第43卷 第5期	中国岩溶	Vol. 43 No. 5
2024年10月	CARSOLOGICA SINICA	Oct. 2024

邢雨欣,袁红,吉香潼,等.湖南典型岩溶土壤 CEC、机械组成与矿物类型的响应[J].中国岩溶,2024,43(5):1076-1087. DOI:10.11932/karst2024y037

湖南典型岩溶土壤 CEC、机械组成与矿物类型的响应

那雨欣¹,袁 红^{1,2},吉香潼¹,段承龙¹,蒋 军¹,刘单鹏¹,刘 鹏¹ (1.湖南农业大学资源学院,湖南长沙 410128; 2.中国地质科学院岩溶地质研究所/自然资源部、 广西岩溶动力学重点实验室,广西桂林 541004)

摘 要:为探究岩溶土壤 CEC 含量、机械组成与土壤矿物类型的关系,在湖南省典型岩溶区通过野 外调查、挖掘、采集与描述石灰岩风化物母质发育的 32 个土壤剖面,室内分析 146 个样品的土壤理 化性状,为岩溶土壤发育类型鉴定及改土培肥、生态修复奠定基础。结果表明:(1)湖南典型岩溶土 壤 CEC 含量介于 6.99~36.03 cmol·kg⁻¹,土壤保肥能力中等偏强;土壤机械组成以粉粒、黏粒为主,质地 黏重,通透性较差。(2)研究区岩溶土壤的主要矿物类型为:硅质混合型、伊利石混合型、高岭石型、 高岭石混合型、混合型。五种矿物类型土壤均为酸性土壤,不同矿物类型土壤的 pH、容重差异较小, 但有机质含量差异较大;混合型土壤砂粒含量最高,硅质混合型土壤粉粒含量最高,高岭石土壤黏粒 含量最高; CEC 与 ECEC 含量在伊利石混合型土壤中最多,在混合型土壤中含量最少。(3)土壤 CEC 与粉粒含量呈极显著负相关关系,与黏粒含量呈极显著正相关关系 (P <0.01),土壤粉粒含量的降低 或黏粒含量的增加均可显著提高阳离子交换量值。土壤 ECEC 与粉粒、黏粒均无显著相关性,但其 与土壤 pH、有机质含量以及交换性 Ca²⁺、交换性 Mg²⁺均呈极显著正相关(P <0.01)。土壤 CEC 与矿物 类型无相关性,而 ECEC 与矿物类型呈极显著负相关 (P <0.01)。典型岩溶区不同发育程度的土壤可 以通过调节土壤黏粒与粉粒含量的比例来改善土壤质地,增加土壤肥力。

关键词:阳离子交换量;土壤颗粒组成;石灰岩母质

创新点:以往的土壤阳离子交换量只做保肥指标,土壤阳离子交换量与机械组成以往只在土壤肥力 与养分方面做研究,本文将其与矿物类型研究结合,更好的定义土壤形成与演化。

中图分类号: P642.25; S153 文献标识码: A 文章编号: 1001-4810 (2024) 05-1076-12

开放科学(资源服务)标识码(OSID):

0 引 言

土壤的阳离子交换性能主要包括交换性阳离子 组成、交换性酸、阳离子交换量、有效阳离子交换量、 交换性盐基总量和盐基饱和度等指标。土壤阳离子 交换量(Cation Exchange Capacity, CEC)是指带负电 荷的土壤胶体通过静电引力所交换出来的各种阳离 子的总量,以每千克土壤的厘摩尔数(cmol·kg⁻¹)表示^[1]。土壤有效阳离子交换量(Effective Cation Exchange Capacity, ECEC)最能反映实际的负电荷情况,代表实际的阳离子交换量。土壤CEC是土壤物理、化学性质的综合体现,是反映土壤保肥能力以及缓冲能力的重要指标之一。因此土壤CEC通常被作为提高土壤质量、改善土壤肥力条件的重要依据^[2]。

收稿日期: 2024-05-27

基金项目:自然资源部、广西岩溶动力学重点实验室开放基金(KDL&Guangxi 202010);科技部国家重点研发计划(2022YFD1700103-306);湖南省 教育厅重点项目(23A0185)

第一作者简介:邢雨欣(2001-),女,硕士研究生,研究方向为土壤形成过程与肥力质量演变。E-mail: 13130166741@163.com。

通信作者:袁红(1982-),女,副教授,研究方向为土壤质量演变。E-mail: brandyuan@163.com。

近年来,针对土壤阳离子交换量与其他理化性 质间关系的研究备受关注。土壤阳离子交换量对土 壤的影响可以通过分析土壤有机质含量、土壤酸碱 度、阳离子交换量以及机械组成来判断^[3]。岩溶区土 壤养分受气候、母岩、地貌、地形、植被类型、人类 活动等多种因子的影响,具有较高的空间变异性^[4]。 刘贺永等^[5]研究表明,温带森林土壤阳离子交换量 高和盐基饱和度水平都比较高,pH比较稳定,几乎 不会出现土壤酸化的情况,因为盐基离子对酸性物 质具有缓冲作用。对于土壤有机质而言,其负电荷 含量的增加,能够提高盐基离子含量,进而促进与阳 离子的交换,并形成 ECEC,这对有效养分和土壤肥 力的增加起着重要作用,从而促进植被的生长发育^[6-7], 并且植被的生长又会改善岩溶区土壤养分^[8],显著提 高其土壤肥力条件。

土壤是由形状大小不同的固体颗粒构成有疏松 多孔介质的复杂自然体¹⁹,土壤颗粒组成、分布、粒 径大小、组合比例和排列状况直接影响植物生长[10]。 粒径分布是土壤重要的物理性质之一,它与土壤结 构^[11]、土壤养分含量^[12-13]以及土壤生产与退化有密 切联系,能够反映土壤的发育状况^[14-15]。黄尚书等^[16] 对江西土壤理化性质的研究发现土壤黏粒对土壤 CEC 的贡献较大, 土壤 pH 与土壤 CEC 含量呈显著 负相关。于耀泓等^[17]对鹅凰嶂山地雨林土壤研究发 现土壤 CEC 与土壤有机碳含量呈极显著正相关。 陈萍等[18] 对土壤黏粒进行研究, 黏粒比表面相对较 大,能有效吸附金属离子,土壤经长期风化释放盐基 离子后,土壤中黏粒与盐基离子含量增加,ECEC含 量也会增加。F. Caravaca 等^[19] 研究人员发现土壤 CEC 与其矿物组成有关,耕作土壤中 CEC 含量随黏 土矿物粒度的增加而减少。此外,张水清等^[20]根据 不同类型土壤有机质含量、土壤 pH 值、机械组成与 土壤 CEC 的相关性,建立了预测土壤 CEC 的六种线 性模型,说明不同类型的土壤理化性质间的相关性 趋势不一定相同。

