶状集合体、立方体以 及他形粒状(图 5a、图 5b、图 5i);毒砂以针柱状结构 为主,局部为交代残余结构(图 5e、图 5h、图 5i);闪锌 矿以他形围绕前期形成的金属硫化物生长(图 5f);黄 铜矿较少,为乳滴状,与闪锌矿呈固溶体分离结构

(图 5f)。矿石构造整体为碎裂状(图 5a、图 5d),少量 矿石存在后期交代重结晶。微细粒含砷黄铁矿化、针 状毒砂集合体与金品位关系较为密切,尤其毒砂含量 高的矿石,金品位均较高。

王庄金矿载金矿物以毒砂为主,其次为黄铁矿。 毒砂主要表现为针状、细柱状,呈细脉状、星点状分 布于矿石中,在石英脉中含量较低,零星分布,在石英 脉与围岩接触部位富集,呈细脉状,黄铁矿呈微细粒 状零星分布。通过显微镜及电子探针分析,在王庄金 矿未见自然金,金主要以不可见金形式赋存于毒砂、 含砷黄铁矿中,电子探针显示毒砂、黄铁矿中金元素 含量均小于 1%,最高为 0.65%,且可通过显微镜下矿 物接触关系判断出毒砂是热液中期产物,毒砂后期有 被黄铁矿交代现象,这可能反映了金元素的沉淀富集 和毒砂结晶消耗流体中 As 元素有关。

4 成矿阶段划分

综合前文矿石矿物宏微观特征表现出矿物组合 特征,王庄金矿的成矿过程主要经历3个时期:①沉 积成岩期。②热液成矿期。③表生氧化期。根据矿 化体、矿物共生组合及其交生关系,可以将热液成矿 期划分为4个成矿阶段(图6):I.黄铁矿石英脉成矿早阶段 (图 5a、图 5b、图 5f),主要为烟灰色石英脉,表现出顺 层产出特征,局部可见少量黄铁矿呈立方体、星点状 分布;II.毒砂、黄铁矿、石英脉成矿主阶段(图 5a、 图 5e、图 5g、图 5h),可见大量针状毒砂、黄铁矿沿石 英脉体边部分布,以及在 I 阶段黄铁矿基础上形成环 带;III.石英脉伴少量多金属硫化物阶段(图 5f、图 5h、 图 5i),此阶段可见少量闪锌矿、黄铜矿、方铅矿围绕

a、b、c为岩心当中矿石特征;d为民采矿石宏观特征;e、f为矿石矿物反射光显微镜下特征;g、h、i为 BSE照片;Q.石英;Apy.毒砂;Py.黄铁矿;Ccp.黄铜矿;Sp.闪锌矿;Lm.褐铁矿;Gal.方铅矿

图5 王庄金矿床矿石特征、矿物组构

图6 王庄金矿成矿阶段及矿物生成顺序

Fig. 6 Metallogenic stage and mineral formation sequence of Wangzhuang gold deposit

前期毒砂、黄铁矿边部分布,也可见少量黄铁矿交代 前期形成的毒砂; IV.碳酸盐岩晚阶段,主要为纯净方 解石脉体切割前期形成的石英、金属硫化物脉体。其 中与成矿关系密切的为 II、III 阶段。

5 采样及实验分析

本次工作主要针对王庄金矿 K1、M1 矿体控制钻 孔 ZK7-1、ZK7-2 采集矿体及上、下蚀变带样品,磨制 探针片 30 件,在进行详细的显微镜下分析基础上,针 对不同阶段的金属硫化物开展电子探针分析。

电子探针分析工作在中国地质调查局西安地质 调查中心国土资源部岩浆作用成矿与找矿重点实验 室完成,分析仪器为日本电子 JXA-8230 电子探针仪。 仪器主要工作条件为:加速电压 20 kv, 束斑电流为 1×10⁻⁸ A, 束斑直径为 1 um, 峰值计数时间 20 s, 背景 计数时间 10 s。

6 讨论

载金矿物中微量元素的组合特征以及赋存状态 能反映重要的成因矿物学信息,是研究金矿成矿机理 的重要方法手段(杨荣生等,2009)。微细浸染型金矿 的主要载金矿物是黄铁矿、毒砂,金常以"不可见金" 形式赋存于载金矿物中(Bowell et al., 1999; Cline et al., 2005; Martin et al., 2005; 陈懋弘等,2009; 葛战林等, 2023)。毒砂在热液成矿期普遍含有金,载金黄铁矿 以细粒自形含砷黄铁矿为主。通过王庄金矿矿石矿 物电子探针分析数据(表1)可以看出,成矿前 I阶段 的黄铁矿普遍存在贫 As、Au,富 Fe、S 特征,王庄金矿

