第39卷 第5期	中国岩溶	Vol. 39 No. 5
2020年10月	CARSOLOGICA SINICA	Oct. 2020

林永生,杜毓超,邹胜章,等.重庆市金佛山台原岩溶地下水系统结构特征分析[J].中国岩溶,2020,39(5):658-664. DOI:10.11932/karst20200502

重庆市金佛山台原岩溶地下水系统 结构特征分析

林永生1,杜毓超2,邹胜章1,樊连杰1,全洗强1

(1. 中国地质科学院岩溶地质研究所/自然资源部、广西岩溶动力学重点实验室,广西桂林 541004; 2. 山东大学,济南 250061)

摘 要:为了查明金佛山各洞穴之间的地下水力联系,探讨岩溶地下水系统结构特征,于2016年12 月进行了多元示踪试验。将罗丹明B作为示踪剂,从药池坝附近消水洞(S01)投入,验证消水洞与北 坡水源(水房泉)(S02)之间存在水力联系。结果显示,示踪剂历时曲线为多峰型,推测地下过水通道 可能由单管道型演变为多管道型通道;将荧光素钠投入金佛洞地下水流动处(S05)和将罗丹明B、荧 光增白剂投入羊口洞地下水流动处(S03),利用高分辨率荧光光度计,于燕子洞(S04)在线监测。结 果显示,金佛洞、羊口洞分别与燕子洞之间存在水力联系,且示踪剂历时曲线均为跳跃型,推测地下 过水通道可能为发育有一定规模溶潭的多管道型。

文章编号:1001-4810(2020)05-0658-07 开放科学(资源服务)标识码(OSID):

0 引 言

示踪试验常被用来作为划分地下水流域边界、 寻找地下水补给源或污染源、查找水库与尾矿渗漏 途径、计算地下水的流速与流向等的重要方法,也是 岩溶区获取岩溶管道连通性及特征和相关水文地质 参数的重要途径^[1-6]。随着示踪技术的发展,应用在 线高分辨示踪技术,根据示踪剂历时曲线的形态特 征,分析岩溶地下水系统的空间形态,已经逐渐应用 于岩溶水文地质研究中,成为国际岩溶水文地质研 究的重要方向和趋势^[7-8]。在我国,在线高分辨率示 踪技术自国外引进以来,以其精度高,操作便捷和成 本低等优点,在地下水污染调查、岩溶水文地质调 查,获取岩溶含水介质的管道特征和水文地质参数 估算等方面得到了广泛应用^[9-14]。

重庆南川区的金佛山是典型岩溶台原地貌,为

中等切割的中山地形,由于岩石抗风化剥蚀能力的 不同,在二叠系与志留系接触带产生差异风化现象, 使得下二叠系碳酸盐岩呈孤岛状耸立于志留系砂页 岩之上。山顶标高多在海拔2100m以上,呈舒缓波 状,四周为悬崖峭壁,高出邻区300~500m;台原面 地形较为平坦,由缓丘洼地或谷地构成,缓丘相对高 度多在百米以下、一般为30~60m,洼地或谷地底部 常常有落水洞发育,第四系黏土广泛分布,堆积厚度 一般5~10m。随着新构造运动不断抬升,河流溯源 侵蚀逐渐加剧,四周溪谷不断向山体内部深入,形成 放射状水系;灰岩岛状山体也因其周围陡崖的不断 平行后退而逐渐变小,地下水流场发生了巨大变化, 岩溶地下空间结构复杂,地下水系统边界不清。

本文利用在线高分辨率示踪试验技术,并结合 水文地质条件分析的方法,依据2016年12月10日所

资助项目:中国地质调查项目(DD20160302、DD20179292、DD20190825)