土壤矿物是土壤的重要组成部分,早在 20 世纪 中期就有研究者开始对土壤中矿物的组成、性质以 及化学反应等进行研究,尤其是黏土矿物的含量及 相互间的反应,土壤中黏粒与有机质之间的相互作 用,以及矿物类型的鉴定等研究^[21]。有新闻报道对 美国西部 2 000 个土壤样品的分析,得出土壤含水量、 CEC 与土壤黏粒含量、矿物类型和黏土矿物的 X 射 线衍射峰强之间具有显著相关性。土壤颗粒组成包含了黏土矿物的演化信息,对了解土壤黏土矿物组成以及土壤形成与演化具有重要意义^[22]。一般来说,黏土矿物的类型与形成区的气候条件紧密相关,如在高温高湿条件下,土壤黏土矿物则以高岭石为主^[23]。除此之外,土壤颗粒粒径也影响了黏土矿物的组成和分配。已有研究显示,随粒径减小,黏土矿物组成逐渐单一,矿物类型由2:1型向1:1型转变^[24-25]。不同矿物类型土壤发育和演化方式不同,理化性质存在差异,CEC含量也会发生显著变化。

基于此,为辨析石灰岩母质发育的不同土壤 CEC 与颗粒组成之间的关系,本研究通过野外描述、 采样与实验室测定,界定土壤发生特征与土壤发育 程度,获取土壤肥力状况,深入分析土壤 CEC 与土 壤理化性质的关系,阐明其对土壤发育程度的响应, 为提高湖南省土壤质量、改善土壤肥力条件,实现岩 溶土壤的合理利用奠定基础。

1 材料与方法

1.1 研究区概况

湖南位于长江中下游,洞庭湖以南,四周分别与 江西、广东、广西,以及重庆、贵州、湖北相邻,地理 坐标 108°47′~114°15′E, 24°38′~30°08′N, 属于亚热 带季风气候,四季分明,光热充足,降水充沛,年平均 气温 16~18 ℃, 年平均降水量 1 200~1 800 mm。共 有土地面积 21.18 万 km², 耕地面积 351.2 万 hm², 占全省土地总面积的16.58%。在耕地中,丘岗区、 山区、湖区耕地面积分别占全省耕地面积的40.5%、 36.3% 和 23.2%。湖南岩溶区分布涉及 81 个县 (市、 区), 总面积 543.62 万 hm², 占全省土地总面积的 25.7%, 主要地貌类型可分为六种, 分别为: I 区丘峰-溶盆与溶洼、峡谷山原区,Ⅲ区丘峰-溶盆与溶洼、 中低山山地区,Ⅲ丘峰-溶洼与溶盆、低山与丘陵区, Ⅳ区丘峰与峰林-溶盆与溶洼、丘陵平原区, V埋藏 岩溶区, Ⅶ洞庭湖平原区(图1)。从图2可知, 典型 岩溶土壤主要集中在Ⅰ区、Ⅱ区和Ⅳ区。

1.2 样品采集

参照《湖南土壤》中对石灰岩土壤的描述和分类, 确定湖南省范围内典型土壤剖面位置,通过野外实 地踏勘,同时考虑地形地貌、植被分布状况、土壤母

图 1 湖南省岩溶地貌分区图

Fig. 1 Map of karst landform zoning in Hunan Province

质等多种因素,选取湖南省具有代表性的典型石灰 岩发育土壤,利用全球定位系统仪(GPS)确定9个市 32个土壤剖面的野外取样点,共采集剖面样品146 个(表1)。样品采集范围涵盖了湖南省主要岩溶分 布地区,包含湘东地区的湘潭;湘南地区的永州、郴 州;湘西地区的湘西自治州、张家界和怀化;湘中地 区的衡阳、邵阳和娄底等地。土壤剖面的挖掘、成 土因素以及土壤形态均按照《第三次全国土壤普查 外业调查与采样技术规范》进行分析。

确定样点后,依照《野外土壤描述与采样手册》 挖掘标准土壤剖面并对剖面形态进行观察描述,然 后进行取样、拍照,按四分法分取1kg左右的新鲜 土样装袋。将样品全部带回实验室后清除石块和草 根等杂质,将大土块用手掰开,并于室温下完全风干, 风干后研磨通过不同孔径土筛以用于之后的理化性 质分析。

1.3 样品分析

土壤理化性质测定依据《土壤分析技术规范》^[26], 其中土壤 pH采用电位法测定,有机质用重铬酸钾容 量法--外加热法测定,土壤容重用环刀法测定,土壤 全氮用重铬酸钾--外加热法测定,全磷用消解--钼 锑抗分光光度法测定,全钾用火焰原子吸收分光光 度法测定,交换性钙、镁采用 EDTA 滴定法,交换性 钠、钾采用火焰原子吸收分光光度法;采用吸管法测 定颗粒组成^[27],共有 301 个数据,粒级划分采用美国 制(砂粒 2.000~0.050 mm,粉粒 0.050~0.002 mm,黏 粒<0.002 mm);土壤黏土矿物类型用 X 衍射仪测定; CEC 采用乙酸铵离心交换法测定。

ECEC 的计算方式为:

有效阳离子交换量(ECEC)[cmol·kg⁻¹]=H⁺+ Al³⁺(⅓Al³⁺)+浸提性盐基总量

注:式中H⁺+Al³⁺为1mol·L⁻¹KCL(pH5.5~6.0)浸 提交换性H⁺和Al³⁺(¹/₃Al³⁺)(cmol·kg⁻¹);浸提性盐基 总量1mol·L⁻¹NH₄OAc(pH7.0)浸提性盐基总量 [cmol·kg⁻¹]。

1.4 数据分析

实验数据采用 Microsoft Excel 2021 软件进行制 表,采用 SPSS 23.0 和 Origin2021 两种软件进行数据 统计分析。

2 结果与分析

2.1 典型岩溶土壤主要理化性质的描述性统计分析

对研究区土壤理化性质进行统计分析(表 2, 表 3),研究区土壤 pH 最小值为 3.46,中值为 5.57,小 于 7.00 的占比为 78.77%,大于 7.00 占比为 21.23%,

		Table 1 Ove	rview of sampling points	5	
剖面号	地区	海拔/m	土地利用现状	土类*	矿物类型
ZJJ01	张家界慈利县	124	灌木林地	铁质湿润雏形土	硅质混合型
ZJJ02	张家界慈利县	284	灌木林地	钙质湿润雏形土	硅质混合型
ZJJ03	张家界永定区	510	灌木林地	铁聚水耕人为土	硅质混合型
XX01	湘西永顺县	811	灌木林地	简育常湿淋溶土	伊利石混合型
XX04	湘西龙山县	1236	天然牧草地	简育常湿淋溶土	硅质混合型
XX05	湘西保靖县	365	针阔林地	铁质湿润淋溶土	伊利石混合型
XX09	湘西吉首市	606	水田	铁聚水耕人为土	硅质混合型
XX12	湘西龙山县	550	水田	铁聚水耕人为土	硅质混合型
CZ03	郴州宜章县	313	针阔林地	铁质湿润雏形土	高岭石型
CZ04	郴州临武县	404	灌木林地	铁质湿润淋溶土	高岭石混合型
CZ05	郴州嘉禾县	255	灌木林地	黏化湿润富铁土	高岭石型
CZ11	郴州桂阳县	205	水田	简育水耕人为土	硅质混合型
YZ03	永州道县	201	针阔林地	黏化湿润富铁土	高岭石型
YZ05	永州江华县	228	针阔林地	黏化湿润富铁土	高岭石混合型
YZ06	永州宁远县	290	针阔林地	黏化湿润富铁土	高岭石混合型
YZ08	永州新田县	380	针阔林地	黏化湿润富铁土	高岭石型
YZ10	永州祁阳县	117	水田	简育水耕人为土	硅质混合型
YZ11	永州零陵县	131	水田	潜育水耕人为土	伊利石混合型
HH11	怀化沅陵县	134	水田	简育水耕人为土	硅质混合型
SY02	邵阳武冈县	326	针阔林地	黏化湿润富铁土	混合型
SY04	邵阳城步苗族自治县	462	灌木林地	铁质湿润淋溶土	伊利石混合型
SY07	邵阳邵阳县	343	灌木林地	简育湿润富铁土	高岭石混合型
SY09	邵阳邵东县	320	针阔林地	铁质湿润淋溶土	高岭石型
SY11	邵阳邵东县	254	水田	简育水耕人为土	硅质混合型
SY12	邵阳武冈县	397	水田	简育水耕人为土	硅质混合型
SY13	邵阳邵阳县	259	水田	简育水耕人为土	硅质混合型
LD01	娄底涟源县	174	针阔林地	铝质湿润淋溶土	高岭石型
LD02	娄底新化县	440	针阔林地	钙质湿润淋溶土	混合型
LD03	娄底涟源县	224	耕地	铝质湿润雏形土	硅质混合型
LD05	娄底娄星县	146	水田	简育水耕人为土	硅质混合型
HY02	衡阳常宁县	92	针阔林地	黏化湿润富铁土	高岭石型
ZZ05	株洲炎陵县	263	灌木林地	黏化湿润富铁土	高岭石混合型