表 1 王庄金矿床矿石中黄铁矿、毒砂电子探针分析结果(%)

rub. 1 Election probe analysis results of pyrite and alsonopyrite in wangzhading gold deposit	ab. 1 El	lectron probe a	nalysis results	of pyrite and	arsenopyrite in	Wangzhuang gold	l deposit	(%
---	----------	-----------------	-----------------	---------------	-----------------	-----------------	-----------	----

样品编号	矿物类型	As	Zn	Cu	Ni	Со	Fe	Sb	Ag	Bi	Pb	S	Au	Total
ZK7-1BT4	I-py	0.564	0	0	0.031	0.087	46.08	0	0	0.011	0.101	52.881	0	99.755
	I-py	2.508	0.007	0.012	0.022	0.054	44.983	0	0	0	0	53.724	0	101.31
	II-py	2.276	0.022	0.068	0.091	0.07	45.351	0	0.006	0	0	50.586	0	98.47
	II-py	4.218	0	0	0.01	0.069	45.376	0.021	0.029	0	0.011	50.432	0.01	100.176
	II-py	4.055	0.052	0	0.16	0.11	44.676	0.059	0	0.016	0	50.624	0	99.752
	II-py	6.68	0	0.01	0.156	0.072	44.272	0.018	0	0	0	46.418	0.018	97.644
	Apy	39.466	0	0.028	0.068	0.094	34.134	0.071	0	0	0	24.022	0.037	97.92
	Apy	41.206	0	0.04	0	0.045	34.468	0.079	0	0	0.207	23.26	0	99.305
	Apy	40.423	0	0.015	0	0.044	34.55	0.08	0.047	0	0	23.111	0.045	98.315
	Apy	42.555	0	0	0	0.089	34.585	0.019	0	0	0.049	22.65	0.029	99.976
	Ару	41.116	0	0	0.096	0.059	33.959	0.206	0.006	0	0	22.881	0	98.323
	Ару	41.975	0	0	0	0.041	34.209	0.022	0	0	0	22.648	0	98.895
	Ару	42.433	0.087	0	0	0	34.654	0.07	0.022	0	0.061	21.882	0.091	99.3
	Ару	39.188	0.013	0	0	0.07	33.597	0.077	0	0	4.009	22.57	0	99.524
	Apy	43.225	0.001	0.012	0	0.027	34.201	0	0.003	0	0	22.102	0.108	99.679
	Ару	42.925	0.015	0.01	0.011	0.03	34.03	0.006	0.009	0	0	21.999	0.017	99.052
	Ару	44.282	0.051	0	0.066	0.024	34.297	0.036	0.001	0	0.075	21.585	0	100.417
	Ару	44	0.022	0.025	0.031	0.007	33.894	0.01	0	0	0	21.782	0	99.771
ZK7-1TZ1	Ару	44.252	0.01	0	0	0.046	33.97	0.019	0	0	0	21.021	0.017	99.335
	I-py	0.074	0	0.013	0	0.039	46.113	0.036	0.004	0	0	53.708	0	99.987
	I-py	1.247	0.007	0.017	0.082	0.096	45.815	0.025	0.015	0	0.047	52.233	0	99.584
	III-py	0.647	0	0	0.106	0.401	44.042	0.032	0.004	0	0	52.629	0.003	97.864
	III-py	3.113	0	0.027	0.412	0.199	45.183	0.035	0	0	0	51.119	0	100.088
	III-py	2.417	0	0	0.116	0.168	43.772	0.064	0.021	0	0.056	50.495	0	97.109
	Ару	42.448	0.057	0.014	0	0.058	34.184	0.04	0	0	0.021	22.439	0.055	99.316
	Ару	43.778	0.019	0.052	0.034	0.043	34.3	0	0	0	0.066	21.448	0.119	99.859
	Ару	44.609	0.004	0	0	0.022	34.09	0	0.011	0	0	21.386	0.068	100.19
	Ару	41.142	0.012	0.034	0	0.059	33.175	0.101	0	0	0	21.17	0.135	95.828

