中国自然资源航空物探遥感中心主办
地质出版社出版

压制孔隙影响的流体敏感因子优选及其在烃类检测中的应用

王迪, 张益明, 牛聪, 黄饶, 韩利. 2021. 压制孔隙影响的流体敏感因子优选及其在烃类检测中的应用. 物探与化探, 45(6): 1402-1408. doi: 10.11720/wtyht.2021.1364
引用本文: 王迪, 张益明, 牛聪, 黄饶, 韩利. 2021. 压制孔隙影响的流体敏感因子优选及其在烃类检测中的应用. 物探与化探, 45(6): 1402-1408. doi: 10.11720/wtyht.2021.1364
WANG Di, ZHANG Yi-Ming, NIU Cong, HUANG Rao, HAN Li. 2021. The optimization of sensitive fluid factor removing the effect of porosity and its application to hydrocarbon detection. Geophysical and Geochemical Exploration, 45(6): 1402-1408. doi: 10.11720/wtyht.2021.1364
Citation: WANG Di, ZHANG Yi-Ming, NIU Cong, HUANG Rao, HAN Li. 2021. The optimization of sensitive fluid factor removing the effect of porosity and its application to hydrocarbon detection. Geophysical and Geochemical Exploration, 45(6): 1402-1408. doi: 10.11720/wtyht.2021.1364

压制孔隙影响的流体敏感因子优选及其在烃类检测中的应用

  • 基金项目:

    国家科技重大专项项目(2017ZX05032-003)

详细信息
    作者简介: 王迪(1988-),男,硕士研究生,主要从事储层预测和流体检测方面的研究工作。 Email:wangdi4@cnooc.com.cn
  • 中图分类号: P631.4

The optimization of sensitive fluid factor removing the effect of porosity and its application to hydrocarbon detection

  • 尼日尔三角洲盆地S区块发育深水扇沉积,高孔含水砂岩表现为振幅;亮点和远道增强的AVO异常,其特征与油层类似,基于常规方法开展烃类检测存在多解性。针对该问题,笔者提出一种新的流体因子敏感性定量分析和优选方法,能够压制孔隙度造成的流体识别假象,达到;突出流体、压制孔隙影响的目的。分析结果表明,λ/μ具有对流体性质敏感性高、对孔隙度敏感性低的特征,是本区开展烃类检测的最佳敏感流体因子。实际应用结果表明,利用该方法能够有效区分真;亮点油层和假;亮点水层,预测结果与已钻井更加吻合,有效提升了烃类检测成功率。
  • 加载中
  • [1]

    吕福亮, 贺训云, 武金云, 等. 世界深水油气勘探现状、发展趋势及对我国深水勘探的启示[J]. 中国石油勘探, 2007, 12(6):28-31.

    [2]

    Lyu F L, He X Y, Wu J Y, et al. Current situation and tendency of deepwater oil and gas exploration in the world[J]. China Petroleum Exploration, 2007, 12(6):28-31.

    [3]

    李大伟, 李德生, 陈长民, 等. 深海扇油气勘探综述[J]. 中国海上油气, 2007, 19(1):18-24.

    [4]

    Li D W, Li D S, Chen C M, et al. An overview of hydrocarbon exploration in deep submarine fans[J]. China Offshore Oil and Gas, 2007, 19(1):18-24.

    [5]

    江怀友, 赵文智, 闫存章, 等. 世界海洋油气资源与勘探模式概述[J]. 海相油气地质, 2008, 13(3):5-10.

    [6]

    Jiang H Y, Zhao W Z, Yan C Z, et al. Review on marine petroleum resources and exploration models in the globe[J]. Marine Origin Petroleum Geology, 2008, 13(3):5-10.

    [7]

    邓荣敬, 邓运华, 于水, 等. 尼日尔三角洲盆地油气地质与成藏特征[J]. 石油勘探与开发, 2008, 35(6):755-762.

    [8]

    Deng R J, Deng Y H, Yu S, et al. Hydrocarbon geology and reservoir formation characteristics of Niger delta Basin[J]. Petroleum Exploration and Development, 2008, 35(6):755-762.

    [9]

    Ostrander W J. Plane wave reflection coefficients for gas sands at non-normal incidence[J]. Geophysics, 1984, 49(10):1637-1648.

    [10]

    Smith G C, Gidlow P M. Weighted stacking for rock property estimation and detection of gas[J]. Geophysical Prospecting, 1987, 35(9):993-1014.

    [11]

    Goodway B, Chen T W, Downton J. Improved AVO fluid detection and lithology discrimination using Lamé petrophysical parameters;;λρ, ;μρ,& ;λ/μ fluid stack,from P and S inversions[C]// SEG Technical Program Expanded Abstracts, 1997, 16:183-186.

    [12]

    Russell B H, Hedlin K, Hilterman F J, et al. Fluid-property discrimination with AVO:A Biot-Gassmann perspective[J]. Geophysics, 2003, 68(1):29-39.

    [13]

    张玉洁, 刘洪, 崔栋, 等. 基于挤喷流效应的Russell流体因子推广及应用[J]. 地球物理学报, 2016, 59(10):3901-3908.

    [14]

    Zhang Y J, Liu H, Cui D, et al. Construction and application of the Russell fluid factor with squirt flow effect[J]. Chinese Journal of Geophysics, 2016, 59(10):3901-3908.