第一作者简介:林永生(1985-),助理研究员,主要研究方向:岩溶水文地质、环境地质。E-mail:linyongsheng@karst.ac.cn。

通信作者:杜毓超(1974-),男,高级工程师,主要从事岩溶水文工程地质研究。E-mail;ycdu@sdu.edu.cn。

收稿日期:2020-02-28

做的示踪试验,分析金佛山各洞穴之间的地下水力 联系,探讨台原岩溶地下水系统结构特征,以期为金 佛山世界自然遗产地保护与旅游业的发展提供科学 依据。

1 研究区地质背景

金佛山位于四川盆地南缘川黔交接地带,重庆 东南边缘的南川区境内南部,属大娄山东段的一部 分,由金佛、箐坝、柏枝三山等108峰组成,属典型的 岩溶地貌^[15]。地理坐标28°50′~29°20′N,107°00′~ 107°20′E,处于亚热带季风气候区,气候温和,雨量充 沛,云雾多,日照少,湿度大,现为国家级森林公园、国 家级自然保护区、国家科普教育基地、世界自然遗产。

金佛山在地质构造上处在一宽缓向斜的轴部, 整体呈NE-SW走向,以二叠系为核部,寒武系、奥陶 系和志留系为两翼,向斜轴向控制着金佛山岩溶作 用的主要空间展布方向。从第四纪早期开始,金佛 山的岩溶作用就沿着这个向斜轴部的方向进行,在 金佛山风吹岭下发育了古佛一仙女洞穴系统、金佛一 羊子洞穴系统和羊口一灵观、燕子洞穴系统等三个 庞大复杂的地下洞穴系统^[16-17],这些洞穴系统的主通 道的空间展布方向也是NE-SW向。金佛山地区还 发育着 NNW 和 NNE 向两组大型共轭剪节理以及 NW、EW 或近 EW 向的横张大节理断裂构造^[18],其中 NNW 向的剪节理构造和 EW 向或近 EW 的横张大节 理一起控制着金佛山向斜两翼岩溶的空间分布。

金佛山地区出露的地层主要为寒武系、奥陶系、 志留系和二叠系,岩性主要为碳酸盐岩和砂页岩。 金佛山核心区地层为二叠系(图1),分上下两段。上 段龙潭组主要为一套砂页岩夹煤层的碎屑岩系;下 段为下二叠统茅口组、栖霞组碳酸盐岩,岩性为浅灰 色至深灰色中、厚层块状灰岩及生物碎屑灰岩。金 佛山的主要洞穴系统如古佛洞、金佛洞的主通道就 发育在这一质地纯、厚度大的碳酸盐岩岩层中,其发 育下限受下伏志留系砂页岩所控制。

图 1 研究区水文地质略图 Fig. 1 Hydrogeological sketch of the study area

2 示踪试验的目的与方法

2.1 示踪试验的目的

金佛山处于区域分水岭地带,洞穴发育,地下水 系统结构复杂,且边界不清。示踪试验的目的就是 查清金佛山地下水去向及各洞穴之间的水力联系, 探讨岩溶地下水系统结构特征。具体目标为:①分 别查清药池坝消水洞、羊口洞、金佛洞地下水去向; ②明确金佛山各洞穴之间的地下水力联系;③分析 各岩溶地下水系统结构特征。

2.2 示踪试验方法

2.2.1 示踪剂的选择

示踪剂的选择遵循无毒、对当地的生态环境无 影响、自然本底值低、受围岩干扰小、化学性能稳定、 易检测、灵敏度高及成本相对低等为原则^[1],并根据 区域水文地质调查情况,结合以往的示踪试验经 验^[19-21],并考虑当地的饮用水安全及经济、技术条件 等因素,本次示踪试验采用罗丹明B、荧光增白剂、荧 光素钠做示踪剂。

2.2.2 试验仪器的选择

本次试验监测仪器使用瑞士 Albilia公司生产的 GGUN-FL30型野外自动化荧光光度计,此型号野外 荧光光度计灵敏度极高,对罗丹明B、荧光增白剂、荧 光素钠的检测下限为0.02 µg·L⁻¹。本次试验在线时 间间隔设置为15 min。

