张逸君,张宇航,陈艳,等. 偏硼酸锂和四硼酸锂碱熔-电感耦合等离子体发射光谱法测定海域砂矿中的锆和钛[J]. 岩矿测试, 2024, 43(6):858-865. DOI: 10.15898/j.ykcs.202409110188.

ZHANG Yijun, ZHANG Yuhang, CHEN Yan, et al. Determination of Zirconium and Titanium in Marine Placer Deposits by ICP-OES with Alkali Fusion of Lithium Metaborate-Lithium Tetraborate Composite Flux[J]. Rock and Mineral Analysis, 2024, 43(6): 858–865. DOI: 10.15898/j.ykcs.202409110188.

偏硼酸锂和四硼酸锂碱熔-电感耦合等离子体发射光谱法测定 海域砂矿中的锆和钛

张逸君,张宇航,陈艳,邓焱,王佳翰*

(海口市海洋污染物监测创新与应用重点实验室,中国地质调查局海口海洋地质调查中心,海南海口 571127)

摘要:海南岛的海域砂矿蕴藏着丰富的锆钛资源,具有巨大的开发潜力。本文建立了一种基于偏硼酸锂-四硼酸锂复合熔剂 (33:67, m/m)的碱熔-电感耦合等离子体发射光谱法,用于测定海域砂矿中锆和钛的含 量。样品采用 0.8g 复合熔剂混合,在 1000℃ 下熔融 15min,冷却后将熔融物倒入稀酸中,在恒温振荡仪中 进行振荡溶解。通过简化操作流程、改进溶解熔融物的技术,本方法 Zr 的检出限为 0.40μg/g, TiO₂ 的检出 限为 0.0025%。通过国家标准物质验证, Zr 和 TiO₂ 测定值的相对标准偏差 (RSD)分别为 1.0%~3.5%、 0.7%~3.3%,精密度和准确度均符合地质矿产实验室测试质量管理规范,适用于海域砂矿中锆和钛的快速 连续分析。

关键词:海域砂矿;碱熔;偏硼酸锂-四硼酸锂熔剂;电感耦合等离子体发射光谱法;锆;钛

要点:

(1)相比其他单一熔剂,偏硼酸锂-四硼酸锂复合熔剂的熔融效果更好、应用广泛。

(2) 简化了碱熔法的操作流程,改进了溶解熔融物的技术。

(3) 本文采用的碱熔法与封闭酸溶法的测定结果吻合良好,且流程更加简便。

中图分类号: O657.63 文献标识码: A

随着陆地矿产资源的日益枯竭,海洋矿产资源 的勘探与开发变得尤为迫切。海南岛蕴藏着丰富的 钛铁矿、锆英石、独居石以及金红石等矿产资源,是 中国重要的锆钛砂矿资源区域。其中分布在海南岛 东部滨海地区的锆英石和钛铁矿,是海南的优势矿 产资源,储量丰富,具有巨大的开发潜力。分析海域 砂矿样品中元素的成分和含量,可以为发现具有经 济价值的矿产资源提供重要的技术支持。然而,海 域砂矿样品中可能含有多种矿物和杂质,存在着样 品盐分含量高、基体复杂和干扰严重等难点,对样品 前处理技术要求较高。

在地质样品的前处理中,常见的方法包括敞口 酸溶法^[1-3]、密闭酸溶法^[4-6]、微波消解法^[7-9]以 及碱熔法^[10-12]。各种前处理方法都有一定的优缺 点,敞口酸溶法流程简单,适合大批量试样的测定, 但由于反应时间不足,容易造成 Zr、Hf、稀土等元素 分解不完全^[13];密闭酸溶法较敞口酸溶法有了显 著的改进,保证了大多数难溶元素的完全分解,且由 于在封闭容器中操作,能够有效地控制反应条件,维 持样品的反应稳定性^[14-15],但操作繁琐,耗时且对于

收稿日期: 2024-09-11; **修回日期**: 2024-10-26; **接受日期**: 2024-11-01; **网络出版日期**: 2024-11-30 **基金项目**: 中国地质调查局地质调查项目"金矿等战略性矿产实验测试技术支撑与服务"(DD20242769) **第一作者:** 张逸君,硕士,工程师,主要从事地质样品检测工作。E-mail: buaachenyiwei@sina.com。 **通信作者:** 王佳翰,硕士,高级工程师,主要从事地质样品检测工作。E-mail: wangjiahanhao@163.com。