表 1 采样点概况

*:表示土壤系统分类名称。

*: The classification name of a soil system.

表明湖南地区土壤以酸性为主。土壤全氮、全磷、 全钾的含量分别为 1.10 ± 0.63、0.49 ± 0.30、14.20 ± 5.48, 土壤养分含量处于中等水平, 变异系数属高度 变异, 肥力特征差异大。土壤有机质平均含量为 19.65 ± 15.74 g·kg⁻¹, 土壤肥力较低。

土壤 CEC 的平均值为 $16.70 \pm 5.62 \text{ cmol·kg}^{-1}$,样本数值之间差异较大; 土壤 ECEC 平均值为 $8.86 \pm 3.75 \text{ cmol·kg}^{-1}$,远低于土壤 CEC 的含量; 土壤颗粒组

成以粉粒与黏粒为主。根据土壤保肥能力分级方法^[28](表 4)可知,当CEC < 10.5 cmol kg⁻¹,保肥能力弱;当CEC 在 10.5~15.4 cmol·kg⁻¹,保肥能力中等;当CEC 在 15.4~20.0 cmol·kg⁻¹,保肥能力较强,当CEC>20.0 cmol·kg⁻¹,保肥能力强。研究区土壤阳离子交换含量大于10.5 cmol·kg⁻¹的样本占样本总数的89.04%,土壤保肥能力多处于较强、中等水平,土壤质地较黏重,以粉粒、黏粒含量为主。研究区土

Table 2	Statistical characteristics of soil	nhysical and chemical i	narameters in the study area
I GOIC L	Statistical characteristics of som	physical and chemical	parameters in the stady area

				•	2	
指杨	Ā	平均值	最大值	最小值	中值	变异系数
pH		5.46±1.41	7.97	3.46	5.57	0.26
容重/g·	cm^{-3}	1.30±0.22	1.75	0.86	1.33	0.17
有机质含量	$\frac{1}{2}$ /g·kg ⁻¹	19.65±15.74	100.92	1.93	14.99	0.8
CEC/cmc	ol kg ⁻¹	16.7±5.62	36.03	6.99	15.96	0.34
ECEC/cm	$ol kg^{-1}$	8.86±3.75	20.88	2.91	8.48	0.42
	砂粒	118±101.64	555	0	87	0.87
机械组成	粉粒	441±174.54	790	103	468	0.4
	黏粒	44 1±193.92	879	123	369	0.44
全氮/g·	kg^{-1}	1.10±0.63	3.67	0.18	0.92	0.57
全磷/g·	·kg ⁻¹	0.49±0.30	1.74	0.09	0.44	0.60
全钾/g·	·kg ⁻¹	14.20±5.48	31.14	2.87	13.74	0.39
交换性酸/c	mol kg ⁻¹	1.74±2.63	9.79	0.00	0.11	1.50
交换性盐基总	量/cmol·kg ⁻¹	7.12±4.75	20.88	0.32	6.55	0.67

表 3 不同矿物类型土壤基本土壤理化参数

Table 3 Basic soil physical and chemical parameters for soils of different mineral types

指标		平均值	最大值	最小值	中值	变异系数
	容重	1.32±0.21	1.74	0.86	1.34	0.16
硅质混合型	pН	6.86±0.75	7.97	4.54	6.96	0.11
	有机质	24.54±17.29	100.92	1.93	21.15	0.70
	容重	1.24±0.13	1.42	0.91	1.27	0.11
伊利石混合型	pH	6.37±1.06	7.90	5.24	5.86	0.17
	有机质	21.28±19.85	77.25	4.88	11.24	0.93
	容重	1.28±0.21	1.75	0.93	1.29	0.16
高岭石型	pH	5.44±0.64	6.74	4.38	5.28	0.12
	有机质	12.58±8.63	36.76	5.00	8.77	0.69
	容重	1.37±0.10	1.55	1.20	1.36	0.08
高岭石混合型	pH	5.86±0.53	6.85	5.07	5.82	0.09
	有机质	14.64±9.92	39.07	4.73	10.35	0.68
	容重	1.36±0.08	1.45	1.22	1.38	0.06
混合型	pH	5.88±1.27	7.65	4.75	5.34	0.22
	有机质	11.04±6.96	20.10	5.16	7.98	0.63

表 4 土壤保肥能力分级方	法
---------------	---

icity
icity

土壤阳离子交换量 /cmol·kg ⁻¹	土壤保肥能力	样本数
[20.0, ∞)	强	39
[15.4, 20.0)	较强	43
[10.5, 15.4)	中等	48
[6.2, 10.5)	弱	16
[0, 6.2)	很弱	0

壞 Al³⁺/CEC、Ca²⁺/CEC、Mg²⁺/CEC、K⁺/CEC、Na⁺/ CEC 含量分别为 0.098 cmol·kg⁻¹、0.365 cmol·kg⁻¹、 0.057 cmol·kg⁻¹、0.010 cmol·kg⁻¹、0.003 cmol·kg⁻¹,交 换性铝、交换性钙与交换性镁含量较高,使土壤胶体 可变负电荷增加,从而增加土壤有效负电荷密度,提 升土壤阳离子的吸附能力。

研究区典型岩溶土壤的 5 种矿物类型(表 3)分 别为: 硅质混合型、伊利石混合型、高岭石型、高岭 石混合型、混合型。五种矿物类型岩溶土壤 pH、容 重变异小; 土壤有机质含量差异较大, 变异系数为 0.70 属于强变异, 其中混合型土壤有机质平均值最 低, 为 11.04 ± 6.96 g·kg⁻¹, 而硅质混合型土壤有机质 平均含量最大, 为 24.54±17.29 g·kg⁻¹。