2.2.3 示踪剂投放与接收

本研究选用示踪剂极易溶于水,在地下水中的 背景值极低;无毒、无味,不会破坏水生态系统;不易 被土壤和围岩吸附,不易沉淀,不与环境物质发生物 理化学反应,不易被生物降解,不挥发;灵敏度高,易 被仪器检测到,且成本相对较低。示踪剂的投放点 选择在容易操作、有明显较大径流的地方。

根据水文地质调查及相关资料,药池坝消水洞 是北坡水源(水房泉)地下管道最明显的天然入口, 周围的汇水和金佛山某酒店排放的污水主要就是 从此消水洞进入含水层,因此消水洞(S01、高程 2086 m)是理想的示踪剂投放点,选择S01作为投放 点,有利于示踪剂的溶解与运移。示踪剂接收点选 择地下管道主要出口北坡水源(水房泉)(S02、高程 2000 m),投放点与接收点间距离约500 m。2016年 11月27日上午10点30分,将罗丹明B(1.5 kg)倒入 桶中,加水并充分搅拌均匀溶解后,缓慢注入消水洞 的沟水中,最后再用清水把塑料桶冲洗干净,冲洗塑 料桶的水也要注入消水洞中,以尽量保证示踪剂全 部进入地下水中。

根据水文地质条件,羊口洞为燕子洞与灵官洞 在北端的连接段,古佛洞及周边地下水主要经过此 处流向下游,因此地下水流动段(S03、高程2100m) 是理想的示踪剂投放点,选择此地作为投放点,有利 于示踪剂的溶解与运移。据资料^[16],燕子洞洞底高 程自北东向南西降低,与地下水流向一致。故示踪 剂接收点选择在南西方向的燕子洞泉(S04、高程 2070m),两点间距离约600m。2016年12月10日上 午9点36分,分别将罗丹明B(1kg)、荧光增白剂 (2kg)分别在桶中完全溶于水后,缓慢注入羊口洞地 下水流动处。最后再用清水把塑料桶冲洗干净,冲 洗塑料桶的水也要注入消水洞中,以尽量保证示踪 剂全部进入地下水中。

金佛洞发育于二叠系灰岩地层中,受NE、NW 向两组节理控制,由廊道状主洞、迷宫状支洞及圆 筒状天井组成,地下水系统结构复杂,地下水去向 不清。根据水文地质条件,地下水流动段(S05、高 程2080 m)是理想的示踪剂投放点,选择其作为投放 点,有利于示踪剂的溶解与运移。另外,金佛洞洞底 高程往东南方向降低,与古地下水总体流向是一 致^[16]。因此示踪剂接收点选择在投放点东南方向, 可能与投放点有水力联系的地下水排泄点;又因地 形条件复杂,采样无法到达地下水排泄点,故采样点 选择在下游地表径流段的黑风洞(S06)及三叠瀑布 (S07)处,投放点至两采样点间距分别约为1360m和 1200 m。2016年11月27日下午1点20分,将荧光素 钠(1kg)在桶中完全溶于水后,缓慢注入金佛洞地下 水流动处。最后再用清水把塑料桶冲洗干净,冲洗 塑料桶的水也要注入消水洞中,以尽量保证示踪剂 全部进入地下水中。

2.2.4 试验监测

本试验区,地下水系统结构复杂,水文地质条件 不清,为排除监测点选择失败的可能性,故本次试验 采用高分辨仪器在线监测和人工采样两种方式 进行。

药池坝消水洞至北坡水源(水房泉)段,由于前 人已做过类似试验,故本次以验证为目的进行试验。 在北坡水源(水房泉)布置接收点,通过人工采样,每 隔12h取一次样,并及时运至现场实验室,采用 GGUN-FL30型高分辨率荧光光度计进行分析检测, 试验共历时约500 h。

