中国自然资源航空物探遥感中心主办
地质出版社出版

地面核磁共振法与高密度电阻率法在西藏盐湖卤水钾矿勘查中的应用

何胜, 马文鑫, 甘斌. 2021. 地面核磁共振法与高密度电阻率法在西藏盐湖卤水钾矿勘查中的应用. 物探与化探, 45(6): 1409-1415. doi: 10.11720/wtyht.2021.0005
引用本文: 何胜, 马文鑫, 甘斌. 2021. 地面核磁共振法与高密度电阻率法在西藏盐湖卤水钾矿勘查中的应用. 物探与化探, 45(6): 1409-1415. doi: 10.11720/wtyht.2021.0005
HE Sheng, MA Wen-Xin, GAN Bin. 2021. Joint application of surface nuclear magnetic resonance and high-density resistivity method in the exploration of potassium ore in salt lake brine in Tibet. Geophysical and Geochemical Exploration, 45(6): 1409-1415. doi: 10.11720/wtyht.2021.0005
Citation: HE Sheng, MA Wen-Xin, GAN Bin. 2021. Joint application of surface nuclear magnetic resonance and high-density resistivity method in the exploration of potassium ore in salt lake brine in Tibet. Geophysical and Geochemical Exploration, 45(6): 1409-1415. doi: 10.11720/wtyht.2021.0005

地面核磁共振法与高密度电阻率法在西藏盐湖卤水钾矿勘查中的应用

  • 基金项目:

    西藏自治区地质矿产勘查开发局科研项目

    西藏盐湖工作程度及潜力研究(藏矿勘[2019]32号)

详细信息
    作者简介: 何胜(1988-),男,物化探工程师,本科,长期从事水文、工程、地热等方面的物探勘查与研究工作。Email:395579229@qq.com
  • 中图分类号: P631

Joint application of surface nuclear magnetic resonance and high-density resistivity method in the exploration of potassium ore in salt lake brine in Tibet

  • 地面核磁共振法可直接寻找地下水(卤水),高密度电阻率法在判断卤水与淡水方面较为适用。应用上述两种物探方法在西藏扎仓茶卡盐湖和茶里错盐湖进行了联合探测,查明了研究区地下卤水的分布情况,避免了单一方法的局限性和片面性,为西藏两大盐湖卤水钾矿的勘查开发总体布局提供了依据。同时,结合地质浅井资料进行了对比分析,发现两种物探方法联合探测的结果与浅井资料较为吻合,表明应用上述两种物探方法可为西藏地区的地下卤水探测提供一种高效、精准的勘探模式。
  • 加载中
  • [1]

    李武, 董亚萍. 西藏盐湖卤水成盐过程自然能的应用[J]. 科技导报, 2017, 35(12):39-43.

    [2]

    Li W, Dong Y P. Application of natural energy in salt precipitation from Tibetan salt lakes[J]. Science & Technology Review, 2017, 35(12):39-43.

    [3]

    刘喜方, 郑绵平. 西藏盐湖的钾盐资源[J]. 科技导报, 2017, 35(12):62-66.

    [4]

    Liu X F, Zheng M P. Saline lake potash resources in Tibet[J]. Science & Technology Review, 2017, 35(12):62-66.

    [5]

    焦鹏程, 张建伟, 姚佛军, 等. 马海盐湖深部卤水钾盐勘查与研究进展[J]. 矿床地质, 2016, 35(6):1305-1308.

    [6]

    Jiao P C, Zhang J W, Yao F J, et al. Exploration and research progress of potash in deep brine of Mahai salt Lake[J]. Mineral Deposits, 2016, 35(6):1305-1308.

    [7]

    黄华, 刘成林, 张士万, 等. 深层富钾卤水的地球物理探测技术及应用——以江陵凹陷为例[J]. 矿床地质, 2014, 33(5):1101-1107.

    [8]

    Huang H, Liu C L, Zhang S W, et al. Application of geophysical detection method to exploration of deep potassium-rich brine formation: A case study of Jiangling Depression[J]. Mineral Deposits, 2014, 33(5):1101-1107.