某些古老变质岩的分解效果有限; 微波消解法以其 试剂用量少、消解时间短和自动化操作的优势而受 到青睐, 但仍需进行赶酸操作, 且微波消解的孔位有 限, 不适合批量操作。相比之下, 碱熔法以其操作简 便、速度快、适用性广泛和试剂用量少等优点脱颖而 出^[16], 但其存在坩埚成本较高、样品脱离困难、高温 转移和溶解熔融物时易造成损失的问题^[17]。

本文采用偏硼酸锂-四硼酸锂 (33:67, m/m) 复合熔剂碱熔法处理海域砂矿样品。相比其他单一 熔剂,偏硼酸锂-四硼酸锂复合熔剂结合了两种助熔 剂的优点,熔融效率更高,应用广泛,其在 1000℃下 熔融时间仅需 15min,对地质样品具有较好的熔融效 果^[18-19];同时,实验选用了成本较低的石墨坩埚代替 传统的铂金坩埚,降低了成本;实验简化了脱埚过程, 减少了操作复杂性和潜在的误差;此外,实验中还改 良了溶解熔融物的方式,有效地避免了高温溶解熔 融物时可能发生的溶液溅出的风险。结合电感耦合 等离子体发射光谱法 (ICP-OES)的高灵敏度和宽线 性范围的优势^[20-25],应用于海域砂矿样品中锆钛元 素的快速测定。

1 实验部分

1.1 仪器及工作条件

电感耦合等离子体发射光谱仪 (ICP-OES): ICAP-6300型(美国 ThermoFisher 公司), 仪器工作 参数为:射频功率1150W; 雾化气流速0.70L/min; 氩 气纯度≥99.99%; 辅助气流速0.50L/min; 载气流速 0.55L/min; 泵速50r/min; 观察高度15mm; 最大积分 时间:30s。电子天平: BSA224S型(赛多利斯科学仪 器(北京)有限公司); 马弗炉: SX2-12-12Z型(上海 博迅医疗生物仪器股份有限公司); 恒温振荡培养箱: BS-2E型(上海化科实验器材有限公司); 石墨坩埚: 由光谱纯石墨棒车制, 内径14mm, 壁厚3mm, 高 30mm。聚乙烯 (PE) 塑料试剂瓶:60mL(带刻度), 比克曼牌, 刻度线经重量法校正, 符合使用要求。

1.2 标准溶液和主要试剂

告、钛单元素标准溶液:浓度均为 1000mg/L,购 自坛墨质检-标准物质中心;偏硼酸锂-四硼酸锂复合 熔剂(33:67, m/m),优级纯,购自洛阳泰纳克高温仪 器设备有限公司;盐酸、硝酸:优级纯,购自天津科密 欧化学试剂有限公司;高纯液氩(质量分数 >99.999%);实验用水为超纯水(电阻率不小于 18MΩ·cm)。

1.3 实验样品

海域砂矿实际样品 (样品编号 y1~y25): 采自 海南岛东部海域, 样品布点、采样、制备均按照 《海洋监测规范 第 3 部分: 样品采集、贮存与运输》 (GB 17378.3—2007) 和《海洋区域地质调查规范 (1:50000)》(DZ/T 0255—2014) 的相关规范执行。

海 洋 沉 积 物 国 家 标 准 物质 GBW07333、 GBW07314、GBW07335、GBW07336:由国家海洋局 第二海洋研究所、国家地质实验测试中心提供。

1.4 标准溶液配制

1.4.1 工作溶液

分别吸取 2.5mL 锆和 5.0mL 钛单元素标准溶 液置于 50mL 塑料容量瓶中,用 4% 硝酸定容至刻度, 配制锆钛中间液。其中, 锆的浓度为 50mg/L, 钛的浓 度为 100mg/L。

1.4.2 标准曲线溶液

分别移取适量的锆钛中间液于 50mL 塑料容量 瓶中,用 4% 硝酸定容至刻度,配制标准曲线混合系 列溶液。其中,锆的浓度分别为 0.05、0.25、0.50、1.0、 2.5、5.0、12.5mg/L, 钛的浓度分别为 0.1、0.5、1.0、 2.0、5.0、10.0、25mg/L。