羊口洞、金佛洞至燕子洞泉段,采用在线高分辨 示踪技术。在示踪剂投放之前,将示踪仪安装于燕 子洞泉的出口,安装时间为2016年11月27日13:20, 监测时间间隔设置为15 min。监测期间每天定时检 查仪器运行状况,并获取监测数据,查看试验的进 度,确保仪器正常工作并确定试验结束的大概时间。 示踪试验的结束时间为2016年12月15日10:00。试 验共历时约450 h。

由于水文地质条件复杂,初步判定金佛洞地下 水可能流向黑风洞(S06)或三叠瀑布(S07),故在黑 风洞和三叠瀑布布置接收点,采用人工采样,每隔 12h取一次样,并及时运至现场实验室,采用GGUN-FL30型高分辨率荧光光度计进行分析检测,试验共 历时约500h,未接收到示踪剂,而在燕子洞泉的监测 仪器却监测到数据。

为确保试验达到预测效果,减少样品浑浊度的 干扰及人为因素影响,每批样品须放于暗处并静置 澄清或干过滤后,再进行分析检测,对有异常的样品 进行了重复检测,确保分析数据的准确、可靠^[22]。

3 结果与分析

3.1 示踪剂历时曲线分析

3.1.1 北坡水源(水房泉)系统

据文献资料^[23],曾在2006年9月8日9点27分, 投放荧光素钠,此次试验荧光素钠初现时间为8.8h, 16h达到峰值,且达到峰值后荧光素钠浓度呈现出较 快的下降趋势,取样检测直至样品浓度恢复到背景 值,从中可以看出荧光素钠的历时曲线为明显的单峰 型,并且对称性较好,没有明显的拖尾现象(图2)。

Fig. 2 Duration curves of injected uranine and Rhodamine B(cited from reference[23])

本次示踪试验,2016年11月27日上午10点30 分,投放罗丹明B,2016年11月29日下午3点26分在 北坡水源(水房泉)取样,示踪剂浓度已经达到峰值, 之后开始逐渐降低,并出现小幅波动(图2)。

对比这两次试验,罗丹明B的历时曲线与荧光素 钠的历时曲线极其相似,本次试验已经错过了最高 峰值,罗丹明B的历时曲线峰值仅为开始下降后的某 一数值,之后又出现第二次峰值。本次试验历时 21d,峰值出现较快为16 h^[23],由此说明,药池坝消水 洞至北坡水源(水房泉)有极好的水力联系,地下水 流畅通,且随着时间的推移,地下岩溶管道已发育有 一定规模积水溶潭。

3.1.2 燕子洞泉系统

(1) 羊口洞一燕子洞段。2016年12月10日9点

36分在羊口洞内地下水流动处投放罗丹明B和荧光 增白剂。2016年12月14日上午4点15分在燕子洞 泉接收点(安装仪器地方)接收到罗丹明B,2016年12 月14日上午7点30分在燕子洞泉接收点(安装仪器 地方)接收到荧光增白剂。2016年12月14日当天断 断续续接收到多次罗丹明B和荧光增白剂(图3)。

此次试验罗丹明B初现时间为90h,96h达到峰 值,总体呈现跳跃式孤峰。而荧光增白剂初现时间 为93h,99h达到峰值,总体出现两个跳跃式孤峰段, 历时曲线为明显的多峰型,没有明显的拖尾现象。 该系统可能存在多个支管道,且各管道的长度相差 较大。另外,试验期为冬季,间断式融雪补给地下 水,致使地下水流量发生间断式变化,从而出现跳跃 式孤峰。

Fig. 3 Duration curves of injected fluorescence indicator and rhodamine B at Yanzi cave spring

由此也说明,羊口洞处地下水与燕子洞泉有水 力联系。也证实了燕子洞沿两侧洞壁底部仍有小型 现代地下河发育^[16]的结论。

(2)金佛洞一燕子洞段。2016年11月27日13 点20分在金佛洞内地下水流动处投放荧光素钠。
2016年12月10日上午11点30分在燕子洞泉接收点
(安装仪器地方)接收到荧光素钠,2016年12月14日
到2016年12月15日多次接收到荧光素钠(图4)。

