中国自然资源航空物探遥感中心主办
地质出版社出版

含油气盆地甲烷微渗漏及其油气勘探意义研究进展

邹雨, 王国建, 杨帆, 陈媛. 2022. 含油气盆地甲烷微渗漏及其油气勘探意义研究进展. 物探与化探, 46(1): 1-11. doi: 10.11720/wtyht.2022.1150
引用本文: 邹雨, 王国建, 杨帆, 陈媛. 2022. 含油气盆地甲烷微渗漏及其油气勘探意义研究进展. 物探与化探, 46(1): 1-11. doi: 10.11720/wtyht.2022.1150
ZOU Yu, WANG Guo-Jian, YANG Fan, CHEN Yuan. 2022. Research progress of methane microseepage in petroliferous basins and its significance for oil-gas exploration. Geophysical and Geochemical Exploration, 46(1): 1-11. doi: 10.11720/wtyht.2022.1150
Citation: ZOU Yu, WANG Guo-Jian, YANG Fan, CHEN Yuan. 2022. Research progress of methane microseepage in petroliferous basins and its significance for oil-gas exploration. Geophysical and Geochemical Exploration, 46(1): 1-11. doi: 10.11720/wtyht.2022.1150

含油气盆地甲烷微渗漏及其油气勘探意义研究进展

  • 基金项目:

    国家自然科学基金项目近地表轻烃来源判识模型及其油气勘探应用基础研究(41872126)

详细信息
    作者简介: 邹雨(1992-),男,博士,工程师,研究方向为油气地球化学勘探。Email: zouyu1992.syky@sinopec.com
  • 中图分类号: P632

Research progress of methane microseepage in petroliferous basins and its significance for oil-gas exploration

  • 21世纪以来,地表微渗漏表现特征的形成机理研究已取得显著进展,对油气勘探具有重要意义。含油气盆地微渗漏气体是以甲烷为主,在地下从烃源岩或储层出发,近于垂向微运移,而在地表造成的化学、物理及生物变化特征是地下油气藏的近似映射,它是客观存在的,是石油渗漏系统中一个重要组成部分,目前已替代宏观渗漏成为地表追踪地下油气藏最有效的窗口。甲烷微渗漏监测可以在地表、水体及大气中直接进行,测试获得的含甲烷烃类气体组分浓度及同位素组成是地下油气评价的第一手重要资料。甲烷微渗漏间接监测数据主要来源于地表微生物、植被、矿物、放射性及磁性等,与直接获得的化探数据相似,这些不同的地表异常监测数据都可区别于远离油气藏地表的背景值,其异常分布区将成为有利勘探区的靶向。进入综合勘探时代,甲烷微渗漏机理的深入认识,单一监测方法及其片面认识的避免,地表综合监测方法的思路转变,以及数理分析新体系的建立,必将在未来油气勘探中发挥越来越重要的作用。
  • 加载中
  • [1]

    Etiope G. The Earth's hydrocarbon degassing [M]. Switzerland: Springer International Publishing, 2015.

    [2]

    Sechman H, Kotarba M J, Kędzior S, et al. Fluctuations in methane and carbon dioxide concentrations in the near-surface zone and their genetic characterization in abandoned and active coal mines in the SW part of the Upper Silesian Coal Basin, Poland[J]. International Journal of Coal Geology, 2020,227:103529.

    [3]

    Kotarba M J, Więcław D, Bilkiewicz E, et al. Origin, secondary processes and migration of oil and natural gas in the central part of the Polish Outer Carpathians[J]. Marine and Petroleum Geology, 2020,121:104617.

    [4]

    Etiope G, Ehlmann B L, Schoell M. Low temperature production and exhalation of methane from serpentinized rocks on Earth: A potential analog for methane production on Mars[J]. Icarus, 2013,224(2):276-285.

    [5]

    Etiope G, Schwietzke S. Global geological methane emissions: An update of top-down and bottom-up estimates[J]. Elementa-Science of the Anthropocene, 2019,47(7):1-9.

    [6]

    许跃, 唐俊红, 王国建, 等. 含油气盆地地质甲烷释放研究综述[J]. 地质学报, 2016,90(3):553-558.