1.5 样品前处理

准确称取 0.1g 试样(精确至 0.1mg),加入偏硼 酸锂-四硼酸锂(33:67,m/m)复合熔剂,充分搅拌以 确保混合均匀。将坩埚置于高温炉中,在1000℃下 熔融 15min 后取出并冷却,将形成的玻璃熔珠置于 塑料瓶中,用稀酸定容至 50mL。在 200r/min 的振荡 频率和 45℃ 的恒温条件下振荡 2h 以促进溶解,待 测。同时制备空白样品以消除可能的背景干扰。

2 结果与讨论

2.1 分析谱线的选择

在采用 ICP-OES 分析复杂基体样品时,需特别 注意光谱干扰的问题。尤其是经过碱熔处理的样品, 引入的盐分可能在 ICP-OES 分析中引起光谱干扰。 因此,选择合适的分析谱线对于保证检测的准确性 至关重要^[26]。本研究选择了背景值低、灵敏度高、 分辨率好且干扰最小的光谱谱线作为分析线。实验 中,对浓度为 5.0mg/L 的错钛标准溶液在特定波长处 进行了谱图扫描,并进行 6 次平行测定,以确保结 果的准确性,平均响应见表 1。最终确定了锆和 钛的 ICP-OES 分析谱线分别为 Zr 343.823nm 和 Ti 334.941nm。

— 859 —

表 1 测定元素分析谱线

Tuble 1 Thatytear spectral mes for acterimitation of clement	Table 1	Analytical	spectral	lines fo	or detern	nination	of ele	ments
--	---------	------------	----------	----------	-----------	----------	--------	-------

一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	谱线	浓度为 5.0mg/L 时的				
	(nm)	平均响应				
	339.198	21890				
Zr	343.823	127200				
	349.621	8603				
T:	334.941	327000				
11	336.124	172100				

2.2 熔剂用量的选择

熔剂的用量对样品的熔融效果至关重要。用量 不足可能导致样品无法完全分解;而用量过多则可 能导致测定溶液中的盐分过高,从而引发基体效应 并堵塞雾化器。本实验考察了不同量的复合熔剂 (0.4、0.6、0.8、1.0和1.2g)对国家海洋沉积物标准物 质 GBW07314(其中 Zr 的参考值为 229μg/g, TiO₂ 的 标准值为 0.825%±0.030%)中 Zr 和 TiO₂ 含量测定的 影响。当复合熔剂加入量为 0.4g 时,熔融不完全或 有少量残渣,不予考虑。当熔剂加入量为 0.6g 时,基 本形成完整透亮熔珠。熔剂用量为 0.6~1.2g 的平 均测定结果如图 1 所示。当复合熔剂加入量为 0.8g 时, Zr 和 TiO₂测量的结果值与标准值最接近, 相对误差最小。

图1 不同熔剂加入量对 GBW07314 测定结果的影响

2.3 复溶介质及用量的选择

为了确保熔融物的完全溶解,本研究评估了多种复溶介质的溶解效率。在实验过程中,称取 0.8g 复合熔剂置于石墨坩埚中,并加入 0.1g 国家海洋沉 积物标准物质 GBW07314 混合均匀。于 1000℃下 熔融 15min 后,分别使用 25mL 和 50mL 不同浓度的 — 860 — 硝酸、盐酸、王水及逆王水对熔融样品进行溶解处理。 实验结果表明,4%的王水和4%的逆王水无法实现 熔融样品的完全溶解,因此不予以考虑。其他复溶 介质均能彻底地溶解熔融样品。尽管 25mL 的酸量 足以溶解样品,但所得溶液中盐分含量高,在仪器分 析过程中容易堵塞雾化器。50mL不同浓度的硝酸、 盐酸、王水和逆王水溶解熔融物所得溶液中锆和钛 的测定结果见表 2。从结果可以看出,不同复溶介质 对锆和钛的测定值影响不大。鉴于盐酸中的氯离子 可能与其他元素形成化合物而产生光谱干扰,故不 作为首选。而硝酸的强氧化性能够有效地促进多种 金属和矿物的溶解,并在 ICP-OES 分析中提升样品 的离子化效率,且其引入的同位素 H、N、O 均为大 气中原有成分,不会引起新的同位素干扰,因此选择 硝酸作为复溶介质。由于4%、8%和12%的硝酸均 能取得准确结果,考虑到节约和环保因素,选用 50mL 的 4% 硝酸作为溶解熔融物的复溶介质。

表 2 复溶介质的选择

Table 2 Selection of resolution medium.