2.2 土壤阳离子交换量、机械组成与主要矿物类型的关系

通过对研究区 146 个土壤样品的分析发现(图 3), 不同矿物类型土壤的机械组成呈现黏粒> 粉粒>砂 粒的趋势,高岭石型土壤黏粒含量做多,伊利石混合 型土壤砂粒含量最少。质地类型涵盖黏土、黏壤土、 粉壤土、粉黏壤土、壤土、砂壤土、砂黏壤土、粉砂 质黏土以及粉砂质黏壤土共 9 种类型,质地为黏土 的土壤样点占比最大,达 31.50%;其次为粉壤土、粉 黏壤土,占比分别为 30.14% 和 27.40%;黏壤土占比 为 6.16%;壤土、砂壤土、砂黏壤土、粉砂质黏土、粉 砂质黏壤土的占比均低于 2.0%。伊利石混合型土 壤 CEC 含量最大,为 21.76 cmol·L⁻¹,其余四种矿物 类型土壤 CEC 含量差异不大。总体上,146 个样点 的土壤质地以黏土、粉壤土、粉黏壤土为主,粉黏粒 土质黏重,结构紧密、耕作困难,影响土壤的透气性 和排水性。

如图 4 所示, 混合型土壤砂粒含量最高, 硅质混 合型土壤粉粒含量最高, 高岭石土壤黏粒含量最高; CEC 与 ECEC 含量在伊利石混合型土壤中最多, 在 混合型土壤中含量最少。

2.3 阳离子交换量的影响因子

由表 5 可知, 土壤 CEC、ECEC 与砂粒含量存在 负相关趋势, 但相关性不显著; 土壤 CEC 与黏粒含 量呈极显著正相关与粉粒含量的关系则相反, ECEC 与粉粒、黏粒含量均无相关性(P<0.01); 土壤 CEC 与土壤容重成极显著负相关关系, 而 ECEC 与土壤 容重无相关性(P<0.01); 土壤 CEC 与土壤 pH、有机 质含量均无相关性, 而 ECEC 则与二者呈现极显著 正相关关系(P<0.01)。土壤 CEC、ECEC 与土壤全 氮、全磷、全钾、交换性 K⁺、Ca²⁺、Mg²⁺、Na⁺以及交 换性盐基总量均成正相关, 其中与全磷、交换性 Ca²⁺、 Mg²⁺、盐基总量的相关性极显著; 交换性酸、交换性 H⁺和交换性 Al³⁺与 CEC 呈正相关, 而与 ECEC 呈负 相关(P<0.01)。土壤 CEC 与矿物类型无相关性,

图 4 土壤矿物组成与 ECEC 以及土壤颗粒组成的关系

Fig. 4 Relationship between soil mineral compositions, ECEC and soil particle compositions

Table 5 Correlation ar	alysis of soil excha	ngeable cations	
with other factors			
	CEC	ECEC	
砂粒	-0.106	-0.008	
粉粒	-0.420^{**}	0.048	
黏粒	0.434**	-0.039	
容重	-0.282^{**}	-0.138	
pH(水提)	-0.112	0.307**	
有机质	0.094	0.243**	
全氮(N)	0.142	0.132	
全磷(P)	0.225**	0.368**	
全钾(K)	0.207^{*}	0.183*	
交换性酸	0.290^{**}	-0.085	
交换性H⁺	0.187^{*}	-0.101	
交换性Al ³⁺	0.287^{**}	-0.080	
交换性K⁺	0.263**	0.175^{*}	
交换性Ca ²⁺	0.272^{**}	0.801**	
交换性Mg ²⁺	0.285^{**}	0.499**	
交换性Na⁺	0.121	0.004	
交换性盐基总量	0.315**	0.836**	
矿物类型	0.058	-0.217**	

表 5 土壤交换性阳离子与其他因子相关性分析

注:^{*}P<0.05; ^{**}P<0.01。

Note: *P<0.05; **P<0.01.

而 ECEC 与矿物类型呈极显著负相关(P<0.01)。

3 讨 论

已有研究^[29] 表明,土壤 CEC 与黏粒呈显著正相 关,与砂粒呈显著负相关,本文研究结果相似。研究 区土壤以粉黏粒为主,土壤黏粒、粉粒粒径极小,易 在径流过程中随悬浊液而流失,砂粒会在植株根系 产生一定沉积^[30]。土壤粒度组成和分形特征的变化 会使土壤理化性质产生重大变化^[31]。相关研究表明: 土壤颗粒越细,土壤的保肥能力越强,但受颗粒含量 的影响,土壤会出现压实、板结的现象^[32]。本文中粉 黏粒含量高,而土壤中砂粒含量低,虽然有利于水肥 保持,但透气性较差会产生负面影响^[33]。土壤中各 粒径含量更能反映土壤质量水平^[34],土壤中黏、粉粒 含量大,土壤的保水、保肥能力强。周雷等^[35]对宁 夏114个土壤点位的研究发现,土壤质地类型变异 的主要原因是砂粒和粉粒的相对含量的变化。土壤 颗粒粒径分布与组成是土壤最基本的物理性质,反

映了土壤的结构特征[36] 对植物生长发育和土壤肥力 的形成有着重要的影响。肥沃的土壤不仅要求耕层 的质地良好,还要求有良好的质地状况。虽然土壤 质地主要决定于成土母质类型,具有相对的稳定性, 但耕作层的质地仍然可通过耕作、施肥等活动来进 行调节。砂粒粒径为 2.00~0.05 mm, 颗粒较粗, 比表 面积相对较小,其吸附的带电胶体粒子相对较少,对 应的 CEC 的含量较低,砂粒较多而交换量低,土壤 保肥性弱,王文艳等[37] 过对黄土高原陕北地区3个 小流域的土壤 CEC 的影响进行分析,发现土壤 CEC 与砂粒含量呈负相关是由于砂粒含量大则土壤粉黏 粒含量下降,导致阳离子吸附交换点位少。王圣等[38] 对江西省旱地土壤进行研究发现,土壤粉粒和黏粒 含量与土壤 CEC 呈极显著相关,随着两者含量的增 加. 十壤 CEC 含量显著增加: 而砂粒含量与 CEC 的 相关性并非极显著,但是土壤的通透性很好。土壤 颗粒对土壤 CEC 的影响主要来自于黏粒含量且二者 具有相关性[37,39],其次为粉砂粒的贡献[40-41]。粉粒是 指土壤中粒径为 0.050~0.002 mm 的矿物颗粒, 其粒 径大于黏粒,能够吸附一定量的阳离子,但吸附能力 较弱,养分易流失。有研究表明土壤中粉粒含量增 加,土壤 CEC 显著增加^[38],但粉粒的含量对土壤 CEC 的贡献很小,甚至有时会出现负值^[37]。土壤中 黏粒是指粒径小于 0.002 mm 的各类矿物颗粒,由于 其粒径很小比表面大,吸附能力强。在农田土壤中 黏粒是养分的主要供给者,农田土壤中所含的黏粒 数量越多,农田土壤中就营养成分含量越高,农田土 壤保水保肥能力越强,但是正是因为这些特性使得 土壤的通透性能较差。阳离子交换量是土壤中吸附 各类阳离子的总和, 黏粒含量越多土壤吸附能力越 强,其吸附的阳离子也就越多。