														续表 1
样品编号	矿物类型	As	Zn	Cu	Ni	Со	Fe	Sb	Ag	Bi	Pb	S	Au	Total
ZK7-1TZ2	I-py	1.99	0.017	0.043	0.382	0.173	45.417	0	0	0	0	51.978	0	100
	I-py	0.111	0	0.062	0.018	0.097	44.793	0.034	0.003	0	0	52.656	0	97.774
	I-py	2.799	0	0.021	0.084	0.008	45.416	0	0.044	0	0	51.559	0	99.931
	I-py	2.776	0	0	0	0.038	45.561	0.022	0.007	0	0	51.232	0	99.636
	II-py	1.134	0.045	0.005	0.184	0.277	44.576	0.042	0.037	0	0	52.241	0.02	98.561
	II-py	2.444	0	0.023	0.026	0.084	44.845	0	0	0	0	51.637	0.06	99.119
	II-py	3.752	0	0.023	0	0.04	45.091	0	0.009	0	0	50.617	0.058	99.59
	II-py	3.938	0	0.003	0.999	0.44	44.02	0.017	0	0.012	0	50.332	0	99.761
	II-py	1.293	0.003	0	0.153	0.253	42.633	0.013	0.019	0	0.147	50.286	0.003	94.803
	Ару	41.809	0	0.026	0.267	0.061	34.506	0.021	0.001	0	0	23.301	0	99.992
	Ару	43.142	0	0.045	0	0.044	34.621	0.059	0	0	0.005	22.48	0.012	100.408
	Ару	43.085	0.029	0.016	0.019	0.034	34.545	0.036	0	0	0.02	22.4	0.045	100.229
	Ару	42.46	0	0	0.129	0.086	34.394	0	0	0	0	22.099	0	99.168
	Ару	44.269	0	0	0	0.039	34.351	0.001	0	0	0.072	21.305	0.046	100.083
	Ару	44.269	0	0	0	0.039	34.351	0.001	0	0	0.072	21.305	0.046	100.083
	Ару	44.197	0	0.001	0	0.048	33.929	0	0.025	0	0	21.38	0	99.58
	Apy	40.299	0	0.06	0.051	0.042	33.936	0.001	0.017	0	0.005	21.195	0.021	95.627
	Apy	44.005	0	0.025	0.04	0.064	34.026	0	0.031	0	0	20.809	0.037	99.037
ZK7-1TZ3	I-py	0.075	0.036	0	0.012	0.054	46.366	0.024	0	0	0	53.35	0.055	99.972
	I-py	0.178	0	0	0	0.058	46.249	0.012	0.012	0	0.066	52.599	0	99.174
	II-py	2.805	0	0.005	0	0.045	45.825	0	0	0	0	52.271	0.014	100.965
	II-py	1.217	0	0.015	0.059	0.439	45.343	0.018	0.006	0	0.039	52.461	0	99.597
	II-py	2.099	0	0.026	0.022	0.034	45.677	0.026	0.002	0	0	51.588	0.041	99.515
	II-py	2.331	0	0	0	0.017	45	0.038	0.023	0	0	52.186	0	99.595
	II-py	2.97	0	0	0	0.091	45.284	0.021	0	0	0	51.495	0.092	99.953
	II-py	2.289	0.037	0	0	0.037	45.099	0.014	0.022	0	0.072	51.426	0.027	99.023
	III-py	1.844	0	0	0.396	0.188	44.829	0.027	0	0	0	51.634	0.01	98.928
	III-py	2.187	0.002	0.032	0.038	0.052	44.741	0.008	0.035	0	0.004	51.49	0	98.589
	II-py	3.836	0.059	0.027	0.024	0.081	44.973	0	0.019	0	0	50.352	0.003	99.374
	II-py	4.142	0	0.056	0.128	0.057	44.851	0	0	0	0.143	50.346	0	99.723
	II-py	1.738	0	0	0.109	0.092	43.853	0.017	0	0	0.022	50.521	0.064	96.416
	Ару	40.827	0.029	0.007	0	0.044	34.922	0.005	0.01	0	0	24.062	0	99.906
	Ару	41.213	0	0.009	0.015	0.085	34.878	0.021	0	0	0.031	23.81	0.053	100.115
	Ару	41.462	0	0	0.032	0.026	34.819	0.023	0.042	0	0.005	23.347	0.074	99.83
	Ару	41.151	0	0.029	0.182	0.038	34.52	0	0	0	0	23.181	0	99.101
	Ару	42.363	0.012	0.006	0	0.065	34.737	0	0.025	0	0	23.015	0.017	100.24
	Ару	41.994	0.037	0	0	0.048	34.393	0.02	0.003	0	0.071	22.788	0	99.354
	Ару	42.254	0.01	0.052	0.003	0.055	34.4	0.012	0	0	0	22.725	0.058	99.569
	Ару	42.012	0	0.018	0	0.017	34.526	0.054	0.048	0	0	22.506	0.042	99.223
	Ару	41.686	0.004	0	0	0.033	34.073	0.037	0	0	0	22.739	0	98.572
	Ару	43.393	0.017	0.018	0.042	0.042	34.4	0	0	0	0	22.301	0.091	100.304
	Ару	42.447	0	0.006	0	0.055	33.781	0.003	0.013	0	0.031	22.603	0.14	99.079
	Ару	43.158	0	0.01	0.053	0.024	33.841	0.039	0	0	0.005	21.977	0	99.107
	Ару	43.05	0	0	0.001	0.018	34.067	0	0	0	0.08	21.499	0.07	98.785
	Ару	44.064	0	0	1.328	0.105	32.694	0.004	0.013	0	0	21.542	0.038	99.788
	II-py	6.731	0	0.108	0.06	0.099	44.595	0	0.003	0	0.029	49.508	0.035	101.168