	Ti	O ₂ 含量	Zr 🕯	全量		
复溶介质	测定值	标准值	测定值	参考值		
	(%) (%)		(µg/g)	$(\mu g/g)$		
4% 硝酸	0.780		222			
8% 硝酸	0.781		223			
12% 硝酸	0.784		220			
6% 盐酸	0.784		222			
10% 盐酸	0.767	0 825+0 020	216	220		
15% 盐酸	0.765	0.825±0.050	219	229		
8% 王水	0.763		218			
12% 王水	0.767		221			
8% 逆王水	0.769		221			
12% 逆王水	0.761		221			

2.4 溶解熔融物方法的改良

传统溶解熔融物的方法,包括熔融结束立即将 熔融物转移至烧杯中进行超声提取溶解^[27-28],或在 电热板上加热煮沸溶解^[29-30]。然而,这些操作可能 导致溶液溅出,造成样品损失并存在安全隐患。本 实验在熔融物冷却后将其倒入稀酸中,并在恒温振 荡仪中进行振荡溶解,该方法操作安全、流程简便, 并减少了实验误差。

2.5 方法检出限和测定下限

通过优化的实验条件和选定的谱线,对锆和钛 标准溶液系列进行了测定。以各元素的质量浓度为

Fig. 1 Effect of different flux dosages on the determination results of GBW07314.

横坐标,对应的响应为纵坐标绘制标准曲线。锆在 0.05~12.5mg/L,钛在 0.1~25mg/L 均呈现出良好的 线性关系,相关系数均在 0.999 以上。参照《合格评 定 化学分析方法确认和验证指南》(GB/T 27417— 2017)来评估检出限。制备空白溶液 12 份,以连续 测定空白结果的 3 倍标准偏差计算方法检出限;10 倍标准偏差计算方法的定量限,得到 Zr 的方法检出 限为 0.40µg/g,定量限为 1.32µg/g; TiO₂ 的方法检出 限为 0.0025%,定量限为 0.0082%。

2.6 方法准确度和精密度

选用国家海洋沉积物标准物质 GBW07333、GBW07314、GBW07335、GBW07336 对方法的准确 度和精密度进行评估。分别称取 6 份平行样品,按 照优化的实验条件处理样品,并计算 TiO₂ 和 Zr 元素 的相对误差和相对标准偏差 (RSD),两元素测定结果 的平均值与标准值吻合良好,TiO₂的相对误差在 5.3%~8.7%, RSD 在 0.7%~3.3%, Zr 的相对误差在 2.6%~8.2%, RSD 在 1.0%~3.5%(表 3)。

2.7 碱熔法和封闭酸溶法处理海域砂矿实际样品的 效果对比

为了进一步验证方法的可行性,本研究分别采 用本文的碱熔法和国家标准方法《硅酸盐岩石化学 分析方法 第 30 部分:44 个元素量测定》(GB/T 14506.30—2010)的封闭酸溶法处理样品,然后使用 ICP-OES 进行测定,两种方法测定结果见表 4。表 4 中的实际样品 y1~y25 为采自海南岛东部滨海地区 的海域砂矿样品。数据表明,本文的碱熔法与封闭 酸溶法对海域砂矿样品中锆和钛的测定结果吻合良好。 鉴于本文的碱熔法处理样品的流程相对简便,在海 域砂矿样品的批量快速处理中可优先考虑。

3 结论

对偏硼酸锂-四硼酸锂碱熔法的实验条件进行 了优化,确定了最佳熔剂用量为 0.8g,复溶介质为 50mL 的 4% 硝酸。采用 ICP-OES 进行测定,锆的方 法检出限为 0.40μg/g,测定下限为 1.32μg/g;二氧化 钛的方法检出限为 0.0025%,测定下限为 0.0082%; 采用国家海洋沉积物标准物质验证了方法的准确度 和精密度。针对传统碱熔法存在的坩埚成本高、样 品脱离困难、高温转移溶解熔融物时易造成损失及 安全隐患的问题,本研究选用成本效益高的石墨坩 埚,并对溶解熔融物的流程进行了改良,待熔融物冷 却后在稀酸中振荡溶解,避免了高温操作过程中可 能发生的溶液溅出的风险,使得整个流程更加简便、 安全,适用于海域砂矿样品中锆和钛的批量测定。

今后将该方法应用于海域砂矿样品分析的同时, 还需考察复合熔剂配比对熔融效果的影响,探究硝 酸和盐酸对难溶元素的影响机理,以及酸用量对溶 样效果的影响。此外,可以进一步增加可同时测定 的元素种类。

表 3 海洋沉积物标准物质的准确性和精密度实验结果

Table 3 Analytical results of the accuracy and precision tests of marine sediment reference materials (*n*=6).

