The optimization of sensitive fluid factor removing the effect of porosity and its application to hydrocarbon detection
-
摘要: 尼日尔三角洲盆地S区块发育深水扇沉积,高孔含水砂岩表现为振幅;亮点和远道增强的AVO异常,其特征与油层类似,基于常规方法开展烃类检测存在多解性。针对该问题,笔者提出一种新的流体因子敏感性定量分析和优选方法,能够压制孔隙度造成的流体识别假象,达到;突出流体、压制孔隙影响的目的。分析结果表明,λ/μ具有对流体性质敏感性高、对孔隙度敏感性低的特征,是本区开展烃类检测的最佳敏感流体因子。实际应用结果表明,利用该方法能够有效区分真;亮点油层和假;亮点水层,预测结果与已钻井更加吻合,有效提升了烃类检测成功率。Abstract: The deep-water turbidite sandstone reservoirs in Niger Delta basin have great oil-gas exploration potential.Drilling results in S Block area indicate that high-porosity water sandstones show "bright spot" and class II-III AVO anomaly,which are similar to features of oil sandstones. It is critical to remove the effect of porosity while fluid detection is conducted.However,conventional analysis method seldom considers the effect of porosity,and the selected fluid factor is sensitive to both hydrocarbon and porosity,which leads to inaccurate detection result.Therefore,in this study,a new quantitative evaluation method based on fluid and porosity substitution is proposed to choose the most sensitive fluid factor,which can highlight hydrocarbon and suppress the effect of porosity.The analysis result shows that λ/μ is the most suitable elastic parameter in this area and can be used to detect hydrocarbon.The real data application result shows that λ/μ can effectively distinguish "bright spot" water sandstones from oil sandstones, and the predicted results are well consistent with the drilling data, which proves the feasibility of this method.
-
Key words:
- Niger Delta basin /
- bright spot /
- fluid factor /
- quantitative evaluation /
- hydrocarbon detection
-
-
[1] 吕福亮, 贺训云, 武金云, 等. 世界深水油气勘探现状、发展趋势及对我国深水勘探的启示[J]. 中国石油勘探, 2007, 12(6):28-31.
[2] Lyu F L, He X Y, Wu J Y, et al. Current situation and tendency of deepwater oil and gas exploration in the world[J]. China Petroleum Exploration, 2007, 12(6):28-31.
[3] 李大伟, 李德生, 陈长民, 等. 深海扇油气勘探综述[J]. 中国海上油气, 2007, 19(1):18-24.
[4] Li D W, Li D S, Chen C M, et al. An overview of hydrocarbon exploration in deep submarine fans[J]. China Offshore Oil and Gas, 2007, 19(1):18-24.
[5] 江怀友, 赵文智, 闫存章, 等. 世界海洋油气资源与勘探模式概述[J]. 海相油气地质, 2008, 13(3):5-10.
[6] Jiang H Y, Zhao W Z, Yan C Z, et al. Review on marine petroleum resources and exploration models in the globe[J]. Marine Origin Petroleum Geology, 2008, 13(3):5-10.
[7] 邓荣敬, 邓运华, 于水, 等. 尼日尔三角洲盆地油气地质与成藏特征[J]. 石油勘探与开发, 2008, 35(6):755-762.
[8] Deng R J, Deng Y H, Yu S, et al. Hydrocarbon geology and reservoir formation characteristics of Niger delta Basin[J]. Petroleum Exploration and Development, 2008, 35(6):755-762.
[9] Ostrander W J. Plane wave reflection coefficients for gas sands at non-normal incidence[J]. Geophysics, 1984, 49(10):1637-1648.
[10] Smith G C, Gidlow P M. Weighted stacking for rock property estimation and detection of gas[J]. Geophysical Prospecting, 1987, 35(9):993-1014.
[11] Goodway B, Chen T W, Downton J. Improved AVO fluid detection and lithology discrimination using Lamé petrophysical parameters;;λρ, ;μρ,& ;λ/μ fluid stack,from P and S inversions[C]// SEG Technical Program Expanded Abstracts, 1997, 16:183-186.
[12] Russell B H, Hedlin K, Hilterman F J, et al. Fluid-property discrimination with AVO:A Biot-Gassmann perspective[J]. Geophysics, 2003, 68(1):29-39.
[13] 张玉洁, 刘洪, 崔栋, 等. 基于挤喷流效应的Russell流体因子推广及应用[J]. 地球物理学报, 2016, 59(10):3901-3908.
[14] Zhang Y J, Liu H, Cui D, et al. Construction and application of the Russell fluid factor with squirt flow effect[J]. Chinese Journal of Geophysics, 2016, 59(10):3901-3908.
[15] 姜仁, 欧阳永林, 曾庆才, 等. Russell流体因子在致密砂岩气层检测中的应用[J]. 天然气工业, 2017, 37(1):76-81.
