第30卷 第4期

2011 年 12 月

Vol. 30 No. 4 Dec. 2011

文章编号:1001-4810(2011)04-0472-07

氯化铵浸取纤蛇纹石动力学研究

高雄,孟烨,朱辰,赵良

(南京大学地球科学与工程学院/表生地球化学研究所,江苏南京 210093)

摘 要:较低的矿物溶解率和反应剂的不可循环利用是 CO2 矿物封存发展的两大 难题。针对这些问题,本文提出了一种新的以可循环的 NH4 Cl 溶液作为中间媒 介的 CO2 矿物封存工艺,并系统地研究了蛇纹石在氯化铵溶液中的液一固两相的 反应动力学。实验研究发现:(1)纤蛇纹石的浸取符合 Elovich 模型,浸取过程基 本在1h左右完成,在 100 ℃、5 mol/L 氯化铵溶液中,纤蛇纹石的浸取率达到 12.67 %;(2)温度对纤蛇纹石初始反应速率的影响显著,温度越高,反应速率越 快;(3)当氯化铵浓度在 1~5 mol/L 范围内变化时,它对镁离子浸取率的影响不 明显,反应速率随着浓度的升高而有所增加;(4)本实验反应表现出来的活化能大 小为 129.56 kJ/mol。

关键词:氯化铵;纤蛇纹石;Elovich 模型;活化能;二氧化碳矿物封存 中图分类号:TQ127.1⁺3 **文献标识码:**A

0 引 言

自工业革命以来,化石燃料的大量使用,导致大 气中的 CO₂浓度升高,并带来了诸如全球变暖等一 系列的环境问题。CO₂地质封存被认为是目前最有 效的 CO₂封存方法之一,正在从实验室阶段向工业 化阶段转变。但是,地质封存存在一定的局限性,首 先是合适场址的选择,并不是所有国家(地区)都能找 到适宜的封存地点;其次地质封存存在泄露的危险, 因此需要长期监测^[1]。此外,CO₂产生的源可能会与 地质封存的地点相距数千公里,需要花费大量资金进 行输送管道的建设,导致 CO₂的封存成本变高。因 此需要因地制宜开发多种 CO2封存方式^[2]。为有效 解决以上问题,本文提出了一种新的以可循环的 NH_4Cl 溶液作为中间媒介的 CO₂ 矿物封存工艺,并 系统地研究了蛇纹石在氯化铵溶液中的液一固两相 的反应动力学,以期为我国 CO₂ 地质封存工作提供 技术支撑。

1 CO2矿物封存及其研究进展及本研究所采 用的工艺方法介绍

1.1 CO2矿物封存及其研究进展

矿物封存是目前最安全并永久封存 CO₂的方法。矿物封存主要采用干法和湿法两种途径。由于 干法反应条件相对苛刻,并且转化率较低,目前大多 数研究都已转向湿法反应方向。湿法封存主要是将 CO₂气体溶于水,在水溶液中与原料矿石反应,形成 碳酸盐矿物。

前人研究表明,矿物的溶解是整个矿物封存的速 率控制步骤^[3-4]。由于 CO₂在溶液中产生的碳酸酸 性较弱,不能够直接使矿物溶解,目前主要的矿物封 存方法是多步湿法封存,即通过添加盐酸、熔盐 MgCl₂·(H₂O)_n、乙酸、氢氧化钠等媒质先将原料矿石 中的钙镁离子溶出,再与 CO₂进行碳酸盐化反应,反 应步骤分两步或多步进行。Park^[5]提出了通过调节 pH 的方法来实现 CO₂的两步湿法封存。首先使用

基金项目:国家自然科学基金项目(批准号:41002014)、国家 863 项目(批准号:2009AA06Z112)以及国家地调局项目(批准号:水[2010]矿评 03-07-08)联合资助