测试指标	参数	GBW07314		(GBW0733	3	GBW07335		5	GBW07336			
TiO ₂	测定值 (%)	0.777	0.768	0.779	0.710	0.705	0.705	0.660	0.663	0.652	0.576	0.566	0.557
		0.778	0.771	0.792	0.709	0.722	0.716	0.662	0.654	0.653	0.564	0.599	0.603
	平均值 (%)	0.778			0.711			0.657			0.578		
	标准值 (%)	0.825±0.030			0.775±0.020			0.720±0.03			0.610±0.03		
	相对误差 (%)	5.8		8.2			8.7			5.3			
	RSD(%)	1.1		0.9		0.7			3.3				
Zr	测完值 (ug/g)	215	217	217	131	130	134	183	167	184	122	129	127
	侧疋咀 (µg/g)	212	211	217	133	132	133	179	178	183	121	126	128
	平均值 (μg/g)	215		132			179			125			
	标准值 (µg/g)	229		144±13			184±24			134±12			
	相对误差 (%)	6.1		8.2			2.6			6.4			
	RSD(%)	1.3		1.0			3.5			2.5			

表 4 本文方法与封闭酸溶方法的测定结果比对

Table 4	Comparison	of the ana	lytical r	esults obt	ained by	this met	hod and	sealed a	icid dis	solution	method.

实际样品 编号	TiO ₂ 含量	(%)	RSD	Zr 含	RSD	
	本文方法(碱熔法)	封闭酸溶法	(%)	本文方法	封闭酸溶法	(%)
y1	0.360	0.366	1.2	364	359	1.0
y2	0.950	0.993	3.1	758	741	1.6
y3	0.765	0.760	0.5	362	362	0.0
y4	0.301	0.305	0.9	379	372	1.3
y5	0.275	0.274	0.3	329	322	1.5
y6	0.302	0.303	0.2	432	436	0.7
y7	0.576	0.604	3.4	701	726	2.5
y8	0.364	0.372	1.5	415	420	0.8
y9	0.504	0.541	5.0	374	374	0.0
y10	0.674	0.702	2.9	518	499	2.6
y11	2.19	2.41	4.9	4553	4563	0.2
y12	0.730	0.750	1.9	706	710	0.4
y13	1.56	1.66	4.5	2090	2203	3.7
y14	1.30	1.39	4.9	2002	2098	3.3
y15	0.894	0.949	4.2	1999	2102	3.6
y16	1.29	1.36	3.8	1728	1811	3.3
y17	0.625	0.644	2.1	1720	1827	4.3
y18	0.755	0.751	0.4	1555	1601	2.1
y19	0.995	0.998	0.2	1377	1402	1.3
y20	0.561	0.593	4.0	1212	1279	3.8
y21	0.830	0.886	4.6	1202	1244	2.4
y22	1.03	1.10	4.4	1054	1125	4.6
y23	0.833	0.844	0.9	872	884	1.0
y24	0.773	0.798	2.3	746	759	1.3
y25	0.533	0.558	3.3	664	689	2.6

Determination of Zirconium and Titanium in Marine Placer Deposits by ICP-OES with Alkali Fusion of Lithium Metaborate-Lithium Tetraborate Composite Flux

ZHANG Yijun, ZHANG Yuhang, CHEN Yan, DENG Yan, WANG Jiahan*

(Haikou Key Laboratory of Marine Contaminants Monitoring Innovation and Application; Haikou Marine Geological Survey Center, China Geological Survey, Haikou 571127, China)

HIGHLIGHTS

- (1) Compared with other single flux, the melting effect of lithium metaborate lithium tetraborate composite flux is better, and more widely used.
- (2) The operation process of the alkali fusion method is simplified, and the technology for dissolving molten substances is improved.
- (3) The alkali fusion method is in accordance with the results obtained by the closed acid dissolution method, and the process is more convenient.