样品编号	矿物类刑	Δc	7n	Cu	Ni	Co	Fe	Sh	Δσ	Ri	Ph	s	Δ11	Total
7F 11 5m 5	小初天生 I-nv	0.019	0.044	0	0	0.022	46 858	0.003	Ag	0	0	53 404		100 351
2107-1124	I-py	0.035	0.044	0	0	0.022	46.57	0.005	0.001	0.018	0	53 513	0	100.228
	I-py	0.032	0 034	0	0 088	0.025	46 471	0.012	0.003	0.010	0	53 252	0	99 928
	I-py	0.052	0.034	0.044	0.003	0.023	40.471	0.012	0.002	0	0.044	53 612	0.051	99.928
	111-py	42 102	0 027	0.044	0.005	0.002	22 552	0.02	0.002	0	0.044	21 252	0.051	09.243
	Ару	45.192	0.027	0.001	0.025	0.051	33.332 46.771	0.02	0.014	0	0.015	52 490	0.074	98.188
	I-py	0	0.01	0.024	0.014	0.08	40.//1	0.01	0.01	0	0.015	53.489	0.01	100.433
	І-ру	0	0.032	0	0.056	0.093	45.381	0.012	0	0	0	54.206	0	99.78
	I-py	0.284	0.05	0	0.053	0.076	45.338	0.019	0	0	0.018	52.611	0.048	98.497
	I-py	0.542	0	0.057	0.115	0.182	45.446	0.003	0.035	0	0	52.781	0.01	99.171
	I-py	0.712	0	0.043	0.121	0.198	45.433	0.017	0	0	0.013	52.657	0.01	99.204
ZK7-21Z01	III-py	0.096	0	0.035	0.065	0.011	45.759	0.004	0.003	0	0.074	53.309	0.127	99.483
	III-py	0.099	0	0.05	0.065	0.068	45.586	0.049	0.005	0	0.089	52.903	0	98.914
	III-py	0.216	0.068	0.041	0.056	0.109	45.42	0.082	0.016	0	0.177	52.06	0.033	98.278
	III-py	0.392	0	0.096	0.111	0.262	44.737	0	0	0	0.201	52.305	0	98.104
	III-py	0.254	0.053	0.074	0.098	0.132	44.656	0.021	0.024	0	0.093	51.978	0.003	97.386
	III-py	0.078	0	0	0.013	0.079	44.428	0.015	0.009	0.008	0	51.13	0	95.76
ZK7-2TZ1	II-py	0.699	0.015	0.038	0.231	0.089	45.035	0.007	0	0	0.013	53.807	0.027	99.961
	II-py	3.577	0.01	0.028	0.333	0.277	44.037	0.036	0.028	0	0.078	50.641	0.145	99.19
	Ару	42.003	0.086	0.013	0	0.03	34.207	0.091	0.019	0	0	22.521	0	98.97
	Ару	43.236	0.034	0.054	0	0.019	34.148	0.08	0	0	0.018	22.172	0	99.761
	Ару	44.022	0	0	0	0.01	33.962	0	0.002	0	0	21.851	0.16	100.007
	Ару	42.502	0.078	0.022	0	0.019	33.894	0	0.024	0	0.136	21.289	0.219	98.183
ZK7-2TZ3	III-py	0.138	0.078	0.029	0.081	0.17	46.323	0.026	0.042	0	0.118	53.032	0.093	100.13
	III-py	0.052	0.047	0.005	0.484	0.173	46.049	0	0	0	0	53.232	0.066	100.108
	III-py	0.137	0	0.077	0.124	0.2	45.586	0.044	0.014	0	0.146	53.093	0	99.421
	III-py	0.068	0	35.467	0.137	0.053	29.769	0	0.031	0	0	35.239	0.029	100.793
ZK7-2TZ4	III-py	0.846	0	0	0	0.077	45.429	0.022	0	0	0	52.774	0	99.148
	III-py	0.334	0.064	0.06	0.033	0.216	45.29	0.014	0	0	0	51.871	0.03	97.912
	III-py	0.139	0.037	0.052	0.072	0.186	44.657	0.043	0	0	0	52.297	0.007	97.49
	II-py	4.224	0.017	0.038	0.028	0.062	45.786	0.009	0	0	0	50.672	0.059	100.895
	II-py	4.603	0	0.038	0.166	0.046	45.47	0.029	0.012	0	0	50.103	0.042	100.509
	II-py	5.055	0.012	0.02	0.08	0.07	45.211	0	0.016	0	0	50.245	0.01	100.719
	Ару	40.241	0	0	0	0.08	34.829	0	0	0	0	24.283	0.099	99.532
	Ару	39.389	0	0.003	0	0.017	34.577	0.145	0	0	0.01	24.089	0.012	98.242
	Ару	41.54	0.016	0	0.018	0.021	34.842	0.025	0	0	0.005	23.595	0.025	100.087
	Ару	43.246	0	0.007	0.005	0.046	34.509	0.008	0.016	0	0.023	23.084	0.029	100.973
	Ару	42.95	0.01	0	0	0.037	34.584	0.03	0.007	0	0	22.381	0.013	100.012
	Ару	44.053	0	0.022	0.087	0.028	34.007	0.006	0	0	0.018	21.841	0.08	100.142
	Apy	40.809	0	0.047	0	0.02	33.195	0.069	0	0	0.033	22.249	0.05	96.472
	Apy	40.594	0.004	0	0.005	0.069	32.841	0.005	0.002	0	0.044	21.676	0.099	95.339
	I-py	0.087	0.003	0	0.084	0.069	46.498	0	0	0	0.028	53.26	0.024	100.053
	I-py	0.087	0.014	0	0.018	0.08	46.379	0.002	0.022	0	0.02	53.269	0	99.891