第一作者简介: 高雄(1989-), 男, 硕士研究生, 地球化学专业。 E-mail: gaoxiong01@gmail. com。

通讯作者:赵良(1978一),男,副教授,从事三氧化碳封存相关矿物学、地球化学等方面的教学和科研工作。E-mail: zhaoliang@nju.edu.cn。 收稿日期:2011-10-14

混合的有机酸(1%的磷酸,0.9%的草酸和 0.1% 的 EDTA)溶解矿物,然后在富镁溶液中加入氨水调 节 pH 至 9.5,实现 CO₂的吸收,获得产物三水菱镁 矿,碳酸镁的转化率在 65%左右。Teir等人^[2]在盐 酸和硝酸中溶解矿物,通过加入氢氧化钠调节 pH 至 9来实现 CO₂的吸收。尽管其最终转化率在 80%~ 90%,但是其反应添加剂盐酸和氢氧化钠并不能循 环利用,封存 1 t CO₂需要消耗 2.4 t 的氢氧化钠和 2.1 t 的盐酸(或 3.6 t 的硝酸)。只有使用可循环利 用的添加剂才可使多步湿法碳化的成本降低。

对于使用可循环添加剂来降低湿法碳化成本的 这一工艺,国际上的研究尚处于起步阶段。Kodama 等人^[6]使用(NH₄)₂SO₄浸取钢渣,以获得富钙的溶 液并产生氨气,再将 CO₂通入富钙溶液中生成碳酸 钙将 CO₂封存,从而循环利用(NH₄)₂SO₄。该研究 的钙离子浸取率为 62 %,但并没有涉及温度、压力以 及反应时间等实验参数的影响。此外,他们通过模拟 计算出的碳酸盐转化率为 80 %,因此使用钢渣每年 大约能够封存 60~80 Mt 的 CO₂。Wang & Maroto-Valer^[7]研究了一种新的使用可循环铵盐(NH₄ HSO₄)作为浸取剂的湿法碳化工艺。其研究目前只 进行了矿物溶解部分,镁离子浸取率可达 95 %以上, 尚未涉及碳酸盐化的过程,而且整个循环工艺还存在 一些技术难点((NH₄)₂SO₄的加热分解等)且能耗较 高。

1.2 本研究所采用的多步循环湿法碳化工艺介绍

在目前的碳捕捉与封存(CCS)工艺中,CO₂的捕获和矿物封存被认为是两个相互独立的步骤。在捕

获过程中,首先通过使用化学试剂(NH₃或单乙醇 胺)吸收 CO₂^[8],再通过加热的方法将 CO₂释放出 来,最后将 CO₂压缩进行运送。但是压缩 CO₂需要 很大的能耗,约占整个 CCS 工艺能耗的 25 %^[9]。相 比之下,多步循环湿法碳化工艺将 CO₂的捕获和封 存结合起来,使用 NH₃吸收 CO₂生成 NH₄ HCO₃,直 接用于 CO₂矿物封存,不需要将 CO₂压缩和运输,从 而降低了 CO₂的封存成本。

本研究所采用的多步循环湿法碳化,以氯化铵作 为镁离子的浸取剂,通过调节 pH 的方法来实现 CO₂ 的湿法封存,同时浸取剂还可循环利用。该工艺主要 包括镁离子从矿石原料中浸出、NH₃吸收、CO₂吸收 生成镁碳酸盐矿物三个过程。已有研究表明镁离子 的浸出是控制整个反应过程速率的重要环节,同时, 碳酸盐化反应过程中反应液初始镁离子的浓度对反 应速率有明显的影响。提高全过程的反应速率是降 低工业应用成本的关键。为了实现针对电厂烟气条 件下的 CO2 矿物封存,必须采用人为手段加速镁离 子的释放速率。整个工艺分为四个步骤:(1)使用 NH₄Cl 作为浸取剂,从蛇纹石中浸取镁,并固液分离 获得 MgCl₂溶液;(2) 使用 NH₃从电厂的烟气中捕获 CO₂,获得产物 NH₄HCO₃;(3)通过加入氨水调节富 镁溶液的 pH,使产物 NH4 HCO3 与富镁溶液反应生 成碳酸盐,随着镁离子的碳酸盐化,最终溶液主要为 NH₄Cl;(4)将上述产物固液分离,并调节 NH₄Cl 溶 液浓度用于蛇纹石的溶解,从而实现原料的循环。工 艺具体步骤如图1所示。