不同成土母质间由于颗粒组成和矿物类型存在 差异,其发育土壤的阳离子交换性能会发生显著变 化。俞月凤等^[42]对岩溶区土壤矿物质与主要养分的 关系进行分析,发现土壤矿物质与土壤养分之间具 有相互作用关系,岩溶地区碳酸盐岩风化过程中产 生各种矿物质,形成土壤的物质基础可增强了土壤 肥力。本研究所采集的土样为湖南省典型岩溶区石 灰岩母质发育的土壤,属亚热带季风气候、降水量多, 土壤中机械组成与土壤发生发育程度、黏土矿物类 型组成有重要关系。土壤中黏土矿物的类型与数量 是影响土壤阳离子交换量的大小的主要因素之一^[43]。 土壤矿物质是土壤阳离子交换量的主要提供者,土 壤中细粒矿物比粗粒矿物具有较大的表面积和更多 的交换点[44],因此不同粒级矿物其交换量一般随粒 度的增大而减少[45]。本研究中,根据土壤诊断层与 诊断性质,按照土壤系统分类体系,所采土壤样品可 划分为5个土纲,分别为人为土纲(34%)、富铁土纲、 淋溶土纲和雏形土纲,占比最少的为新成土纲(3%)。 土壤矿物,尤其是土壤次生矿物,决定着土体的许多 理化性质,如黏着性和土壤结构等^[46]。研究区土壤 矿物类型有11种,主要的矿物类型为黏壤质硅质混 合型,占比37.50%;其次为极黏质高岭石型和黏质高 岭石混合型,各占比为12.5%;黏质高岭石型、黏质 伊利石混合型、极黏质高岭石混合型以及极黏质伊 利石混合型,各占比为 6.25%;含量最少的矿物类型 为黏壤质混合型、壤质硅质混合型、黏质混合型和 相骨壤质硅质混合型,各类型仅占3.13%(图5)。

图 5 研究区土壤矿物类型占比

在本研究中土壤 CEC 与粉粒含量均呈极显著负 相关; 与黏粒含量呈极显著正相关, 说明在岩溶土壤 中, 土壤颗粒越细, 结构紧实, 土壤阳离子交换量越 多, 土壤保肥质量会得到较大改善, 但供肥环境限制 了土壤与作物养分的循环, 可以通过调节土壤中粉 粒与黏粒的含量占比来增加 CEC 值, 提高土壤肥力。 土壤 ECEC 虽然与土壤颗粒组成无显著相关性, 但 其与土壤 pH、土壤有机质含量以及交换性 Ca²⁺、交 换性 Mg²⁺均呈极显著正相关,更能反映土壤保肥、 供肥的协调效应,农业利用中可配合水利措施建设、 多种耕、施用有机肥等措施来提高土壤生产效能。

4 结 论

(1)湖南省岩溶土壤以粉黏粒为主,土壤 pH 为 5.46±1.41,呈酸性;土壤有机质含量为 19.65±15.74⁻¹, 含量不高且样本之间差异大;土壤 CEC 的平均含量 为 16.70±5.62 cmol·kg⁻¹,岩溶区土壤虽供肥能力较差, 但保肥能力处于中等偏上水平。

(2)湖南省岩溶区五种黏土矿物类型土壤 pH、 容重差异较小,但有机质含量差异较大,硅质混合型 土壤有机质含量最大,且属于强变异。混合型土壤 砂粒含量最高,硅质混合型土壤粉粒含量最高,高岭 石土壤黏粒含量最高;CEC与 ECEC含量在伊利石 混合型土壤中最多,在混合型土壤中含量最少。

(3)CEC 与粉粒、黏粒含量均呈现出极显著相关 性, 与砂粒含量无显著相关性; 土壤 ECEC 与土壤颗 粒均无显著相关, 但其与土壤 pH 以及有机质含量、 土壤全磷含量均呈极显著正相关(*P*<0.01), 与土壤全 钾含量呈显著正相关, 土壤 ECEC 与土壤主要理化 性质的相关性, 说明相对于 CEC 来说, ECEC 能更有 效地影响土壤发生特性, 可以对土壤肥力产生更加 有用的效能。

(4)土壤交换性盐基总量以交换性 Ca^{2+} 和 Mg^{2+} 为主,土壤 CEC 与 K^+ 、 Ca^{2+} 、 Mg^{2+} 均呈极显著正相关 (P < 0.01), ECEC 与 K^+ 呈显著正相关,与 Ca^{2+} 、 Mg^{2+} 呈极显著正相关,土壤 CEC 与矿物类型无相关性, 而 ECEC 与矿物类型呈极显著负相关。不同矿物类 型的土壤中,交换性盐基离子内 Ca^{2+} 、 Mg^{2+} 、 K^+ 对湖 南岩溶地区土壤 CEC、ECEC 含量产生影响。

(5)在农业生产过程中,添加各类有机质的含量, 可有效提高农田土壤阳离子交换量。农田土壤中阳 离子交换量的增大,能有效提高农田土壤的缓冲能 力,增强农田土壤的保肥能力以及保水能力,从而改 善土壤地力的有效性。

参考文献

- [1] 鲍士旦. 土壤农化分析. 第3版[M]. 北京:中国农业出版社, 2000.
- [2] 胡梦颖,张鹏鹏,徐进力,刘彬,张灵火,杜雪苗,白金峰.CEC 前处理系统-凯氏定氮仪快速测定土壤中的阳离子交换量[J].

物探与化探, 2023, 47(2): 458-463.

HU Mengying, ZHANG Pengpeng, XU Jinli, LIU Bin, ZHANG Linghuo, DU Xuemiao, BAI Jinfeng. Rapid determination of soil cation exchange capacity using a cation exchange capacity pretreatment system and a Kjeldahl apparatus[J]. Geophysical and Geochemical Exploration, 2023, 47(2): 458-463.

[3] 杨树俊, 韩张雄, 王思远, 端爱玲, 孙东年, 李敏. 土壤阳离子交换量与有机质, 机械组成的关系[J]. 科学技术与工程, 2023, 23(7): 2799-2805.

YANG Shujun, HAN Zhangxiong, WANG Siyuan, DUAN Ailing, SUN Dongnian, LI Min. The relationship between cation exchange capacity and organic matter, mechanical composition in soil[J]. Science Technology and Engineering, 2023, 23(7): 2799-2805.

- [4] 岳祥飞,李衍青,刘鹏.广西岩溶区灌木林地凋落物:土壤碳、 氮、磷化学计量特征[J].中国岩溶, 2023, 42(5): 1106-1116.
 YUE Xiangfei, LI Yanqing, LIU Peng. Stoichiometric characteristics of C, N and P in soil and litter of shrublands in karst areas of Guangxi[J]. Carsologica Sinica, 2023, 42(5): 1106-1116.
- [5] 刘贺永,何鹏,蔡江平,王汝振,殷进飞,杨山,张玉革.模拟氮 沉降对内蒙古典型草地土壤 pH 和电导率的影响[J].土壤通 报,2016,47(1):85-91.

LIU Heyong, HE Peng, CAI Jiangping, WANG Ruzhen, YIN Jinfei, YANG Shan, ZHANG Yuge. Effects of simulated nitrogen deposition on soil pH and electric conductivity in a typical grassland of Inner Mongolia[J]. Chinese Journal of Soil Science, 2016, 47(1): 85-91.