西北地质 NORTHWESTERN GE	EOLOGY	GEOLOGY	ΓHWESTERN G	质	地	北	西
----------------------	--------	---------	-------------	---	---	---	---

20	24	白	Ē
	~ .		

														续表1
样品编号	矿物类型	As	Zn	Cu	Ni	Со	Fe	Sb	Ag	Bi	Pb	S	Au	Total
ZK7-2TZ4	II-py	1.816	0	0.017	0	0.019	46.91	0.022	0.001	0	0	52.041	0	100.826
	II-py	4.441	0.005	0.018	0.054	0.045	45.129	0.052	0	0	0	51.863	0.073	101.68
	II-py	5.265	0	0.025	0.082	0.054	44.116	0.046	0.002	0	0	48.946	0.651	99.187
	II-py	7.653	0.025	0.02	0.041	0.029	44.91	0.008	0	0	0	47.849	0.078	100.613
	I-py	0	0.034	35.37	0	0.016	30.507	0.004	0.011	0	0	34.809	0	100.751
	I-py	0	0.122	35.132	0	0.037	30.009	0.111	0.034	0	0.05	34.712	0.03	100.237
	Ару	41.991	0.022	0	0	0.024	34.643	0.038	0.008	0	0	23.15	0.096	99.972
	Ару	42.883	0	0.024	0.115	0.016	34.524	0	0.002	0	0	22.324	0.13	100.018
	Ару	43.487	0.056	0.004	0.088	0.04	34.272	0.014	0.023	0	0.031	22.091	0.114	100.22
	Ару	48.284	0.02	0	0.008	0.067	33.757	0.019	0	0	0.069	20.271	0	102.495
ZK7-2TZ5	I-py	0	0.008	0	0.053	0.049	46.789	0.011	0	0	0	53.767	0	100.677
	I-py	0.104	0.05	0	0.006	0.096	45.864	0.016	0.039	0	0	54.041	0.003	100.219
	I-py	0	0.017	0.003	0.024	0.065	46.367	0.01	0.033	0	0.045	53.375	0	99.939
	I-py	0.11	0	0.031	0.062	0.138	46.232	0.01	0	0	0	53.16	0	99.743
	I-py	0.086	0.01	0.071	0.293	0.108	45.409	0.076	0.007	0	0.047	52.865	0	98.972
	I-py	0.036	0	0.043	0.077	0.072	45.174	0.04	0	0	0	52.565	0	98.007
	I-py	0.106	0.045	0.007	0.515	0.137	44.688	0.026	0	0	0.037	52.62	0	98.181
	I-py	0.122	0.038	0.021	0.192	0.117	44.356	0.055	0	0	0.006	51.775	0	96.682
	I-py	0.07	0.033	0	0.269	0.129	43.787	0.04	0.018	0	0	50.751	0	95.097
	I-py	0.142	0.018	0	0.189	0.138	42.336	0.009	0	0	0.045	49.969	0	92.846

注:由中国地质调查局西安地质调查中心实验室测试。I-py为I阶段黄铁矿;II-py为II阶段黄铁矿;III-py为II阶段黄铁矿;III-py为II阶段黄砂。

主成矿阶段(II阶段)细粒黄铁矿多为均质结构,具高 As、Au,低S、Fe特征,且此阶段生成大量针状毒砂, 具有较高的Au显示,表明Au与As存在一定的正相 关关系,Au元素的富集和富砷流体密切相关(图7)。