图 1 利用可循环 NH4Cl 溶液实现 CO2矿物封存工艺流程图

Fig. 1 Schematic process route of CO2 sequestration by mineral carbonation with recyclable NH4Cl solution

为研究纤蛇纹石在弱酸性条件下(NH4Cl溶液) 溶解速率与各反应参数(浓度、温度、固液比)之间的 关系,和探讨各种反应条件对反应速率常数的影响程 度,以寻求合适的操作参数,从而使得溶解过程的成 本与效率的高度统一,后文将着重于多步循环湿法碳 化中镁离子从矿石原料中浸出,和不同温度、固液比、 以及氯化铵浓度对蛇纹石中镁离子浸取率和反应速 率的影响的讨论,而对于 CO₂吸收以及碳酸盐矿物 的生成等问题,将不予考虑。

2 实验方法

2.1 原料及其组分

自然界中蛇纹石矿物由于结构不同可分为纤蛇 纹石、利蛇纹石、叶蛇纹石。本实验使用的纤蛇纹石 来自于四川省石棉市,利蛇纹石来自于连云港东海。 X射线衍射(XRD)分析表明(图 2),纤蛇纹石纯度约 为 95 %(杂质为 5 %的镁橄榄石);利蛇纹石纯度较 高(>99 %)。具体成分分析如表1所示。

表 1 纤蛇纹石和利蛇纹石的 X 荧光光谱分析(XRF)结果对比 Tab. 1 Comparison of XRF analyses for chrysotile and lizardite

	氧化物百分含量/%							戊十旦	нд
	CaO	Fe ₂ O ₃	K2O	MgO	Na ₂ O	Al ₂ O ₃	SiO2	一	心里
纤蛇纹石	2,06	4.6	0.19	34.42	0.33	1. 37	35, 22	21. 37	99.56
利蛇纹石	1, 25	7.63	0.16	42.08	0.28	2.45	41.33	4.69	99.87

Fig. 2 X-ray diffraction pattern for chrysotile and lizardite

对于野外采得的纤蛇纹石和利蛇纹石进行酸溶 (0.5 mol/L H₂SO₄)实验发现,纤蛇纹石的单位时间 镁离子浸取率远大于利蛇纹石(图 3)。究其原因主 要与蛇纹石中镁氧八面体和硅氧四面体层的排布有 关。纤蛇纹石的纤维状结构主要是由其分子层翻卷 形成的,镁原子与反应物的接触面积更大,有利于反 应的进行。因此实验选取纤蛇纹石作为研究对象。

2.2 实验方法

实验在 2 000 mL 的四口烧瓶中进行,烧瓶浸泡 在油浴中。四口烧瓶的中口作搅拌用,水蒸气饱和的 №2作为载气从左侧开口进入瓶内,从右侧排出。在 右侧接入一只蛇形冷凝管,以防反应液的蒸发使瓶内 液量减少。排出的尾气通入盛有稀硫酸的吸收瓶中 吸收,防止污染空气。在进气口之前接有两个抽滤 瓶,防止倒吸并观察气体流速。实验时,300 mL 溶 液加热至需要的温度,然后加入蛇纹石。为研究反应 速率,记 t₀为加入蛇纹石的时刻,此后每隔一定的时

间进行采样(如 5 min、15 min、30 min、1 h、1.5 h 等),每次采样约 2 mL,采样通过注射器进行,并用 0.22 μm 孔径微孔滤膜过滤。样品中 Mg 离子的浓 度通过 ICP-AES 分析, ICP-AES 分析采用 Thermo Scientific 公司的 iCAP 6000 型等离子发射光谱仪。 XRD 分析采用 Rigaku 公司的 DMX-IIIA 型 X 射线 衍射仪, Cu 靶, 20 扫描范围为 3°~70°, 步长 0.02°。