[6] 许安定,周鑫斌,苏婷婷,张璐,杨超,谢德体,石孝均.土地整 理对烟田土壤理化及生物学性状的影响[J].西南大学学报 (自然科学版),2016,38(3):156-164.

XU Anding, ZHOU Xinbin, SU Tingting, ZHANG Lu, YANG Chao, XIE Deti, SHI Xiaojun. Effects of land consolidation on soil physical, chemical and biological properties on hilly land[J]. Journal of Southwest University (Natural Science Edition), 2016, 38(3): 156-164.

 [7] 吴敏, 韦家少, 孙海东, 何鹏, 吴炳孙, 高乐. 生物质炭对橡胶园 土壤酸度及交换性能的影响[J]. 中国农业科技导报, 2017, 19(3): 98-107.

WU Min, WEI Jiashao, SUN Haidong, HE Peng, WU Bingsun, GAO Le. Effects of biocarbon acidify and exchangeable capacity of the granite-derived ferralsol in rubber plantation[J]. Journal of Agricultural Science and Technology, 2017, 19(3): 98-107.

- [8] 陈秋帆, 卢琦, 王妍, 刘云根. 西南石漠化区林下土壤养分特征及差异性[J]. 中国岩溶, 2023, 42(2): 290-300.
 CHEN Qiufan, LU Qi, WANG Yan, LIU Yungen. Nutrient characteristics and differences of forest soil in rocky desertification areas of Southwest China[J]. Carsologica Sinica, 2023, 42(2): 290-300.
- [9] 王国梁,周生路,赵其国.土壤颗粒的体积分形维数及其在土 地利用中的应用[J].土壤学报,2005,42(4):545-550.

WANG Guoliang, ZHOU Shenglu, ZHAO Qiguo. Volume fractal dimension of soil particles and its applications to land use[J]. Acta Pedologica Sinica, 2005, 42(4): 545-550.

- [10] 杨培岭,罗远培,石元春.用粒径的重量分布表征的土壤分形 特征[J].科学通报,1993,38(20):1896-1899.
- [11] Tyler S W, Wheatcraft S W. Application of fractal mathematics to soil water retention estimation[J]. Soil Science Society of America Journal, 1989, 53(4): 987-996.
- [12] 白永会, 查轩, 吴伟成, 周飞华. 植被恢复花岗岩红壤土壤颗粒 组成及土壤养分储量特征[J]. 水土保持研究, 2024, 31(3): 179-186.
 BAI Yonghui, ZHA Xuan, WU Weicheng, ZHOU Feihua. Char-

BAT Yonghui, ZHA Xuan, wU wetcheng, ZHOU Feinua. Characteristics of soil particle composition and soil nutrient storage in vegetated granite red soil[J]. Research of Soil and Water Conservation, 2024, 31(3): 179-186.

- [13] Komeg K, Enangr K, Tabif O, Yerimabp K. Influence of clay minerals on some soil fertility attributes: A review[J]. Open Journal of Soil Science, 2019, 9(9): 155-188.
- [14] Ruehlmann J. Soil particle density as affected by soil texture and soil organic matter: 1. Partitioning of SOM in conceptional fractions and derivation of a variable SOC to SOM conversion factor [J]. Geoderma, 2020, 375: 114542.
- [15] Zhang J H, Li G D, Ding S Y, Tian H W, Ren X J, Liu M, Zheng Y P. Distribution characteristics of soil particles and their relationships with soil organic carbon components in the alluvial/ sedimentary zone in the lower reaches of the Yellow River[J]. Frontiers in Environmental Science, 2022, 10: 849565.
- [16] 黄尚书, 叶川, 钟义军, 成艳红, 武琳, 黄欠如, 郑伟, 孙永明, 张昆, 章新亮. 不同土地利用方式对红壤坡地土壤阳离子交换量及交换性盐基离子的影响[J]. 土壤与作物, 2016, 5(2): 72-77.
 HUANG Shangshu, YE Chuan, ZHONG Yijun, CHENG Yanhong, WU Lin, HUANG Qianru, ZHENG Wei, SUN Yongming, ZHANG Kun, ZHANG Xinliang. Soil cation exchange capacity and exchangeable base cations as affected by land use pattern in sloping farmland of red soil[J]. Soils and Crops, 2016, 5(2): 72-77.
- [17] 于耀泓, 刘悦, 王艺颖, 周庆, 龙凤玲, 赵倩, 何茜, 莫其锋. 鹅凰 嶂山地雨林土壤阳离子交换量和交换性盐基离子分布特征
 [J]. 土壤通报, 2022, 53(6): 1341-1349.
 YU Yaohong, LIU Yue, WANG Yiying, ZHOU Qing, LONG Fengling, ZHAO Qian, HE Qian, MO Qifeng. Distribution of soil cation exchange capacity and exchangeable based cations in the E'huangzhang montane rain forest[J]. Chinese Journal of Soil Science, 2022, 53(6): 1341-1349.
- [18] 陈萍,何文寿. 不同盐化土壤理化性质差异研究[J]. 农业科学研究, 2016, 37(3): 36-39.
 CHEN Ping, HE Wenshou. A study of soil physicochemical properties for different levels of salinization[J]. Journal of Agricultural Sciences, 2016, 37(3): 36-39.
- [19] Caravaca F, Lax A, Albaladejo J. Organic matter, nutrient contents and cation exchange capacity in fine fractions from semi-

1085

arid calcareous soils [J]. Geoderma, 1999, 93(3-4): 161-176.

- [20] 张水清,黄绍敏,郭斗斗.河南三种土壤阳离子交换量相关性及预测模型研究[J].土壤通报,2011,42(3):627-631.
 ZHANG Shuiqing, HUANG Shaomin, GUO Doudou. The correlations and prediction models of cation exchange capacity in three soils in Henan[J]. Chinese Journal of Soil Science, 2011, 42(3): 627-631.
- [21] 许冀泉. 国外土壤矿物学研究近况[J]. 干旱区研究, 1986(3): 28-40.
- [22] 姚乃慈, 赵旻爽, 张志丹, 张晋京, 何念鹏, 钟佳君. 不同气候带 森林土壤粘粒矿物 XRD 物相分析[J]. 矿物学报, 2021, 41(6): 668-678.

YAO Naichi, ZHAO Minshuang, ZHANG Zhidan, ZHANG Jinjing, HE Nianpeng, ZHONG Jiajun. The XRD phase analysis of clay minerals in the forest soils of different climate zones[J]. Acta Mineralogica Sinica, 2021, 41(6): 668-678.

[23] 刘智杰,黄丽,李峰, Ndzana Georges Martial,周方亮,李小坤, 鲁剑巍.长期施肥对土壤颗粒粘粒矿物组成及其演变特征的 影响[J].矿物学报, 2018, 39(5): 563-571.

LIU Zhijie, HUANG Li, LI Feng, Ndzana Georges Martial, ZHOU Fangliang, LI Xiaokun, LU Jianwei. Effect of long-term fertilization on the composition and evolution of clay minerals in soil particles[J]. Acta Mineralogica Sinica, 2018, 39(5): 563-571.