Co、Ni常以类质同象的形式替代 Fe, 且 Co、Ni 含量变化受黄铁矿沉积时的物理化学条件控制, 不同 环境形成的黄铁矿 Co/Ni 值不同, 通常表现出与岩浆 热液流体相关的黄铁矿比值较高(Co/Ni>1)(Zhang et al., 2014; Chen et al., 2020); 沉积期的黄铁矿 Co/Ni 值较低(Co/Ni<1)(Bralia et al., 1979; Cook et al., 2009; Chen et al., 2020)。王庄金矿矿石中黄铁矿 Co/Ni 值平 均为 2.03, 中位数为 1.34, 表明大多数成矿主阶段形成

a. 含砷黄铁矿中Au、As关系散点图; b. 毒砂中As、Au 柱状图

图7 王庄金矿 Au、As 关系图解(数据来自表 1)

Fig. 7 Relationship diagram of Fe, S, Au and As in Wangzhuang gold deposit

的黄铁矿以岩浆流体为主(图 8a),通过 Co/Ni值与 Au元素含量的柱状图可以看出,在 Co/Ni<1及1.2< Co/Ni<2.5范围内均存在含金黄铁矿密集区(图 8b), 反映具有两种成因的黄铁矿,这两个阶段主要对应 II、 III 阶段,II 阶段相对于 III 阶段更富集 Au 元素。

a. 王庄金矿中 Co、Ni、Co/Ni 箱线图; b. 王庄金矿 Co/Ni-Au 关系图解

图8 王庄金矿矿石中黄铁矿 Co、Ni、Au 相关性图解

Fig. 8 Correlation diagram of Co, Ni and Au in pyrite in Wangzhuang gold deposit

旬北地区铁山组 Au 元素丰度不足以形成这么大 范围的 Au 地球化学异常,区内大面积的 Au 地球化学 异常不可能来自地层,而前述矿床西侧 10 km 可能存 在隐伏岩体,且区内地球化学异常的展布出现 W→Au、 As(W)→Hg、Sb(Au、W)变化,表现出由隐伏岩体位 置向东呈现中高温向中低温元素的转换,而王庄金矿 刚好处于其过渡带位置,结合黄铁矿微量元素特征, 表明成矿热液的来源与岩浆存在一定联系。

7 结论

(1) 王庄金矿床矿石矿物中未见明显自然金, 矿 石中金属矿物组成以黄铁矿、含砷黄铁矿、毒砂、闪 锌矿、方铅矿为主, 脉石矿物主要为石英、方解石。 金主要以不可见金形式存在于毒砂、含砷黄铁矿中, 且 Au 与 As 表现出正相关关系。

(2)王庄金矿主要经历3个时期:①沉积成岩期。 ②热液成矿期。③表生氧化期。其热液成矿期可分 为4个阶段:I.黄铁矿石英脉成矿早阶段;II.毒砂、黄 铁矿、石英脉成矿主阶段;III.石英脉伴少量多金属硫 化物阶段;IV.碳酸盐岩晚阶段。主成矿阶段为II阶段, 且矿石品位与金属硫化物含量密切相关。

(3) 王庄金矿中载金黄铁矿微量元素 Co/Ni 均值

为 2.03, 中位数为 1.34, 表明含矿热液来源可能与岩浆 热液关系密切。同时结合区内自西向东的中高温到 中低温元素的水系沉积物异常变化特征, 进一步说明 了王庄金矿的形成与区内岩浆作用存在一定关系。

通过前述研究,王庄金矿矿物组构中金属硫化物

存在后期构造变形特征,表现为柱状毒砂被构造作用

错断,后又被毒砂穿插进错断裂隙(图 5e、图 5h),而

通过研究发现毒砂均为成矿主阶段产物,表明成矿过

程存在强烈的构造变形,是一个复杂的构造热液过程。

致谢:感谢中国地质调查局西安地质调查中心 膝家欣、李宗会等多位专家一直以来对野外工作的 指导,才得以在镇旬盆地王庄地区取得找矿突破。

参考文献(References):

- 陈懋弘,毛景文,陈振宇,等. 滇黔桂"金三角"卡林型金矿含 砷黄铁矿和毒砂的矿物学研究[J]. 矿床地质, 2009, 28(5): 539-557.
- CHEN Maohong, MAO Jingwen, CHEN Zhenyu, et al. Mineralogical study on arsenic-pyrite and arsenopyrite in Carlin-type gold deposits in Yunnan-Qian-Guangxi "Golden Triangle" [J]. Mineral Deposits, 2009, 28(5): 539–557.
- 陈衍景.初论浅成作用和热液矿床成因分类[J].地学前缘, 2010,17(2):27-34.
- CHEN Yanjing. Preliminary discussion on the genetic classification of epigenesis and hydrothermal deposit[J]. Earth Science Frontiers, 2010, 17(2): 27–34.
- 陈衍景.秦岭印支期构造背景、岩浆活动及成矿作用[J].中国 地质,2010,37(4):854-865.