在设定时间内,溶液中 X(Mg 离子)浸取率的计 算如下:

$$X_{\text{Extraction}} \% = \frac{C_y \times V}{m \times \omega_X} \times 100\%$$
(1)

式中:C,是在 y 时刻溶液中 X 离子的浓度;V 是烧瓶 中溶液的体积(由于每次采样的量较少,所以近似认 为 V 的值为 300 mL);m 是加入的蛇纹石样品的质 量;ωx是蛇纹石固体中元素 X 的质量百分数^[7]。

3 实验结果

3.1 反应温度的影响

在 NH₄Cl 溶液 5 mol/L、固液比值 1/100 g/mL 的条件下,观测了温度为 50 ℃、70 ℃和 100 ℃时蛇 纹石浸出率随时间的变化情况(图 4)。反应初期曲 线形态较陡,到反应后期逐渐放缓。镁离子的浸取率 随反应温度的升高而明显增加,在 100 ℃时浸取率为 12.67 %。

3.2 反应初始浓度的影响

实验在反应温度 100 ℃、固液比值 1/100 g/mL 下进行,NH,Cl 溶液浓度为 1 mol/L、3 mol/L 和 5 mol/L,得出实验结果如图 5。在反应开始阶段,转化 率随时间迅速上升,然后趋于平缓。随着 NH4Cl 溶 液浓度的上升,动力学曲线都有不同程度的上升趋 势。NH4Cl 溶液浓度为 1 和 3 mol/L 时,两条动力 学曲线比较接近,反应初期几乎重合;5 mol/L 的镁 离子浸取率曲线较 3 mol/L 略有上升。以上结果说 明,增加反应液的浓度对提高反应速率的效果不显

time under different temperatures

图 5 不同 NH₄Cl 浓度下的镁离子浸出率随时间的变化曲线 Fig. 5 Curve of the ion Mg extracting rate with reaction time in different NH₄Cl concentrations

3.3 反应体系固液比值的影响

实验在 100 ℃,5 mol/l NH4Cl 的条件下进行, 改变反应的固液比,研究其溶解曲线的变化。数据形 态具有与较高温度下动力学曲线相似的特征,初期反 应速率远大于后期。随着固液比的增加,动力学曲线 不断下移,初始反应速率降低,转化率降低(图 6)。

4 讨 论

4.1 动力学模型的选择

氯化铵溶液溶解纤蛇纹石的过程是包含气体产 生和固体沉淀的多相反应过程。根据多相反应的动 力学原理,溶解过程可视为吸附和化学反应的过程。 固液反应可分为几个单独的步骤:(1)反应物的吸附; (2)吸附的物质和固体的表面反应;(3)产物的解吸 附^[10]。因此,溶解速率受一个或者多个因素的控制。 大多数硅酸盐矿物的表面反应可以描述为^[11]:

$$\equiv \underline{\text{SOMg}}^{+}H^{+} \xleftarrow{k_{1}} \equiv \underline{\text{SOH}}^{-} + Mg^{2+}$$
(2)

式中: \equiv SOMg 是纤蛇纹石表面具有反应活性的 Mg; θ 表示表面和氢离子反应的百分数; k_1 表示吸收 反应的平衡常数。

但由于本实验中涉及到铵根离子的吸收,方程可 改写为:

$$\underbrace{= \operatorname{SOMg}}_{1-\theta} + \operatorname{NH}_{4}^{+} \dots X^{-} \xleftarrow{k_{2}}_{\theta} = \underbrace{\operatorname{SOH}}_{\theta}^{-} + \operatorname{Mg}^{2+} + X^{-} + \operatorname{NH}_{3}(3)$$