    [9]

    潘剑伟, 占嘉诚, 洪涛, 等. 地面核磁共振方法和高密度电阻率法联合找水[J]. 地质科技情报, 2018, 37(3):253-262.

    [10]

    Pan J W, Zhan J C, Hong T, et al. Combined use of surface nuclear magnetic resonance and electrical resistivity imaging in detecting groundwater[J]. Geological Science and Technology Information, 2018, 37(3):253-262.

    [11]

    李宏恩, 徐海峰, 李铮, 等. 地面核磁共振法与高密度电法联合探测堤坝渗漏隐患原位试验研究[J]. 地球物理学进展, 2019, 34(4):1627-1634.

    [12]

    Li H E, Xu H F, Li Z, et al. In situ expermental study on resistivity-magnetic resonance sounding coupling imaging diagnosis method for an embankment dam with seepage defects[J]. Progress in Geophysics, 2019, 34(4):1627-1634.

    [13]

    高敬语, 谭嘉言, 朱占升, 等. 音频大地电磁法在地下水质评价中的应用[J]. 物探与化探, 2013, 37(5):895-898.

    [14]

    Gao J Y, Tan J Y, Zhu Z S, et al. The appication of the audio magnetotelluric method to the assessment of underground water quality[J]. Geophysical and Geochemical Exploration, 2013, 37(5):895-898.

    [15]

    陈松, 刘磊, 刘怀庆, 等. 北部湾咸淡水分界面划分中的电法应用分析[J]. 地球物理学进展, 2019, 34(4):1592-1599.

    [16]

    Chen S, Liu L, Liu H Q, et al. Application analysis of electrical method in dividing saltwater and freshwater interface in Beibu bay[J]. Progress in Geophysics, 2019, 34(4):1592-1599.

    [17]

    龙作元, 何胜. 核磁共振测深方法在多年冻土区找水中的应用[J]. 物探与化探, 2015, 39(2):288-291.

    [18]

    Long Z Y, He S. Application of nuclear magnetic resonance sounding method in finding water in permafrost regions[J]. Geophysical and Geochemical Exploration, 2015, 39(2):288-291.

    [19]

    刘军. 地面核磁共振与瞬变电磁联合探测技术在矿区老空水探测中的应用[J]. 建井技术, 2016, 37(6):16-18.

    [20]

    Liu J. Surface ground nuclear magnetic resonance and transient electromagnetic combined detection technology applied to detection of water in goaf of mining area[J]. Mine Construction Technology, 2016, 37(6):16-18.

    [21]

    何胜, 蒋厚辉, 苌有全, 等. 核磁共振测深方法在盐湖区卤水钾矿勘查中的应用[J]. 地球物理学进展, 2015, 30(1):332-338.

    [22]

    He S, Jiang H H, Chang Y Q, et al. Application of MRS method in exploration brine potassium ore in saline lake district[J]. Progress in Geophysics, 2015, 30(1):332-338.

    [23]

    王瑞丰, 温来福, 程久龙, 等. 高密度电法与瞬变电磁法联合勘查河北承德地区基岩裂隙水[J]. 地球科学与环境学报, 2020, 42(6):784-790.

    [24]

    Wang R F, Wen L F, Cheng J L, et al. Joint detection of bedrock fissure water using high-density electrical method and transient electromagnetic method in Chende Area of Hebei China[J]. Journal of Earth Sciences and Environment, 2020, 42(6):784-790.

    [25]

    许艺煌, 黄真萍, 程志伟, 等. 高密度电阻率法在弃渣堆积体分布调查中的应用[J]. 物探与化探, 2020, 44(2):435-440.

    [26]

    Xu Y H, Huang Z P, Cheng Z W, et al. The application of high density electrical resistivity method to the investigation of the distribution of slag accumula-tion in hydropower station[J]. Geophysical and Geochemical Exploration, 2020, 44(2):435-440.

  • 加载中
计量
  • 文章访问数:  693
  • PDF下载数:  105
  • 施引文献:  0
出版历程
收稿日期:  2021-01-04
修回日期:  2021-12-20
刊出日期:  2021-12-21

目录