Application of airborne geophysical survey in antarctica
-
摘要: 航空地球物理勘探是认识极地区域构造的重要技术手段。在回顾和分析南极航空地球物理勘探发展历史与现状的基础上,总结归纳了航空地球物理勘探在南极地区取得的主要成果。归纳出南极地壳结构研究、南极古大陆重建与恢复、南极火山与岩浆作用调查和南极冰架与地质相互作用研究等4方面典型实例,航空地球物理勘探为南极地区域地质构造研究提供了有效的技术支撑。目前,南极部分区域仍为航空地球物理勘探的空白区,可将成功的经验应用于下一步的实际工作中,特别是将航空重、磁方法与航空冰雷达探测方法相结合,已成为解决南极冰层与基岩相互作用问题的未来趋势,也为我国南极航空地球物理勘探提供了方向。Abstract: Airborne geophysical techniques represent a cost-effective way for obtaining insights into the crustal geology of the Antarctic. Based on the analysis of the history of Antarctic airbrone geophysical survey and development of facilities and fly-platform applied in the survey, this paper gives a review of the leading scientific application topic of airborne geophysical data i.e.,the crustal structure of Antarctica,the reconstruction and restoration of ancient terrains, magmatism and volcanism identification,and the interaction between Antarctica Ice Shelf and bed rock, which shows that airborne geophysical survey provides effective technical support for Antarctica geosciences research.Our research shows that there is still a blank area for geophysical survey. Based on out review, the combination of airborne magnetic, airborne gravity and ice radar data has provide a new solution to the interaction study of Antarctic Ice shelf and bedrock.
-
-
[1] Weihaupt J G, Rice A, Van d H F G. Gravity anomalies of the Antarctic lithosphere[J]. Lithosphere, 2010,2(6):454-461.
[2] Johnson A C, Frese R R B V, Group A W. Magnetic map will define Antarctica's structure[J]. Eos Transactions American Geophysical Union, 2013,78(18):185-185.
[3] 高晟俊, 郝卫峰, 李斐, 等. 极地航空重力测量及其应用进展[J]. 极地研究, 2018,30(1):97-113.
[4] Gao S J, Hao W F, Li F, et al. Progress in application of airborne gravity measurements in polar regions[J]. Chinese Journal of Polar Research, 2018,30(1):97-113.
[5] Studinger M, Bell R, Frearson N. Comparison of AIRGrav and GT-1A airborne gravimeters for research applications[J]. Geophysics, 2008,73(6):151-161.
[6] Pfaffling A, Reid J E. Sea ice as an evaluation target for HEM modelling and inversion[J]. Journal of Applied Geophysics, 2009,67(3):242-249.
[7] Mikucki J, Auken E, Tulaczyk S, et al. Deep groundwater and potential subsurface habitats beneath an Antarctic dry valley[J]. Nature Communications, 2015,6:6831.
[8] Foley N, Tulaczyk S M, Grombacher D, et al. Evidence for pathways of concentrated submarine groundwater discharge in East Antarctica from helicopter-borne electrical resistivity measurements[J]. Hydrology, 2019,6(2):1-15,54.
[9] Golynsky A V, Ferraccioli F, Hong J K, et al. New magnetic anomaly map of the Antarctic[J]. Geophysical Research Letters, 2018,45(13):6437-6449.
[10] Scheinert M, Ferraccioli F, et al. New Antarctic gravity anomaly grid for enhanced geodetic and geophysical studies in Antarctica[J]. Geophysical Research Letters, 2016,43(2):600-610.
[11] Jordan T A, Riley T R, Siddoway C S. The geological history and evolution of West Antarctica[J]. Nature Reviews Earth & Environment, 2020,1(2):1-17.
[12] Artemieva I M, Thybo H. Continent size revisited: Geophysical evidence for West Antarctica as a back-arc system[J]. Earth-Science Reviews, 2020,202:103106.
[13] Jordan T A, Neale R F, Leat P T, et al. Structure and evolution of Cenozoic arc magmatism on the Antarctic Peninsula: A high resolution aeromagnetic perspective[J]. Geophysical Journal International, 2014,198(3):1758-1774.
[14] Bakhmutov Y V. Crustal structure of the Antarctic Peninsula sector of the Gondwana margin around Anvers Island from geophysical data[J]. Tectonophysics, 2013,585:77-89.