ABSTRACT: The marine placer deposits of Hainan Island contain abundant zirconium (Zr) and titanium (Ti) resources, which hold significant development potential. An alkali fusion-inductively coupled plasma-optical emission spectrometry method based on a composite flux of lithium metaborate and lithium tetraborate (m : m=33 : 67) was developed for determining Zr and Ti in marine placers. In this method, the sample was fused with 0.8g flux at 1000 °C for 15min. After cooling, the molten substance was poured into a dilute acid and dissolved by oscillation in a constant temperature oscillator. This approach simplifies the operation process by avoiding the complexity associated with high-temperature procedures while enhancing melt dissolution techniques. The detection limit for Zr in this method is 0.40µg/g while that for TiO₂ is 0.0025%. Based on standard materials, the relative standard deviation (RSD) of Zr ranges between 1.0%-3.5%; RSD of TiO₂ ranges between 0.7%-3.3%. These precision values align with quality management standards set forth by geological and mineral laboratory testing. The method is suitable for rapid continuous analysis of Zr and Ti in marine placer deposits.

KEY WORDS: marine placer deposits; alkali fusion; lithium metaborate-tetraborate composite flux; inductively coupled plasma-optical emission spectrometry; zirconium; titanium

参考文献

[1] 于洋, 吴磊, 王娜, 等. 电感耦合等离子体质谱法测定
 岩石样品中 15 种稀土元素含量不确定度的评估[J].
 华北地质, 2024, 47(2): 105-110.

Yu Y, Wu L, Wang N, et al. Uncertainty evaluation of 15 rare earth elements in rock by ICP-MS[J]. North China Geology, 2024, 47(2): 105–110.

- [2] 贾雷,李俊东,黄青春,等. 电感耦合等离子体质谱法 测定大批量钼多金属矿中钼及 4 种主要伴生元素的 含量[J]. 理化检验 (化学分册), 2024, 60(3): 260-265.
 Jia L, Li J D, Huang Q C, et al. Determination of molybdenum and 4 major associated elements in largescale molybdenum polymetallic ores by inductively coupled plasma mass spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2024, 60(3): 260-265.
- [3] 陆海川, 袁新, 夏祥, 等. 微敞开体系消解-电感耦合等 离子体质谱法测定地球化学样品中稀土元素[J]. 冶金 分析, 2024, 44(2): 30-39.

Lu H C, Yuan X, Xia X, et al. Determination of rare earth elements in geochemical samples by inductively coupled plasma mass spectrometry after digestion in micro-open system[J]. Metallurgical Analysis., 2024, 44(2): 30–39.

[4] 辜洋建,陈璐,王玉环,等. 高压密闭消解-电感耦合等 离子体质谱法测定地球化学样品中 6 种元素的含量
[J]. 理化检验(化学分册), 2024, 60(7): 731-736.
Gu Y J, Chen L, Wang Y H, et al. Determination of 6 elements in geochemical sample by inductively coupled plasma mass spectrometry with high pressure sealed digestion[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2024, 60(7): 731–736.

[5] 常青.密闭消解-电感耦合等离子体发射光谱法检测钨 钼矿中伴生元素的研究[J].化学工程与装备,2024(6): 128-130.

Chang Q. Research on the detection of trace elements in tungsten-molybdenum ores by closed vessel digestioninductively coupled plasma optical emission spectrometry (ICP-OES)[J]. Chemical Engineering and Equipment, 2024(6): 128–130.

[6] 王蕾, 于汀汀, 孙红宾, 等. 高压密闭酸溶-电感耦合等 离子体发射光谱法测定硼矿石中的硼[J]. 岩矿测试, 2024, 43(3): 468-475.
Wang L, Yu T T, Sun H B, et al. Boron analysis in boron ores by inductively coupled plasma-optical emission spectrometry with sealed acid digestion at high pressure[J]. Rock and Mineral Analysis, 2024, 43(3): 468-475.

[7] 李佳, 胡忠贵, 江梦宇, 等. 微波消解-电感耦合等离子 发射光谱法同时测定碳酸盐岩中 Ca、Mg、Sr、Ba 等 多元素[J]. 中国无机分析化学, 2023, 13(1): 94-99.
Li J, Hu Z G, Jiang M Y, et al. Simultaneous determination of 13 elements such as Ca, Mg, Sr, Ba in carbonate rocks by inductively coupled plasma atomic emission spectrometry with microwave digestion[J].
Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(1): 94-99.

[8] 李旭霞.电感耦合等离子体发射光谱法测定土壤中 7 — 863 — 种金属元素[J]. 化学工程师, 2024, 38(6): 32-34, 63. Li X X. Determination of 7 metal elements in soil by ICP-AES[J]. Chemical Engineer, 2024, 38(6): 32-34, 63.