    [7]

    Yu Y, Tang J H, Wang G J, et al. A comprehensive review of geologic methane emission in hydrocarbon-prone areas[J]. Acta Geological Sinica, 2016,90(3):553-558.

    [8]

    唐俊红, 高忆平, 施明才, 等. 含油气盆地微渗漏甲烷运移机制研究进展[J]. 杭州电子科技大学学报:自然科学版, 2019,39(2):64-69.

    [9]

    Tang J H, Gao Y P, Shi M C, et al. A preliminary review of gas migration mechanisms of methane microseepage in hydrocarbon-prone areas[J]. Journal of Hangzhou Dianzi University:Natural Sciences, 2019,39(2):64-69.

    [10]

    Ciotoli G, Procesi M, Etiope G, et al. Influence of tectonics on global scale distribution of geological methane emissions[J]. Nature Communications, 2020,11(1):2305.

    [11]

    王国建, 汤玉平, 唐俊红, 等. 断层对烃类微渗漏主控作用及异常分布影响的实验模拟研究[J]. 物探与化探, 2018,42(1):21-27.

    [12]

    Wang G J, Tang Y P, Tang J H, et al. Experimental simulation of the effect of faults on vertical hydrocarbon microseepage[J]. Geophysical and Geochemical Exploration, 2018,42(1):21-27.

    [13]

    王国建, 唐俊红, 汤玉平, 等. 油气藏上方地层中不同赋存态微渗漏轻烃特征初步模拟实验研究[J]. 石油实验地质, 2017,39(2):261-266.

    [14]

    Wang G J, Tang J H, Tang Y P, et al. Simulation of microseepage of light hydrocarbon of different occurrence states in strata above reservoirs[J]. Petroleum Geology & Experiment, 2017,39(2):261-266.

    [15]

    He J, Wang J, Milsch H, et al. The characteristics and formation mechanism of a regional fault in shale strata: Insights from the Middle-Upper Yangtze, China[J]. Marine and Petroleum Geology, 2020,121:104592.

    [16]

    Asadzadeh S, de Souza Filho de Souza Filho. Spectral remote sensing for onshore seepage characterization: A critical overview[J]. Earth-Science Reviews, 2017,168:48-72.

    [17]

    Allek K, Boubaya D, Bouguern A, et al. Spatial association analysis between hydrocarbon fields and sedimentary residual magnetic anomalies using Weights of Evidence: An example from the Triassic Province of Algeria[J]. Journal of Applied Geophysics, 2016,135:100-110.

    [18]

    顾磊, 许科伟, 汤玉平, 等. 基于高通量测序技术研究页岩气区上方微生物多样性[J]. 石油实验地质, 2020,42(3):443-450,458.

    [19]

    Gu L, Xu K W, Tang Y P, et al. Microbial diversity above a shale gas field using high-throughput sequencing[J]. Petroleum Geology & Experiment, 2020,42(3):443-450,458.

    [20]

    Abrams M A. Significance of hydrocarbon seepage relative to petroleum generation and entrapment[J]. Marine and Petroleum Geology, 2005,22(4):457-477.

    [21]

    Sobolev I S, Bredikhin N P, Bratec T, et al. Chemical diagenesis in near-surface zone above oil fields in geochemical exploration[J]. Applied Geochemistry, 2018,95:33-44.

    [22]

    齐小平, 张友焱, 杨辉, 等. 柴达木盆地三湖地区天然气有利勘探区带(目标)遥感物化探综合分析与评价[J]. 中国石油勘探, 2012,17(5):17-26.

    [23]

    Qi X P, Zhang Y Y, Yang H, et al. Analysis and evaluation of beneficial gas exploration zone based on remote sensing geophysical and geochemical methods in Sanhu area of Qaidam basin[J]. China Petroleum Exploration, 2012,17(5):17-26.

    [24]

    王国建, 杨帆, 卢丽, 等. 采样季节对油气化探中游离烃方法的影响讨论[J]. 石油天然气学报, 2010,32(4):166-170,429.