- [24] Tsao T M, Chen Y M, Sheu H S, Zhuang S Y, Shao P H, Chen H W, Chiang K Y. Red soil chemistry and mineralogy reflect uniform weathering environments in fluvial sediments, Taiwan[J]. Journal of Soils & Sediments, 2012, 12: 1054-1065.
- [25] 李丰义,宋桂云,张庆昕,范富.西辽河平原两种常见土壤颗粒 中黏土矿物的组成特征[J].土壤通报,2023,54(5):1009-1016.

LI Fengyi, SONG Guiyun, ZHANG Qingxin, FAN Fu. Composition characteristics of clay minerals from chestnut and saline soil particles in west Liaohe river plain[J]. Chinese Journal of Soil Science, 2023, 54(5): 1009-1016.

- [26] 杜森,高祥照. 土壤分析技术规范 (第二版)[M]. 北京:中国农 业出版社, 2006.
- [27] 张甘霖, 龚子同. 土壤调查实验室分析方法[M]. 北京: 科学出版社, 2012.

ZHANG Ganlin, GONG Zitong. Soil survey laboratory methods[M]. Beijing: Science Press, 2012.

[28] 童根平,姜霓雯,傅伟军,叶正钱.清凉峰自然保护区土壤阳离 子交换量的剖面分布特征及其影响因素[J].东北林业大学学 报,2023,51(2):111-115.

TONG Genping, JIANG Niwen, FU Weijun, YE Zhengqian. Profile distribution characteristics and influencing factors of soil cation exchange capacity in Low Mountain Natural Forest Land in South China[J]. Journal of Northeast Forestry University, 2023, 51(2): 111-115.

[29] 欧阳宁相. 湖南省典型红壤在土壤系统分类中的归属与发生 特征[D]. 长沙: 湖南农业大学, 2021. OUYANG Ningxiang. Attribution of typical red earth of Hunan Province in China soil taxonomy and their genetic characteristics[D]. Changsha: Hunan Agricultural University, 2021.

[30] 李海涛. 白皮沙拐枣根系与环境关系的初步研究[J]. 新疆农业大学学报, 1996, 19(1): 56-61.
 LI Haitao. The preliminary study on the relation between *Cal*-

ligonum leucocladum and its environment[J]. Journal of Xinjiang Agricultural University, 1996, 19(1): 56-61.

- [31] 张佛熠,承勇,阳雅荧,韦培,金涛涛,凌婉茹,尹婕,刘玮,王琼. 南昌不同城市化强度土壤粒度组成和分形特征及其影响因素[J].土壤,2023,55(5):1138-1145. ZHANG Foyi, CHENG Yong, YANG Yaying, WEI Pei, JIN Taotao, LING Wanru, YIN Jie, LIU Wei, WANG Qiong. Particle size composition, fractal characteristics and influencing factors of soils with different urbanization intensities in Nanchang[J]. Soils, 2023, 55(5): 1138-1145.
- [32] 彭新华,张斌,赵其国. 土壤有机碳库与土壤结构稳定性关系的研究进展[J]. 土壤学报, 2004, 41(4): 618-623.
 PENG Xinhua, ZHANG Bin, ZHAO Qiguo. A review on relationship between soil organic carbon pools and soil structure stability[J]. Acta Pedologica Sinica, 2004, 41(4): 618-623.
- [33] Gao G L, Ding G D, Zhao Y Y, Wu B, Zhang Y Q, Guo J B, Liu Y D. Characterization of soil particle size distribution with a fractal model in the desertified regions of Northern China[J]. Acta Geophysica, 2015, 64(1): 1-14.
- [34] 朱梦雪,赵洋毅,王克勤,段旭,卢华兴,涂晓云.中亚热带不同 演替森林群落土壤结构分形特征对大孔隙的影响[J].林业科 学研究,2022,35(2):67-77.

ZHU Mengxue, ZHAO Yangyi, WANG Keqin, DUAN Xu, LU Huaxing, TU Xiaoyun. Effect of fractal characteristics of soil structure on macropores in different succession forest communities in mid-subtropical region[J]. Forest Research, 2022, 35(2): 67-77.

[35] 周雷,曲潇琳,周涛,马常宝,李建兵,龙怀玉,徐爱国,张认连, 李格. 宁夏土壤颗粒组成特点及其影响因素分析[J].中国农 业科学, 2023, 56(21): 4272-4287.

> ZHOU Lei, QU Xiaolin, ZHOU Tao, MA Changbao, LI Jianbing, LONG Huaiyu, XU Aiguo, ZHANG Renlian, LI Ge. Analysis of the characteristics and influencing factors of soil particle composition in Ningxia[J]. Scientia Agricultura Sinica, 2023, 56(21): 4272-4287.

[36] 张世熔,邓良基,周倩,伍国锋. 耕层土壤颗粒表面的分形维数 及其与主要土壤特性的关系[J]. 土壤学报, 2002, 39(2): 221-226.

> ZHANG Shirong, DENG Liangji, ZHOU Qian, WU Guofeng. Fractal dimensions of particle surface in the plowed layers and their relationships with main soil properties [J]. Acta Pedologica Sinica, 2002, 39(2): 221-226.

 [37] 王文艳, 张丽萍, 刘俏. 黄土高原小流域土壤阳离子交换量分 布特征及影响因子[J]. 水土保持学报, 2012, 26(5): 123-127.
 WANG Wenyan, ZHANG Liping, LIU Qiao. Distribution and affecting factors of soil cation exchange capacity in watershed of the Loess Plateau[J]. Journal of Soil and Water Conservation, 2012, 26(5): 123-127.

[38] 王圣, 陈科希, 袁源远, 王泓汇, 魏宗强, 吴建富, 卢志红. 江西 省旱地土壤质地与土壤化学性状的相关性研究[J]. 中国土壤 与肥料, 2021(6):65-71.

WANG Sheng, CHEN Kexi, YUAN Yuanyuan, WANG Honghui, WEI Zongqiang, WU Jianfu, LU Zhihong. Correlation between soil texture and soil chemical properties in dry land of Jiangxi Province[J]. Soil and Fertilizer Sciences in China, 2021(6): 65-71.

- [39] 杨家伟, 王天巍, 包莹莹, 罗梦雨, 李德成. 黏粒阳离子交换量 估测模型的优化研究[J]. 土壤学报, 2021, 58(2): 514-525.
 YANG Jiawei, WANG Tianwei, BAO Yingying, LUO Mengyu, LI Decheng. Optimization of the model for predicting cation exchange capacity of clays[J]. Acta Pedologica Sinica, 2021, 58(2): 514-525.
- [40] 徐明岗,张建新,张航,安战士.黑垆土、黄褐土等土壤阳离子 交换量影响因素的研究[J].土壤通报,1991,22(3):108-110, 127.
- [41] 刘世全, 蒲王琳, 张世熔, 王昌全, 邓良基. 西藏土壤阳离子交换量的空间变化和影响因素研究[J]. 水土保持学报, 2004, 18(5): 1-5.

LIU Shiquan, PU Wanglin, ZHANG Shirong, WANG Changquan, DENG Liangji. Spatial change and affecting factors

of soil cation exchange capacity in Tibet[J]. Journal of Soil and Water Conservation, 2004, 18(5): 1-5.

[42] 俞月凤,曾成城,宋同清,彭晚霞,何铁光.桂西北喀斯特区石 灰土矿物质的空间变异特征[J].中国岩溶,2023,42(3):509-516,527.