式中: X⁻ 表示阴离子; k₂是方程的平衡常数。

前人对铵盐溶液的溶解动力学作了一系列的研究,建立了很多模型:(1)典型的固液反应模型——球 心收缩模型(SCM),该模型很好的应用于菱锌矿在 氯化铵溶液中的溶解^[12];(2)固液界面处反应物和生 成物的化学平衡模型^[13];(3)假均相模型^[14];(4)阿 弗拉密模型,该模型对氯化铵中水镁石的溶解有很好 的适用性^[15]。但上述模型均不能很好的应用于氯化 铵中纤蛇纹石的溶解。

应用于化学吸附作用的经验方程——叶洛维奇 方程能很好地应用于硅酸盐和氢氧化铝的动力学反 应^[16],因此采用此方程尝试进行拟合。

叶洛维奇(Elovich)方程可表示为:

$$d\alpha/dt = \delta \exp(-\beta \alpha) \tag{4}$$

式中:t表示时间;δ表示溶解过程中最初的反应速 率;β表示的是反应速率下降的阻碍系数;α是 Mg 的 浸取率。

使用 Elovich 方程对实验数据进行拟合发现 Mg 离子的浸取率和时间的对数成线性关系(图 7)。β和 δ可以通过直线的斜率和截距获得,从而可以计算出 α的值。

Fig. 7 The Elovichfitting curve of Mg extraction

图 8 表明不同温度下的理论 α 值(直线)和实际 测得的 α(点)值相吻合。将此方法对其他条件的数 据进行拟合,相关性系数也很好,因此叶洛维奇方程 模型可以很好地模拟氯化铵溶解纤蛇纹石的反应过 程。

4.2 反应活化能 E₄的计算

根据模型,将 Elovich 方程应用到氯化铵溶解纤蛇纹石中,从而可以计算出不同温度下的反应速率 δ。而由 Arrhenius 方程^[17]可知:

$$\delta = C \,\theta \exp(-E_a/RT) \tag{5}$$

等式两边同时取对数得:

 $\ln\delta = \ln(C\,\theta) - E_a/RT \tag{6}$

式中:E_a是反应的活化能;C是与比表面积相关的常数;R是标准气体常数;T是绝对温度;θ是有效接触 百分数。

由式(6)可知, $\ln\delta$ 与 T^{-1} 为线性关系。以 $\ln\delta$ 对 T^{-1} 作图, 直线的斜率为 $-E_a/R$, 截距为 $\ln(C\theta)$, 即 可求得 E_a 和 $\ln(C\theta)$, 计算得 $E_a=129.56$ kJ/mol。

活化能可作为判断多相反应控制步骤的重要参数^[18],一般活化能低于 13 kJ/mol 属扩散控制,在 20 ~34 kJ/mol 间属混合控制,高于 40 kJ/mol 为化学反应控制。本反应表观活化能为 129.56 kJ/mol,可以推断氯化铵溶解纤蛇纹石的反应主要受化学反应控制。同时对比前人研究,该实验获得的活化能,较Teir^[2]获得的利蛇纹石 68.1 kJ/mol 的活化能以及Wang & Maroto-Valer^[7]获得的利蛇纹石 40.9 kJ/mol 的活化能均大得多,其原因主要与溶解蛇纹石所使用的溶液不同有关(表 2)。

表 2 不同方法溶解蛇纹石的数据对比

Tab. 2 Comparison of data from different dissolution methods of serpentine

文献	原料	溶液	活化能 Ea/ kJ/mol	
Tier et al. (2007)	75~125 μm 利蛇纹石	$2M H_2 SO_4, T=30 \sim 70 C$	68.1	
Wang & Maroto-Valer(2011)	75~150 μm 利蛇纹石	1. 4M NH ₄ HSO ₄ , $T = 70 \sim 110$ °C	40.9	
本文研究	纤蛇纹石	5M NH4Cl,T=50~100 °C	129. 56	

5 结 论

本文以二氧化碳矿物封存中使用氯化铵作浸取 剂的湿法碳化工艺为研究目标,对蛇纹石与氯化铵溶 液之间液一固两相的反应动力学进行了研究。根据 实验得到的数据,可以得出以下结论:

温度对纤蛇纹石初始反应速率的影响很大,温度 越高,反应速率越快;当氯化铵浓度在1~5 mol/L 时,浓度变化对镁离子浸取率的影响不是很大;浸取 过程基本在1h左右完成;反应表现出来的活化能 $E_a = 129.56$ kJ/mol。

由于氯化铵浸取纤蛇纹石的最高浸取率为12.67 %,若要将湿法碳化工艺应用于工业生产,则还需要 对纤蛇纹石进行一系列改性处理(如灼烧等)来提高 镁离子浸取率。

参考文献

- [1] Teir S, Revitzer H, Eloneva S, et al. Dissolution of natural serpentinite in mineral and organic acids[J]. International Journal of Mineral Processing, 2007,83(1-2); 36-46.
- [2] Teir S, Kuusik R, Fogelhohn C J, et al. Production of magnesium carbonates from serpentinite for long-term storage of CO₂
 [J]. International Journal of Mineral Processing, 2007,85(1-3); 1-15.
- [3] O'Connor W K. Dahlin D C, Rush G E, et al. Carbon dioxide sequestration by direct mineral carbonation: process mineralogy of feed and products [J]. Minerals & Metallurgical Processing, 2002,19(2): 95-101.
- [4] Zhao L, Sang L, Chen J, et al. Aqueous Carbonation of Natural Brucite: Relevance to CO₂ Sequestration [J]. Environmental Science & Technology, 2010,44(1): 406-411.
- [5] Park A H A, Fan L S. CO₂ mineral sequestration: physically activated dissolution of serpentine and pH swing process[J]. Chemical Engineering Science, 2004,59(22-23):5241-5247.

- [6] Kodama S, Nishimoto T, Yamamoto N, et al. Development of a new pH-swing CO₂ mineralization process with a recyclable reaction solution[J]. Energy, 2008,33(5): 776-784.
- [7] Wang X Maroto-Valer M M. Dissolution of serpentine using recyclable ammonium salts for CO₂ mineral carbonation[J]. Fuel Processing Technology, 2010.
- [8] Yang H Q, Xu Z H, Fan M H, et al. Progress in carbon dioxide separation and capture: A review[J]. Journal of Environmental Sciences-China, 2008,20(1): 14-27.
- [9] Mathieu P. The IPCC special report on carbon dioxide capture and storage[J]. ECOS 2006: Proceedings of the 19th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Vols 1 - 3, 2006:1611-1617.
- [10] Sohn H, Wadsworth M. Rate Processes of Extractive Metallurgy[M]. Plenum Press, 1979, New York. 465 pp.
- [11] Davis J A, Kent D B. Surface Complexation Modeling in Aqueous Geochemistry[J]. Reviews in Mineralogy, 1990, 23: 177 -260.
- [12] Ju S H, Tang N T, Yang S H, et al. Dissolution kinetics of smithsonite ore in ammonium chloride solution[J]. Hydrometallurgy, 2005,80(1-2): 67-74.
- [13] Meng X, Han K. The principles and applications of ammonia leaching of metals—a review[J]. Mineral Processing and Extractive Metallurgy Reviews, 1996,16 (1), 23-61.
- [14] Demirkiran N, Kunkul A, Dissolution Kinetics of Ulexite Prepared under Different Calcination Temperatures[J]. Brazilian Journal of Chemical Engineering, 2008,25(4): 751-758.
- [15] 朱辰,高雄,赵良. 基于二氧化碳封存的水镁石反应动力学研 究[J]. 第四纪研究, 2011:31.
- [16] Ding Z Y, Yin Z L, Hu H P, et al. Dissolution kinetics of zinc silicate (hemimorphite) in ammoniacal solution [J]. Hydrometallurgy, 2010,104(2): 201-206.
- [17] 李作骏,多相催化反应动力学基础[M].北京大学出版社, 1990.
- [18] 黄芳,王华,李军旗,等. 高镁磷尾矿中磷和镁在硫酸中的溶解 动力学[N]. 过程工程学报, 2009:1121-1126.