    [25]

    Wang G J, Yang F, Lu L, et al. Influence of sampling seasons on soil gas method in surface geochemical prospecting for oil and gas[J]. Journal of Oil and Gas Technology, 2010,32(4):166-170,429.

    [26]

    Schumacher D Integrating hydrocarbon microseepage data with seismic data doubles exploration success[C]//Proceedings thirty-fourth annual conference and exhibition,Indonesian Petroleum Association, Indonesia, 2010.

    [27]

    Milkov A V, Etiope G. Revised genetic diagrams for natural gases based on a global dataset of >20,000 samples[J]. Organic Geochemistry, 2018,125:109-120.

    [28]

    Milkov A V. Worldwide distribution and significance of secondary microbial methane formed during petroleum biodegradation in conventional reservoirs[J]. Organic Geochemistry, 2011,42(2):184-207.

    [29]

    赵静, 梁前勇, 张莉, 等. 基于酸解烃判别台湾海峡盆地西部坳陷含油气系统的油气藏属性[J]. 物探与化探, 2018,42(3):436-441.

    [30]

    Zhao J, Liang Q Y, Zhang L, et al. Oil and gas reservoir attribute discrimination based on surface sediment acid-extraction hydrocarbon in the western depression of Taiwan Strait Basin[J]. Geophysical and Geochemical Exploration, 2018,42(3):436-441.

    [31]

    Sechman H, Guzy P, Kaszuba P, et al. Direct and indirect surface geochemical methods in petroleum exploration: A case study from eastern part of the Polish Outer Carpathians[J]. International Journal of Earth Sciences, 2020,109(5):1853-1867.

    [32]

    冯俊熙, 杨胜雄, 孙晓明, 等. 琼东南盆地甲烷微渗漏活动地球化学示踪研究[J]. 西南石油大学学报:自然科学版, 2018,40(3):63-75.

    [33]

    Feng J X, Yang S X, Sun X M, et al. Geochemical tracers for methane microleakage activity in the Qiongdongnan basin[J]. Journal of Southwest Petroleum University:Science & Technology Edition, 2018,40(3):63-75.

    [34]

    Hunt J M. Petroleum geochemistry and geology[M]. New York: Freeman and Co., 1996.

    [35]

    杨金秀, 宋朋霖, 王红亮, 等. 琼东南盆地天然气水合物成藏模式及主控因素分析[J/OL]. 石油与天然气地质. 2019:1-17[2021-02-04]. http://kns.cnki.net/kcms/detail/11.4820.te.20191126.1454.004.html.

    [36]

    Yang J X, Song P L, Wang H L, et al. Gas hydrate accumulation model and major controlling factors in Qiongdongnan Basin[J/OL]. Oil & Gas Geology, 2019:1-17[2021-02-04]. http://kns.cnki.net/kcms/detail/11.4820.te.20191126.1454.004.html.

    [37]

    Klusman R W, Saaed M A. Comparison of light hydrocarbon microseepage mechanisms [G]//Schumacher D, Abrams M A. Hydrocarbon migration and its near-surface expression. Oklahoma:AAPG Memoir. 1996: 157-168.

    [38]

    Abrams M A. Marine seepage variability and its impact on evaluating the surface migrated hydrocarbon seep signal[J]. Marine and Petroleum Geology, 2020,121:104600.

    [39]

    Hirst B, Gibson G, Gillespie S, et al. Oil and gas prospecting by ultra-sensitive optical gas detection with inverse gas dispersion modelling[J]. Geophysical Research Letters, 2004,31(12):1-4.

    [40]

    Zhou Q, Xu X, Xu H, et al. Surface microbial geochemistry of the Beihanzhuang Oilfield, northern Jiangsu, China[J]. Journal of Petroleum Science and Engineering, 2020,191:107140.

    [41]

    汤玉平, 宁丽荣, 蒋涛, 等. 积雪油气化探方法试验研究[J]. 石油实验地质, 2009,31(3):287-291.

    [42]

    Tang Y P, Ning L R, Jiang T, et al. Experimental research on the oil and gas geochemical exploration method of snow cover[J]. Petroleum Geology & Experiment, 2009,31(3):287-291.