[9] 余蕾,刘军,张小毅,等.微波消解-电感耦合等离子体 原子发射光谱法测定菱镁矿中 10 种主量元素[J]. 冶金分析, 2023, 43(1): 74-81.

> Yu L, Liu J, Zhang X Y, et al. Determination of 10 major elements in magnesite by microwave digestioninductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2023, 43(1): 74–81.

 [10] 滕广清, 王彬果. 碱熔-电感耦合等离子体原子发射光 谱法测定石灰石中 8 种组分[J]. 冶金分析, 2024, 44(7): 88-94.

> Teng G Q, Wang B G. Determination of 8 components in limestone by inductively coupled plasma atomic emission spectrometry with alkali fusion[J]. Metallurgical Analysis, 2024, 44(7): 88–94.

- [11] 席秀丽, 安婷婷. 电感耦合等离子体发射光谱法测定 高岭土中 8 项组分含量[J]. 分析仪器, 2024(3): 25-30.
 Xi X L, An T T. Determination of 8 components in kaolin by inductively coupled plasma emission spectrometry[J]. Analytical Instrumentation, 2024(3): 25-30.
- [12] 鲁雪飞. 电感耦合等离子体发射光谱法测定钼铬合金 中9种元素[J]. 铁合金, 2024, 55(3): 51-54.
 Lu X F. Determination of 9 elements in molybdenumchromium alloy by inductively coupled plasma emission spectroscopy[J]. Ferro-Alloys, 2024, 55(3): 51-54.
- [13] 邢夏, 徐进力, 刘彬, 等. 电感耦合等离子体发射光谱 法在地质样品分析中的应用进展[J]. 物探与化探, 2016, 40(5): 998-1006.

Xing X, Xu J L, Liu B, et al. Advances in the application of inductively coupled plasma optical emission spectrometry in geological sample analysis[J]. Geophysical & Geochemical Exploration, 2016, 40(5): 998–1006.

[14] 何红蓼, 李冰, 韩丽荣, 等. 封闭压力酸溶-ICP-MS 法分析地质样品中 47 个元素的评价 [J]. 分析试验室, 2002, 21(5): 8-12.

> He H L, Li B, Han L R, et al. Evaluation of the closedvessel pressure acid dissolution-ICP-MS method for the determination of 47 elements in geological samples[J].

Chinese Journal of Analysis Laboratory, 2002, 21(5): 8–12.

- [15] 冯俊, 王银剑, 段文, 等. 电感耦合等离子体质谱 (ICP-MS) 法测定地质样品中镉、铬、钨、钽和铌[J]. 中国 无机分析化学, 2024, 14(5): 586-592.
 Feng J, Wang Y J, Duan W, et al. Determination of cadmium, chromium, tungsten, tantalum and niobium in geological samples by inductively coupled plasma mass spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2024, 14(5): 586-592.
- [16] 王佳翰,李正鹤,杨峰,等.碱熔-电感耦合等离子体原子发射光谱法测定海洋沉积物中铝铁锰钛[J].冶金分析,2021,41(3):68-74.

Wang J H, Li Z H, Yang F, et al. Determination of aluminum, iron, manganese, and titanium in marine sediment by alkali fusion-inductively coupled plasma atomic emission spectrometry [J]. Metallurgical Analysis, 2021, 41(3): 68–74.

- [17] 曹宁宁,张兆鑫,李佳昊,等.碱熔-电感耦合等离子体 发射光谱 (ICP-OES) 法同时测定土壤中 4 种金属元素
 [J]. 中国无机分析化学, 2024, 14(5): 593-599.
 Cao N N, Zhang Z X, Li J H, et al. Simultaneous determination of four metal elements in soil by inductively coupled plasma emission spectrometry (ICP-OES) with alkali melting[J]. Chinese Journal of Inorganic Analytical Chemistry, 2024, 14(5): 593-599.
- [18] 席秀丽, 王生进, 高艳敏, 等. 偏硼酸锂-四硼酸锂熔融-电感耦合等离子体原子发射光谱法测定土壤中 14 种 成分[J]. 冶金分析, 2024, 44(4): 65-72.
 Xi X L, Wang S J, Gao Y M, et al. Determination of 14 components in soil by lithium metaborate-tetraborate fusion-inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2024, 44(4): 65-72.
- [19] 滕广清,张改梅,鲍希波.四硼酸锂-偏硼酸锂熔融-重 铬酸钾滴定法测定铁矿石中全铁[J].冶金分析, 2023(9):76-80.