此次荧光素钠初现时间为426h,430h达到峰 值,之后又出现多个小峰,总体呈现跳跃式孤峰。该 系统段与羊口洞一燕子洞段极其相似,也有可能存 在多个支管道,且各管道的长度相差较大。同样,试 验期为冬季,间断式融雪补给地下水,致使地下水流 量发生间断式变化,从而出现跳跃式孤峰。

表明金佛洞至燕子洞泉有水力联系;金佛洞系 统现代地下水系统与古水流方向相反或出现季节性 地下分水岭。即枯水期金佛洞系统内地下水流向北 西方的燕子洞泉,而丰水期则有一部分流向东南方 三叠瀑布一带。同时,说明燕子洞泉系统主要由羊 口洞—燕子洞段和金佛洞—燕子洞段组成。

3.2 地下水系统结构特征分析

示踪剂历时曲线的主要影响因素是含水介质的 结构特征^[9,24]。单峰型和双峰型的示踪剂历时曲线 反映了地下河含水介质极不均匀,过水通道较为 单一^[11,13]。

3.2.1 北坡水源(水房泉)系统

2006年9月的试验所得的荧光素钠历时曲线表 明其为很典型的单峰型^[23],峰的对称性较好,总体上 呈对数正态分布的形状,没有特别明显的拖尾现象, 且峰波持续时间不长,这说明当时地下过水通道较 为单一,没有明显的支管道和溶潭发育或发育规模 很小。单峰型示踪剂历时曲线反映了含水介质极不 均匀,过水通道比较单一。

从图2可以看出,本次试验最高峰值后又出现了 小的峰值,该小峰值表明地下发育支流通道,支流通 道中含有罗丹明B的水体和主管道水体发生混合后 从泉口排泄出来。小峰的下降翼走势平缓而历时时 间长,并且尾部浓度值很快接近于示踪剂罗丹明B的 背景值,极有可能是小峰对应的支流通道中发育了 较大的溶潭,罗丹明B溶液经过溶潭时发生了弥散, 罗丹明B浓度被稀释,故运动时间增长,导致小峰下 降曲线被拖的很长。

3.2.2 燕子洞泉系统

产生多个峰值的原因主要是各条支管道的弯曲 情况、宽窄、大小和长短不同,示踪剂在各管道中运 移的时间不同,到达出口的时间不一致。

从图3、图4可以看出,浓度曲线为间歇性脉冲形 式,前段出现几个孤立的高峰,峰值之间相距很远, 说明系统存在多个支管道,且各管道的长度相差较 大,示踪剂在各管道中流至泉口之前无法混合叠加,

图4 燕子洞泉荧光素钠历时曲线

Fig. 4 Duration curves of the injected uranine at Yanzi cave spring

故成为单个孤立的高峰^[24-25]。而后段出现的几个孤 立的高峰,峰值之间相距很近,说明有部分支管道长 度相差不大,支流水量较小,浓度较高,且在接近泉 口附近与主管道汇合,各支管道示踪剂到达出口的 时间相差不大,但尚未混合迭加便到达泉口。

从浓度曲线看,羊口洞一燕子洞段地下水发育 继承了古地下河发育模式,形成了相对复杂的现代 地下河,地下河道横断面呈狭窄"S"状^[16],且主管道 流上发育较大的积水溶潭,因受溶潭的稀释作用造 成示踪剂浓度变小,先为一钝峰;而支流水量较小, 浓度较高,在接收点附近虽然主支流汇合,但浓度为 两者的平均值,即为滞后的高峰^[26]。同样,金佛洞一 燕子洞段浓度曲线与羊口洞一燕子洞段的极其相 似,推测金佛洞一燕子洞段与羊口洞一燕子洞段汇 合后才经过同样的积水溶潭。