[16] Jiang R, Ouyang Y L, Zeng Q C, et al. Application of the Russell fluid factor in tight sandstone gas detection[J]. Natural Gas Industry, 2017, 37(1):76-81.
[17] 郑静静, 印兴耀, 张广智. 流体因子关系分析以及新流体因子的构建[J]. 地球物理学进展, 2011, 26(2):579-587.
[18] Zheng J J, Yin X Y, Zhang G Z. Fluid factor analysis and the construction of the new fluid factor[J]. Progress in Geophysics, 2011, 26(2):579-587.
[19] 张广智, 郑静静, 印兴耀, 等. 基于Curvelet变换的角度流体因子提取技术[J]. 物探与化探, 2011, 35(4):505-510.
[20] Zhang G Z, Zheng J J, Yin X Y, et al. The technique for extracting angle fluid factor based on curvelet transform[J]. Geophysical and Geochemical Exploration, 2011, 35(4):505-510.
[21] 谢玉洪, 邓勇, 李芳, 等. 莺歌海盆地;暗点型油气藏指示因子构建及应用[J]. 石油地球物理勘探, 2019, 54(6):1302-1309.
[22] Xie Y H, Deng Y, Li F, et al. A dim-spot reservoir indicative factor in the Yinggehai Basin[J]. OGP, 2019, 54(6):1302-1309.
[23] 宗兆云, 印兴耀, 张繁昌. 基于弹性阻抗贝叶斯反演的拉梅参数提取方法研究[J]. 石油地球物理勘探, 2011, 46(4):598-604.
[24] Zong Z Y, Yin X Y, Zhang F C. Elastic impedance Bayesian inversion for lame parameters extracting[J]. OGP, 2011, 46(4):598-604.
[25] 印兴耀, 张世鑫, 张繁昌, 等. 利用基于Russell近似的弹性波阻抗反演进行储层描述和流体识别[J]. 石油地球物理勘探, 2010, 45(3):373-380.
[26] Yin X Y, Zhang S X, Zhang F C, et al. Utilizing Russell Approximation-based elastic wave impedance inversion to conduct reservoir description and fluid identification[J]. OGP, 2010, 45(3):373-380.
[27] 李红梅. 弹性参数直接反演技术在储层流体识别中的应用[J]. 物探与化探, 2014, 38(5):970-975.
[28] Li H M. The application of elastic parameters direct inversion to reservoir fluid identification[J]. Geophysical and Geochemical Exploration, 2014, 38(5):970-975.
[29] 杨培杰, 董兆丽, 刘昌毅, 等. 敏感流体因子定量分析与直接提取[J]. 石油地球物理勘探, 2016, 51(1):158-164.
[30] Yang P J, Dong Z L, Liu C Y, et al. Sensitive fluid factor extraction and analysis[J]. OGP, 2016, 51(1):158-164.
[31] 桂金咏, 高建虎, 李胜军, 等. 面向实际储层的流体因子优选方法[J]. 石油地球物理勘探, 2015, 50(1):129-135.
[32] Gui J Y, Gao J H, Li S J, et al. Reservoir oriented fluid factor optimization method[J]. OGP, 2015, 50(1):129-135.
[33] 张世鑫. 基于地震信息的流体识别方法研究与应用[D]. 东营:中国石油大学(华东), 2012.
[34] Zhang S X. Methodology and application of fluid identification with seismic information[D]. Dongying:China University of Petroleum, 2012.
[35] 李英, 秦德海. 基于流体替代的敏感弹性参数优选及流体识别在渤海B 油田的应用[J]. 物探与化探, 2018, 42(4):662-667.
[36] Li Y, Qin D H. The optimization of sensitive elastic parameters based on fluid substitution and the application of fluid identification to Bohai B Oilfield[J]. Geophysical and Geochemical Exploration, 2018, 42(4):662-667.
[37] Yin X Y, Zhang S X. Bayesian inversion for effective pore-fluid bulk modulus based on fluid-matrix decoupled amplitude variation with offset approximation[J]. Geophysics, 2014, 79(5):R221-R232.
[38] 冉然, 宋建国. 基于Zoeppritz方程的纵横波模量反演[J]. 物探与化探, 2017, 41(4):707-714.
[39] Ran R, Song J G. Compressional and shear modulus inversion based on Zoeppritz equation[J]. Geophysical and Geochemical Exploration, 2017, 41(4):707-714.
[40] 邓炜, 印兴耀, 宗兆云. 等效流体体积模量直接反演的流体识别方法[J]. 石油地球物理勘探, 2017, 52(2):315-325.
[41] Deng W, Yin X Y, Zong Z Y. Fluid identification based on direct inversion of equivalent fluid bulk modulus[J]. OGP, 2017, 52(2):315-325.
-
计量
- 文章访问数: 463
- PDF下载数: 114
- 施引文献: 0