> YU Yuefeng, ZENG Chengcheng, SONG Tongqing, PENG Wanxia, HE Tieguang. Spatial variation of limestone soil minerals in a karst area of northwestern Guangxi[J]. Carsologica Sinica, 2023, 42(3): 509-516, 527.

- [43] 赵之重. 青海省土壤阳离子交换量与有机质和机械组成关系的研究[J]. 青海农林科技, 2004(4): 4-6.
 ZHAO Zhizhong. Study on relationship between organic matter, soil fractions and CEC in Qinghai soil[J]. Science and Technology of Qinghai Agriculture and Forestry, 2004(4): 4-6.
 [44] 马毅杰. 土矿物和有机质对土壤胶体表面积影响[J]. 土壤,
- (44) 当秋点、工サ初和有机顶内工業成体表面代記時間[J]、工業, 1984, 16(1): 31. MA Yijie. Effect of soil minerals and organic matter on soil col-

loidal surface area[J]. Soils, 1984, 16(1): 31. 蒋梅茵, 杨德涌, 熊毅. 中国土壤胶体研究: Ⅶ. 五种主要土壤

- [45] 蒋梅茵,杨德涌,熊毅.中国土壤胶体研究: Ⅲ. 五种主要土壤的粘粒矿物组成[J]. 土壤学报, 1982, 19(1): 62-70, 98.
 JIANG Meiyin, YANG Deyong, HSEUNG Yi. Soil colloid researches Ⅲ. The mineralogical composition of the colloids of five important soils in China[J]. Acta Pedologica Sinica, 1982, 19(1): 62-70, 98.
- [46] 赵烨. 环境地学[M]. 北京: 高等教育出版社, 2007.

Response relationships among CEC, mechanical compositions and mineral types in typical karst soil

XING Yuxin¹, YUAN Hong^{1,2}, JI Xiangtong¹, DUAN Chenglong¹, JIANG Jun¹, LIU Shanpeng¹, LIU Peng¹ (1. College of Resources, Hunan Agricultural University, Changsha, Hunan 410128, China; 2. Institute of Karst Geology, CAGS/ Key Laboratory of Karst Dynamics, MNR & GZAR, Guilin, Guangxi 541004)

Abstract In this study, a total of 146 profile samples were collected from 32 soil profile sampling sites in nine towns and cities in typical karst areas of Hunan Province. The physical and chemical properties of soil were analyzed through field investigation, excavation, and collection and description of soil profiles of limestone weathering parent materials. The relationships among soil CEC contents, mechanical compositions, and soil mineral types were also explored. The research findings laid a foundation for modification, fertilization and ecological restoration of karst soil.

According to the Technical Specifications for Soil Analysis, the determination of soil physicochemical properties was conducted as follows: the soil pH values were measured by potentiometry. Both soil organic matters and total nitrogen contents in soil were determined by potassium dichromate heating method. Soil bulk density was measured by cutting ring method, while total phosphorus was assessed through the digestion-Mo-Sb anti-spectrophotometric method. Total potassium was analyzed via flame atomic absorption spectrophotometry. Exchangeable calcium and magnesium were quantified by EDTA titration method, and exchangeable sodium and potassium were also measured by flame atomic absorption spectrophotometry. The composition of soil particles was determined by pipette method, and the particle fraction was classified based on the system of United States (2.00–0.05 mm for sand, 0.050–0.002 mm for silt, and <0.002 mm for clay). Types of clay minerals were determined by X-Ray diffraction. The cation exchange capacity (CEC) was determined by ammonium acetate centrifugal exchange method. The effective cation exchange

capacity (ECEC) was calculated in the following formula: $[\text{cmol} \cdot \text{kg}^{-1}] = \text{H}^+ + \text{Al}^{3+}(\frac{1}{3}\text{Al}^{3+}) + \text{total extractability base}.$

The results shows as follows. (1) The CEC contents of typical karst soil in Hunan ranged between 2.71-13.9 $\text{cmol}\cdot\text{kg}^{-1}$, with an average value of 16.70±5.62 cmol $\cdot\text{kg}^{-1}$. The sample values exhibited considerable variability. The average soil ECEC was 8.86 ± 3.75 cmol·kg⁻¹, sigificantly lower than soil CEC. The particulate composition of soil was mainly silt and clay, resulting in a heavy texture and poor permeability in the study area. Based on the American grading method for soil fertilizer retention capacity combined with the measurement data, it was observed that the soil fertilizer retention capacity in the study area predominantly fell within the medium to strong levels, but the soil fertilizer capacity was inadequate. (2) The particulate compositions of soil followed a trend of clay>silt>sand, encompassing nine texture types. The soil samples with clay texture constituted the largest proportion of 31.50%. This was followed by silty loam and silty clay loam, which accounted for 30.14% and 27.40%, respectively. The soil samples from the study area included five distinct mineral types: siliceous hybrid, illite hybrid, kaolinite, kaolinite hybrid and hybrid. The hybrid soil exhibited the highest sand content, while the siliceous hybrid had the highest content of powder silt, and the kaolinite hybrid contained the most clay. The CEC and ECEC contents were the highest in illite hybrid and lowest in hybrid soil. In general, the soil texture of the 146 samples was primarily clay, silty loam and silty clay loam, resulting in heavy and compact soil that adversely affected the air permeability and drainage of soil. (3) CEC exhibited a highly significant correlation with both silt and clay content, while showing no significant correlation with sand. Soil ECEC was not significantly correlated with any of the soil particles; however, it demonstrated a highly significant positive correlation with soil pH, organic matter content and total phosphorus content (P < 0.01). Additionally, there was a significant positive correlation between ECEC and total potassium content, indicating a relationship between ECEC and the primary physicochemical properties of soil. This suggests that ECEC may influence the soil characteristics more effectively than CEC and could have a greater impact on soil fertility. (4) The primary exchangeable ions were Ca^{2+} and Mg^{2+} , with soil CEC showing an extremely significant positive correlation with K^+ , Ca^{2+} , and Mg^{2+} (P<0.01). Furthermore, soil ECEC was significantly positively correlated with K^+ , and extremely significantly positively correlated with Ca^{2+} and Mg^{2+} (P<0.01). Soil CEC was not correlated with mineral type, while ECEC was highly significantly negatively correlated with mineral type. The contents of Ca^{2+} , Mg^{2+} and K⁺ in soil exchangeable salt-based ions also had an effect on the contents of CEC and ECEC in soils of different mineral types.

In this study, soil CEC was found to be extremely significantly negatively correlated with silt contents. Conversely, there was a highly significant positive correlation with clay contents. This indicates that in karst soil, finer soil particles contribute to a more compact structure, which enhances soil cation exchange and improves soil fertilizer retention quality. However, the fertilizer environment can limit the nutrient cycle between soil and crops. By adjusting the proportions of silt and clay in soil, it is possible to increase the CEC value and enhance soil fertility. Although no significant correlation was observed between ECEC and soil particle compositions, ECEC was found to be significantly positively correlated with soil pH, soil organic matter contents, exchangeable Ca^{2+} and exchangeable Mg^{2+} . Additionally, it exhibited a highly significant negative correlation with soil mineral types, which better reflects the synergistic effects of soil fertility conservation and nutrient supply.

Key words cation exchange capacity, soil particle composition, limestone parent material

(编辑杨杨)