4 结 论

(1)2016年12月示踪试验结果表明示踪剂的接 收点北坡水源(水房泉)是地下水系统的主要出口;

(2)水房泉岩溶地下含水介质发生了变化。 2006年9月示踪试验所得到的历时曲线为典型的单 峰型,曲线形态较为对称,而2016年12月示踪试验 所得到的历时曲线出现第二次峰值且曲线拖尾现象 明显,历时时间长,表明落水洞至水房泉之间地下水 过水通道极有可能从单一的管道型演变成多管道型 通道,且地下岩溶管道已发育有一定规模积水溶潭; (3)金佛山各洞穴之间地下水存在水力联系。 2016年12月示踪试验结果表明羊口洞一燕子洞、金 佛洞一燕子洞之间地下水水力联系密切,且羊口洞 一燕子洞段地下水流向与古地下流向相同,而金佛 洞一燕子洞段地下水流向与古地下流向相反或存在 季节性分水岭;

(4)2016年12月示踪试验结果表明羊口洞一燕 子洞段和金佛洞一燕子洞段,分别是燕子洞泉系统 的两个主要分支,且每个分支都有较复杂的岩溶管 道网络系统。其中,羊口洞一燕子洞段地下水发育 继承了古地下河发育模式,形成了相对复杂的岩溶 管道;而随着新构造运动不断抬升,金佛洞一燕子洞 段地下水则形成逆流之势,最后被燕子洞泉袭夺,形 成岩溶管道发育相对单一、地下水水力坡度(5.3‰) 较小的现代岩溶水系统。

参考文献

- [1] 李敬兰,李益民.广西龙布排泥库地下水多远示踪试验研究[J].安全与环境工程,2004,11(1):59-62.
- [2] 米德才,张新兴.浩坤水电站水库岩溶渗漏研究[J].地球与环境,2005,33(Z1):242-246.
- [3] 邹国富,范柱国,朱春蓉,等.云南普朗铜矿尾矿库喀斯特渗 漏示踪试验研究[J].成都理工大学学报(自然科学版),2009, 36(3):292-297.
- [4] Gold S N, Meiman J, Pronk M.el al. Tracer tests in karst hydrogeology and speology [J]. International Journal of Speleology, 2008, 37(1):27-40.
- [5] Pronk M, Goldscheider N, Zopfi J. Dynamics and interaction

of organic carbon, turbidity and bacteria in a karst aquifer system[J], Hydrogeol Journal, 2006, 14(4):473-484.

- [6] 于正良,杨平恒,谷海华,等.基于在线高分辨率示踪技术的 岩溶泉污染来源及含水介质特征分析:以重庆黔江区鱼泉坎 泉为例[J].中国岩溶,2014,33(4):498-503.
- [7] 张人权,梁杏,靳孟贵,等.当代水文地质学发展趋势与对策[J].水文地质工程地质,2005,32(1):51-55.
- [8] Craig E D. introduction to theme issue on tracers in hydrogeology[J]. Hydrogeology Journal, 2005, 13(1): 255-258.
- [9] 鲁程鹏,束龙仓,苑利波,等.基于示踪实验求解岩溶含水层 水文地质参数[J].吉林大学学报(地球科学版),2009,39(4): 717-721.
- [10] 何师意, Michele L, 章程, 等. 高精度地下水示踪及其应用: 以 毛村地下河为例[J]. 地球学报, 2009, 30(5): 673-678.
- [11] 杨平恒,罗鉴银,彭稳,等.在线技术在岩溶地下水示踪试验中的应用:以青木关地下河系统岩口落水洞至姜家泉段为例 [J].中国岩溶,2008,27(3):215-220.
- [12] 杨平恒,袁道先,蓝家程,等.基于在线高分辨率监测和定量 计算的岩溶地下水示踪试验[J].西南大学学报(自然科学版),2013,35(2):103-108.
- [13] 陈雪彬,周军,蓝家程,等.基于在线示踪技术的岩溶地下河 流场反演与水文地质参数估算[J],中国岩溶,2013,32(2): 148-152.
- [14] 徐尚全,王鹏,焦杰松,等.高精度在线示踪技术在岩溶地下 水文调查中的应用[J].工程勘察.2013(2):40-44.
- [15] 王必浓,王瑛.国家重点风景名胜区-金佛山[M].成都:四川

科学技术出版社,1990.