Study on the kinetics of extracting chrysotile with ammonium chloride

GAO Xiong, MENG Ye, ZHU Chen, ZHAO Liang

(Institute of Surficial Geochemistry, School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu 210093, China)

Abstract: Low mineral dissolution rate and the unrecyclable use of additives are two puzzles development of CO_2 sequestration by mineral carbonation. This paper presents a new process of CO_2 sequestration by mineral carbonation, which adopts NH₄Cl solution as leaching agent, and study the reaction kinetics of chrysotile in NH₄Cl solution in a systematic way. The results show that dissolution process is in conformity with the Elovich model and leaching process is usually finished in 1 hour. The leaching rate of magnesium can reach 12.67 % when the concentration of NH₄Cl is 5 mol/L and the reacting temperature is 100 °C. And the leaching rate rise with temperature, meanwhile, neither does the ammonium chloride concentration nor the solid/liquid ratio have much influence on it. The activation energy of dissolution process is determined to be 129.56 kJ/mol in the test.

Key words: ammonium chloride; chrysotile; Elovich model; activation energy; CO₂ sequestration by mineral carbonation

"碳循环与全球变化研讨会"在青岛召开

近日,由中国地质学会岩溶地质专业委员会和中 国地质调查局水文地质环境地质部共同主办、中国地 质科学院岩溶地质研究所和中国地质调查局青岛海 洋地质研究所承办的"碳循环与全球变化研讨会"于 2011年10下旬在青岛召开。全国二十多家科研、院 校、生产单位的100多位专家学者参加了会议。会议 分别以大会报告和中国地质碳汇潜力研讨、IGCP国 家工作组会议两个分会场报告形式进行。岩溶研究 所所长、岩溶地质专业委员会主任姜玉池,岩溶研究 所副所长蒋忠诚,青岛海洋地质研究所党委书记周永 青,中国地质调查局张二勇副处长,中国科学院院士、 岩溶研究所袁道先研究员,俄罗斯工程院外籍院士、 原中国地质大学(北京)副校长沈照理教授等有关领 导和专家出席了大会开幕式。

姜玉池所长在大会上指出我国作为世界能源消 耗和 CO₂排放的第二大国,碳减排任务艰巨,责任重 大。开展二氧化碳碳汇潜力调查评价和研究,对于应 对全球气候变化、履行国家承诺、树立负责任的大国 形象具有重大现实意义。岩溶地质研究要服务于经 济建设和国家目标,进一步把我国岩溶地域优势转化 为学术优势,借助国际岩溶研究中心和 IGCP 平台, 继续引领世界岩溶前沿研究。

袁道先院士在大会上做主题发言。他介绍并分 析了碳循环与全球变化研究的历史及最新动态,强调 全球变化既是科学问题,也是政治问题和发展问题。 袁院士认为,目前全球变化面临三大科学问题:一是 解决全球变化的科学依据;二是应对全球变化;三是 减缓全球变化,即 CO2减排问题。对 CO2地质储存 中涉及的碳汇机理、动态、分布规律、评估等问题,他 要求要进行综合集成研究,提高人类活动对碳汇影响 的认识,探索人为干预下碳汇增加的途径和技术方 法。最后,袁院士还要求碳循环研究在应对国际碳交 易谈判以及 IPCC 的国家需求时,要为国家提供足够 的科技支撑和科学数据并且要经得起国际上专家的 推敲和质疑;要在有关媒体上及时发表成果,占领国 际研究高地,体现和扩大地质碳循环研究在全球变化 研究中的地位和重要性,提升 IPCC 中国专家的话语 权。

在会议交流中,与会专家以碳循环与全球变化、 水文地质与岩溶环境变化、中国地质碳汇潜力研究为 主题各抒己见,通过会议交流和讨论,与会代表开阔 了视野,明确了今后的研究重点与方向,会议取得了 圆满成功。

(岩溶动力学重点实验室 供稿)