- CHEN Yanjing. The Indosinian tectonic setting, magmatism and mineralization of Qinling Mountains[J]. Geology in China, 2010, 37(4): 854–865.
- 陈龙龙, 唐利, 沈彦谋, 等. 秦岭造山带栾川 Mo-W 矿集区和柞水-山阳 Cu-Mo 矿集区斑岩型矿床成矿差异性对比[J]. 西北地质, 2024, 57(2): 67-89.
- CHEN Longlong, TANG Li, SHEN Yanmou, et al. Comparison on Metallogenic Differences of Porphyry Deposits between Luanchuan Mo-W and Zhashui-Shanyang Cu-Mo Ore-clusters in Qinling Orogenic Belt: Constraints of Magmatic Source and Metallogenic Conditions[J]. Northwestern Geology, 2024, 57(2): 67–89.
- 杜玉良,汤中立,蔡克勤,等.秦岭-祁连造山带印支——燕山期构 造与大型-超大型矿床的形成关系[J].矿床地质,2003, 22(1):65-71.
- DU Yuliang, TANG Zhongli, CAI Keqin, et al. The relationship between the Indosinian-Yanshanian structure and the formation of large and super-large deposits in the Qinling-Qilian orogenic belt[J]. Mineral Deposits, 2003, 22(1): 65–71.
- 葛战林,顾雪祥,章永梅,等.南秦岭柞水-山阳矿集区金盆梁金 矿床载金硫化物矿物学特征及成矿指示[J].西北地质, 2023,56(5):278-293.
- GE Zhanlin, GU Xuexiang, ZHANG Yongmei, et al. Mineralogical Characteristics and Metallogenic Indication of Gold–Bearing Sulfides in the Jinpenliang Gold Deposit, Zhashui–Shanyang Ore Cluster Area, South Qinling[J]. Northwestern Geology, 2023, 56(5): 278–293.
- 刘新会,刘爽,杨登美,等.中秦岭金龙山金矿床地质特征及找 矿方向[J].西北地质,2008,41(1):81-89.
- LIU Xinhui, LIU Shuang, YANG Dengmei, et al. Geological Characteristics and Ore-Searching Direction of Jinlongshan Gold Deposit, Mid-Qinling[J]. Northwestern Geology, 2008, 41(1): 81–89.
- 孟五一,刘家军,魏立勇,等.陕西旬阳地区小河金矿硫铅同位素 组成及地质意义[J].现代地质,2021,35(6):1587–1596.
- MENG Wuyi, LIU Jiajun, WEI Liyong, et al. Sulfur and lead isotope composition and geological significance of Xiaohe gold deposit in Xunyang area, Shaanxi Province[J]. Geoscience, 2021, 35(6): 1587–1596.
- 冉亚洲,陈涛,梁文天,等.西秦岭郎木寺组火山岩锆石 U-Pb 年龄及其构造意义[J].西北地质,2024,57(1):110-121.
- RAN Yazhou, CHEN Tao, LIANG Wentian, et al. Zircon U–Pb Age of Volcanic Rocks from the Langmusi Formation in the Western Qinling Mountains and Its Tectonic Significance[J]. Northwestern Geology, 2024, 57(1): 110–121.

- 沙亚洲,王菊婵,康清清,等.南秦岭旬阳烂木沟地区下志留统 金矿地质特征及控矿因素浅析[J].西北地质,2013,46(2): 99-110.
- SHA Yazhou, WANG Juchan, KANG Qingqing, et al. Analysis on Geological Characteristics and Ore-controlling Factors of Silurian Gold Mine in South Qinling the Xunyang Lanmugou Area[J]. Northwestern Geology, 2013, 46(2): 99–110.
- 唐永忠,朱增伍,吴昊,等.南秦岭镇旬盆地微细浸染型金矿矿 化特征与成矿动力学机制[J].矿产勘查,2016,7(2):307-315.
- TANG Yongzhong, ZHU Zengwu, WU Hao, et al. Sulfur and Lead isotopic composition of Xiaohe Gold deposit in Xunyang Area of Shaanxi Province and its Geological Significance Mineralization characteristics and metallogenic dynamics of fine disseminated gold deposit in Zhenxi Basin, Southern Qinling[J]. Mineral Exploration, 2016, 7(2): 307–315.
- 王汉辉, 唐利, 杨勃畅, 等. 东秦岭黄水庵碳酸岩型 Mo-REE 矿 床方解石地球化学特征和氟碳铈矿 U-Th-Pb 年龄及其意 义[J]. 西北地质, 2023, 56(1): 48-62.
- WANG Hanhui, TANG Li, YANG Bochang, et al. Geochemical Characteristics of Calcite and Bastnäsite U–Th–Pb Age of the Huangshui 'an Carbonatite–hosted Mo–REE Deposit, Eastern Qinling[J]. Northwestern Geology, 2023, 56(1): 48–62.
- 谢才富,熊成云,胡宁,等.东秦岭造山带"两阶段双带"区域 成矿模式[J].地质科技情报,2004,23(2):77-81.
- XIE Caifu, XIONG Chengyun, HU Ning, et al. Regional metallogenic model of "two stages and two belts" in East Qinling orogenic belt[J]. Bulletin of Geological Science and Technology, 2004, 23(2): 77–81.
- 徐林刚,郑伟.南秦岭旬阳盆地志留纪黑色岩系与 Pb-Zn 矿床 成矿的关系[J].地质学报,2021,95(6):1854-1867.
- XU Lingang, ZHENG Wei. Relationship between Silurian black rock series and metallogenesis of Pb-Zn deposits in Xunyang Basin, South Qinling[J]. Acta Geologica Sinica, 2021, 95(6): 1854– 1867.
- 薛春纪,刘淑文,冯永忠,等.南秦岭旬阳盆地下古生界热水沉 积成矿地球化学[J].地质通报,2005,24(10):53-60.
- XUE Chunji, LIU Shuwen, FENG Yongzhong, et al. Geochemistry of Lower Paleozoic hydrothermal sedimentary mineralization in Xunyang Basin, South Qinling[J]. Geological Bulletin of China, 2005, 24(10): 53–60.
- 杨荣生,陈衍景,谢景林.甘肃阳山金矿床含砷黄铁矿及毒砂 的 XPS 研究[J]. 岩石学报, 2009, 25(11): 2791-2800.
- YANG Rongsheng, CHEN Yanjing, XIE Jinglin. XPS study on arsenic-bearing pyrite and arsenopyrite in Yangshan gold Deposit,