Teng G Q, Zhang G M, Bao X B. Determination of total iron in iron ore by lithium tetraborate-lithium metaborate fusion and potassium dichromate titration method[J]. Metallurgical Analysis, 2023(9): 76–80.

[20] Chojnacka K, Samoraj M, Tuhy Ł, et al. Using XRF and ICP-OES in biosorption studies[J]. Molecules, 2018,

- 864 -

23(8): 2076.

- [21] Khan S R, Sharma B, Chawla P A, et al. Inductively coupled plasma optical emission spectrometry (ICP-OES): A powerful analytical technique for elemental analysis[J]. Food Analytical Methods, 2022: 1–23.
- [22] Morrison C, Sun H, Yao Y, et al. Methods for the ICP-OES analysis of semiconductor materials[J]. Chemistry of Materials, 2020, 32(5): 1760–1768.
- [23] Shishov A, Savinov S, Volodina N, et al. Deep eutectic solvent-based extraction of metals from oil samples for elemental analysis by ICP-OES[J]. Microchemical Journal, 2022, 179: 107456.
- [24] Al-Juhaimi F, Kulluk D A, Mohamed Ahmed I A, et al. Quantitative determination of macro and micro elements and heavy metals accumulated in wild fruits analyzed by ICP-OES method[J]. Environmental Monitoring and Assessment, 2023, 195(11): 1370.
- [25] 李亚楠. 应用 ICP-OES 法测定矿区土壤中有价稀土元 素含量[J]. 矿产勘查, 2024, 15(7): 1245-1253.
 Li Y N. Application of ICP-OES method to determine the content of valuable rare earth elements in soil of mining areas[J]. Mineral Exploration, 2024, 15(7): 1245-1253.
- [26] 黄超冠,蒙义舒,郭焕花,等. 过氧化钠碱熔-电感耦合等离子体发射光谱法测定钛铝合金中的铬铁钼硅[J]. 岩矿测试, 2018, 37(1): 30-35.
 Huang C G, Meng Y S, Guo H H, et al. Determination of chromium, iron, molybdenum, and silicon in Ti-Al alloy by inductively coupled plasma-optical emission
- Rock and Mineral Analysis, 2018, 37(1): 30–35.

spectrometry with sodium peroxide alkali fusion[J].

[27] 李正鹤,黄金松,王佳翰.工作碱熔-电感耦合等离子体

质谱法测定海洋沉积物中的稀土元素[J]. 化学世界, 2021, 62(11): 660-666.

Li Z H, Huang J S, Wang J H. Determination of rare earth elements in marine sediments by alkaline fusion inductively coupled plasma mass spectrometry[J]. Chemical World, 2021, 62(11): 660–666.

[28] 王佳翰,李正鹤,杨峰,等. 偏硼酸锂碱熔-电感耦合等 离子体质谱法同时测定海洋沉积物中 48 种元素[J]. 岩矿测试, 2021, 40(2): 306-315.
Wang J H, Li Z H, Yang F, et al. Simultaneous determination of 48 elements in marine sediments by ICP-

MS with lithium metaborate fusion[J]. Rock and Mineral Analysis, 2021, 40(2): 306–315.

[29] 聂富强, 杜丽丽, 李景滨, 等. 碱熔-电感耦合等离子体发射光谱法 (ICP-OES) 测定高碳高硅钢中的硅含量
 [J]. 中国无机分析化学, 2015, 5(4): 74-78.

Nie F Q, Du L L, Li J B, et al. Determination of silicon content in high carbon and high silicon steel by inductively coupled plasma optical emission spectrometry with sodium peroxide fusion[J]. Chinese Journal of Inorganic Analytical Chemistry, 2015, 5(4): 74–78.

[30] 杨林, 邹国庆, 周武权, 等. 碱熔-电感耦合等离子体发 射光谱 (ICP-OES) 法测定钨锡矿石中钨锡钼铜铅锌硫 砷[J]. 中国无机分析化学, 2023, 13(11): 1191-1196. Yang L, Zou G Q, Zhou W Q, et al. Determination of W, Sn, Mo, Cu, Pb, Zn, S, and As in tungsten-tin ore by inductively coupled plasma optical emission spectrometry with alkali fusion[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(11): 1191-1196.