    [15]

    姜仁, 欧阳永林, 曾庆才, 等. Russell流体因子在致密砂岩气层检测中的应用[J]. 天然气工业, 2017, 37(1):76-81.

    [16]

    Jiang R, Ouyang Y L, Zeng Q C, et al. Application of the Russell fluid factor in tight sandstone gas detection[J]. Natural Gas Industry, 2017, 37(1):76-81.

    [17]

    郑静静, 印兴耀, 张广智. 流体因子关系分析以及新流体因子的构建[J]. 地球物理学进展, 2011, 26(2):579-587.

    [18]

    Zheng J J, Yin X Y, Zhang G Z. Fluid factor analysis and the construction of the new fluid factor[J]. Progress in Geophysics, 2011, 26(2):579-587.

    [19]

    张广智, 郑静静, 印兴耀, 等. 基于Curvelet变换的角度流体因子提取技术[J]. 物探与化探, 2011, 35(4):505-510.

    [20]

    Zhang G Z, Zheng J J, Yin X Y, et al. The technique for extracting angle fluid factor based on curvelet transform[J]. Geophysical and Geochemical Exploration, 2011, 35(4):505-510.

    [21]

    谢玉洪, 邓勇, 李芳, 等. 莺歌海盆地;暗点型油气藏指示因子构建及应用[J]. 石油地球物理勘探, 2019, 54(6):1302-1309.

    [22]

    Xie Y H, Deng Y, Li F, et al. A dim-spot reservoir indicative factor in the Yinggehai Basin[J]. OGP, 2019, 54(6):1302-1309.

    [23]

    宗兆云, 印兴耀, 张繁昌. 基于弹性阻抗贝叶斯反演的拉梅参数提取方法研究[J]. 石油地球物理勘探, 2011, 46(4):598-604.

    [24]

    Zong Z Y, Yin X Y, Zhang F C. Elastic impedance Bayesian inversion for lame parameters extracting[J]. OGP, 2011, 46(4):598-604.

    [25]

    印兴耀, 张世鑫, 张繁昌, 等. 利用基于Russell近似的弹性波阻抗反演进行储层描述和流体识别[J]. 石油地球物理勘探, 2010, 45(3):373-380.

    [26]

    Yin X Y, Zhang S X, Zhang F C, et al. Utilizing Russell Approximation-based elastic wave impedance inversion to conduct reservoir description and fluid identification[J]. OGP, 2010, 45(3):373-380.

    [27]

    李红梅. 弹性参数直接反演技术在储层流体识别中的应用[J]. 物探与化探, 2014, 38(5):970-975.

    [28]

    Li H M. The application of elastic parameters direct inversion to reservoir fluid identification[J]. Geophysical and Geochemical Exploration, 2014, 38(5):970-975.

    [29]

    杨培杰, 董兆丽, 刘昌毅, 等. 敏感流体因子定量分析与直接提取[J]. 石油地球物理勘探, 2016, 51(1):158-164.

    [30]

    Yang P J, Dong Z L, Liu C Y, et al. Sensitive fluid factor extraction and analysis[J]. OGP, 2016, 51(1):158-164.

    [31]

    桂金咏, 高建虎, 李胜军, 等. 面向实际储层的流体因子优选方法[J]. 石油地球物理勘探, 2015, 50(1):129-135.

    [32]

    Gui J Y, Gao J H, Li S J, et al. Reservoir oriented fluid factor optimization method[J]. OGP, 2015, 50(1):129-135.

    [33]

    张世鑫. 基于地震信息的流体识别方法研究与应用[D]. 东营:中国石油大学(华东), 2012.

    [34]

    Zhang S X. Methodology and application of fluid identification with seismic information[D]. Dongying:China University of Petroleum, 2012.

    [35]

    李英, 秦德海. 基于流体替代的敏感弹性参数优选及流体识别在渤海B 油田的应用[J]. 物探与化探, 2018, 42(4):662-667.

    [36]

    Li Y, Qin D H. The optimization of sensitive elastic parameters based on fluid substitution and the application of fluid identification to Bohai B Oilfield[J]. Geophysical and Geochemical Exploration, 2018, 42(4):662-667.

    [37]

    Yin X Y, Zhang S X. Bayesian inversion for effective pore-fluid bulk modulus based on fluid-matrix decoupled amplitude variation with offset approximation[J]. Geophysics, 2014, 79(5):R221-R232.

    [38]

    冉然, 宋建国. 基于Zoeppritz方程的纵横波模量反演[J]. 物探与化探, 2017, 41(4):707-714.

    [39]

    Ran R, Song J G. Compressional and shear modulus inversion based on Zoeppritz equation[J]. Geophysical and Geochemical Exploration, 2017, 41(4):707-714.

    [40]

    邓炜, 印兴耀, 宗兆云. 等效流体体积模量直接反演的流体识别方法[J]. 石油地球物理勘探, 2017, 52(2):315-325.

    [41]

    Deng W, Yin X Y, Zong Z Y. Fluid identification based on direct inversion of equivalent fluid bulk modulus[J]. OGP, 2017, 52(2):315-325.

  • 加载中
计量
  • 文章访问数:  463
  • PDF下载数:  114
  • 施引文献:  0
出版历程
收稿日期:  2021-01-20
修回日期:  2021-12-20
刊出日期:  2021-12-21

目录