- [16] 张任,朱学稳,韩道山,等.重庆市南川金佛山岩溶洞穴发育 特征初析[J],中国岩溶,1998,17(3):196-211.
- [17] 吴孔运,孙海龙,汪进良,等.重庆金佛山岩溶作用驱动因素 初探[J],中国岩溶,2004,23(3):247-252.
- [18] 扬武年,乐光禹,杜思清,等.金佛山菱形构造格局区域变形
 场和应力场遥感图像解析[J].成都理工学院学报,1994,21
 (1):99-106.
- [19] 裴建国,谢运球,章程.湘中溶蚀丘陵区示踪试验:以湖南新 化为例[J].中国岩溶, 2000, 19(4): 366-371.
- [20] 黄保健,张之淦,陈伟海,等.高山峡谷岩溶水示踪试验:以川 西锦屏地区为例[J].中国岩溶,1995,14(4):362-371.
- [21] 邓振平,周小红,何师意,等.西南岩溶石山地区岩溶地下水 示踪试验与分析:以湖南湘西大龙洞为例[J].中国岩溶, 2007,26(2):163-168.
- [22] 陈学民,周云.示踪试验中的浓度测定[J].甘肃环境研究与 监测,1995,8(1):5-7.
- [23] 吴月霞,蒋勇军,袁道先,等.岩溶泉域降雨径流水文过程的 模拟:以重庆金佛山水房泉为例[J].水文地质工程地质, 2007,36(2):41-48.
- [24] 杨立铮,刘俊业.试用示踪剂浓度曲线分析岩溶管道的结构 特征[J].成都地质学院学报.1979,16(4):211-219.
- [25] 张祯武.岩溶地下水管流场类型与示踪曲线对应关系及在生产中的应用[J].中国岩溶,1990,9(3):211-219.
- [26] 梅正星.我国喀斯特地下水示踪概况[J].中国岩溶,1988,7 (4):371-377.

Structural characteristics of karst groundwater system beneath Jinfoshan, Nanchuan district, Chongqing City

LIN Yongsheng¹, DU Yuchao², ZOU Shengzhang¹, FAN Lianjie¹, QUAN Xiqiang¹

(1. Institute of Karst Geology, CAGS/Key Laboratory of Karst Dynamics ,MNR&GZAR, Guilin, Guangxi 541004, China; 2. Shandong

University, Ji'nan, Shandong 250061, China)

Abstract The purpose of this work was to clarify hydraulic linkage between every cave and structural characteristics of the karst groundwater system beneath Jinfoshan, Nanchuan district, Chongqing City. Multiple-element tracer tests were conducted in December 2016, in which the Rhodamine B was used as the tracer, and was injected into the Yaochiba sinkhole. A high-resolution online tracer technique was employed to determine the hydraulic connection between the drainage system of Yaochiba sinkhole and Shuifang spring. The duration curves of the tracer show a multi-peak shape, implying existence of a possible single-channel-type karst lake of a certain scale. Then tracers uranine and Rhodamine B were placed at groundwater flows of the Jinfo cave and Yangkou cave, respectively. Using a high-resolution fluorophotometer, online monitoring was conducted at the Yanzi cave. Results indicate that there is s hydroaulic relations between Jinfo cave ,Yanzi cave, and Yanzi cave, respectively, and the duration curves of the tracers all exhibit a jump shap. It is speculated that the underground water passage may be a multiple-channel-type with a certain scale of karst pools.

Key words tracer test, system structure , karst, groundwater , analysis of characteristic , Jinfoshan in Chongqing

(编辑 张玲)