Gansu Province[J]. Acta Petrologica Sinica, 2009, 25(11): 2791–2800.

- 姚书振,丁振举,周宗桂,等.秦岭造山带金属成矿系统[J].地 球科学,2002,27(5):599-604.
- YAO Shuzhen, DING Zhenju, ZHOU Zonggui, et al. Metal metallogenic system of Qinling orogenic belt[J]. Earth Science, 2002, 27(5); 599–604.
- 张国伟.秦岭造山带与大陆动力学[M].北京:科学出版社, 2001.
- ZHANG Guowei. Qinling orogenic belt and continental dynamics [M]. Beijing: Science Press, 2001.
- 邹海洋,陈松岭,胡祥,等.淋湘金矿地球化学特征[J].中南工 业大学学报(自然科学版),2001,(2):111-114.
- ZHOU Haiyang, CHEN Songling, HU Xiang, et al. Geochemical characteristics of Linxiang gold deposit[J]. Journal of Central South University(Science and Technology), 2001, (2): 111– 114.
- Bowell R J, Baumann M, Gingrich M, et al. The occurrence of gold at the Getchell mine, Nevada[J]. Journal of Geochemical Exploration, 1999, 67(1-3): 127–143.
- Bralia A, Sabatini G, Troja F. A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems - Evidences from southern tuscany pyritic deposits [J]. Mineralium Deposita, 1979, 14(3): 353–374.
- Chen F, Deng J, Wang Q, et al. LA-ICP-MS trace element analysis of

magnetite and pyrite from the Hetaoping Fe-Zn-Pb skarn deposit in Baoshan block, SW China: Implications for ore-forming processes[J]. Ore Geology Reviews, 2020, (117): 103309.

- Cline J S, Hofstra A H, Muntean J L, et al. Carlin-Type Gold Deposits in NevadaCritical Geologic Characteristics and Viable Models[M]. One Hundredth Anniversary Volume, 2005.
- Cook N J, Ciobanu C L, Mao J W. Textural control on gold distribution in As-free pyrite from the Dongping, Huangtuliang and Hougou gold deposits, North China Craton (Hebei Province, China)[J]. Chemical Geology, 2009, 264(1-4): 101-121.
- Ma Y, Zhu L, Lu R, et al. Geology and in-situ sulfur and lead isotope analyses of the Jinlongshan Carlin-type gold deposit in the Southern Qinling Orogen, China: Implications for metal sources and ore genesis - ScienceDirect[J]. Ore Geology Reviews, 2020, 126(0): 103777.
- Martin, Reich, And, et al. Solubility of gold in arsenian pyrite[J]. Geochimica et Cosmochimica Acta, 2005, 69(11): 2781–2796.
- Zhang J, Deng J, Chen H Y, et al. LA-ICP-MS trace element analysis of pyrite from the Chang'an gold deposit, Sanjiang region, China: Implication for ore-forming process[J]. Gondwana Research, 2014, 26(2): 557–575.
- Zhang Y, Tang H S, Chen Y J, et al. Ore geology, fluid inclusion and isotope geochemistry of the Xunyang Hg-Sb orefield, Qinling Orogen, Central China[J]. Geological Journal, 2014, 49(4–5): 463–481.