    [43]

    赵克斌, 陈银节, 孙长青. 油气化探异常的稳定性及油气地质意义[J]. 地质通报, 2009,28(11):1620-1627.

    [44]

    Zhao K B, Chen Y J, Sun C Q. Stability and petroleum geological significance of hydrocarbon geochemical Anomaly[J]. Geological Bulletin of China, 2009,28(11):1620-1627.

    [45]

    杨俊, 沈忠民, 王国建, 等. 油气化探异常双因素评价方法——以渤海湾盆地济阳坳陷临南—钱官屯地区为例[J]. 石油实验地质, 2018,40(2):295-302.

    [46]

    Yang J, Shen Z M, Wang G J, et al. Double-factor evaluation for oil and gas geochemical anomalies: A case study of Linnan-Qianguantun areas, Jiyang Depression, Bohai Bay Basin[J]. Petroleum Geology & Experiment, 2018,40(2):295-302.

    [47]

    Huang S, Chen S, Wang D, et al. Hydrocarbon micro-seepage detection from airborne hyper-spectral images by plant stress spectra based on the PROSPECT model[J]. International Journal of Applied Earth Observation and Geoinformation, 2019,74:180-190.

    [48]

    Senouci M, Allek K. Application of Bayesian classifier to magnetic and gamma ray spectrometry data for targeting hydrocarbon microseepages[J]. Journal of Applied Geophysics, 2020,181:104145.

    [49]

    Baciu C, Ionescu A, Etiope G. Hydrocarbon seeps in Romania: Gas origin and release to the atmosphere[J]. Marine and Petroleum Geology, 2018,89:130-143.

    [50]

    Berner U, Faber E. Empirical carbon isotope/maturity relationships for gases from algal kerogens and terrigenous organic matter, based on dry, open-system pyrolysis[J]. Organic Geochemistry, 1996,24(10):947-955.

    [51]

    Zhang L, Bai G, Zhao K, et al. Restudy of acid-extractable hydrocarbon data from surface geochemical survey in the Yimeng Uplift of the Ordos Basin, China: Improvement of geochemical prospecting for hydrocarbons[J]. Marine and Petroleum Geology, 2006,23(5):529-542.

    [52]

    Zhang L, Bai G, Zhao Y. Data-processing and recognition of seepage and microseepage anomalies of acid-extractable hydrocarbons in the south slope of the Dongying depression, eastern China[J]. Marine and Petroleum Geology, 2014,57:385-402.

    [53]

    荣发准, 陈昕华, 孙长青, 等. 近地表油气化探异常的确定与解释评价[J]. 物探与化探, 2013,37(2):212-217,24.

    [54]

    Rong F Z, Chen X H, Sun C Q, et al. The determination and interpretation of near-surface geochemical oil-gas anomaly[J]. Geophysical and Geochemical Exploration, 2013,37(2):212-217,24.

    [55]

    王珺璐, 贺永红, 王萌, 等. 层次分析和特征值分析相结合的物化探综合油气评价[J]. 物探与化探, 2015,39(4):762-767.

    [56]

    Wang J L, He Y H, Wang M, et al. The comprehensive evaluation of oil and gas exploration combining hierarchy analysis and eigenvalue analysis[J]. Geophysical and Geochemical Exploration, 2015,39(4):762-767.

    [57]

    孙忠军. 中国油气化探的成功案例[J]. 地质通报, 2009,28(11):1562-1571.

    [58]

    Sun Z J. Case histories of hydrocarbon survey success in China[J]. Geological Bulletin of China, 2009,28(11):1562-1571.

    [59]

    汤玉平, 赵克斌, 吴传芝, 等. 中国油气化探的近期进展和发展方向[J]. 地质通报, 2009,28(11):1614-1619.

    [60]

    Tang Y P, Zhao K B, Wu C Z, et al. Recent advances and developing trend of hydrocarbon geochemical exploration in China[J]. Geological Bulletin of China, 2009,28(11):1614-1619.

  • 加载中
计量
  • 文章访问数:  689
  • PDF下载数:  7
  • 施引文献:  0
出版历程
收稿日期:  2021-03-17
修回日期:  2022-02-20
刊出日期:  2022-02-25

目录