[15] Elburg M, Jacobs J, Andersen T, et al. Early Neoproterozoic metagabbro-tonalite-trondh -jemite of Sr Rondane (East Antarctica):Implications for supercontinent assembly[J]. Precambrian Research, 2015,259:189-206.
[16] Ruppel A, Jacobs J, Eagles G, et al. New geophysical data from a key region in East Antarctica: Estimates for the spatial extent of the Tonian Oceanic Arc Super Terrane (TOAST)[J]. Gondwana Research: International Geoscience Journal, 2018,59:97-107.
[17] Jordan T A, Ferraccioli F, Armadillo E, et al. Crustal architecture of the Wilkes Subglacial Basin in East Antarctica, as revealed from airborne gravity data[J]. Tectonophysics, 2013,585:196-206.
[18] Davis J K, Lawver L A, Norton I O, et al. The crustal structure of the Enderby Basin, East Antarctica[J]. Marine Geophysical Research, 2019,40:1-16.
[19] 牛雄伟, 高金耀, 吴招才, 等. 南极洲普里兹湾石圈各向异性:海底地震仪观测[J]. 地球科学, 2016,41(11):1950-1958.
[20] Niu X W, Gao J Y, Wu Z C, et al. Lithosphere anisotropy of Prydz Bay,Antarctica: From ocean bottom seismometer long term observation[J]. Earth Science, 2016,41(11):1950-1958.
[21] Dunkley D J, Hokada T. Geological subdivision of the Lützow-Holm Complex in East Antarctica: From the Neoarchean to the Neoproterozoic[J]. Polar Science, 2020,26:100606.
[22] Ebbing J, Dilixiati Y, Haas P, et al. East Antarctica magnetically linked to its ancient neighbours in Gondwana[J]. Scientific Reports, 2021,11(1):5513.
[23] Riedel S, Jacobs J, Jokat W. Interpretation of new regional aeromagnetic data over Dronning Maud Land (East Antarctica)[J]. Tectonophysics, 2013,585:161-171.
[24] Leinweber V T, Jokat W. The Jurassic history of the Africa-Antarctica corridor — new constraints from magnetic data on the conjugate continental margins [J]. Tectonophysics, 2012, 530-531:87-101.
[25] Aitken A R A, Betts P G, Young D A, et al. The Australo-Antarctic Columbia to Gondwana transition[J]. Gondwana Research, 2016,29:136-152.
[26] Williams S E, Whittaker J M, Müller R D. Full-fit,palinspastic reconstruction of the conjugate Australian-Antarctic margins [J]. Tectonics, 2011, 30, TC6012:1-21.
[27] Van Wyk de Vries, M, Bingham R G, et al. A new volcanic province: an inventory of subglacial volcanoes in West Antarctica[J]. Geological Society, London, Special Publications, 2017: 461(1):231-248.
[28] Jordan T A, Ferraccioli F, Jones P C, et al. Airborne gravity reveals interior of antarctic volcano[J]. Physics of the Earth and Planetary Interiors, 2009,175(3-4):127-136.
[29] Ghidella M E, Zambrano O M, Ferraccioli F, et al. Analysis of James Ross Island volcanic complex and sedimentary basin based on high-resolution aeromagnetic data[J]. Tectonophysics, 2013,585:90-101.
[30] Jordan T A, David B. Investigating the distribution of magmatism at the onset of Gondwana breakup with novel strapdown gravity and aeromagnetic data[J]. Physics of the Earth & Planetary Interiors, 2018,282:77-88.
[31] Millan R, Bignot E, Bernier V, et al. Bathymetry of the Amundsen Sea Embayment sector of West Antarctica from Operation IceBridge gravity and other data[J]. Geophysical Research Letters, 2017,44(3):1360-1368.
[32] Constantino R R, Tinto K J, Bell R E, et al. Seafloor Depth of George VI Sound, Antarctic Peninsula, From Inversion of Aerogravity Data[J]. Geophysical Research Letters, 2020,47(21):1-10.
[33] Martos Y M, Catalan M, Jordan T A, et al. Heat flux distribution of Antarctica unveiled[J]. Geophysical Research Letters, 2017,44(22):11417-11426.
[34] Burton J A, Dziadek R, Martin C. Geothermal heat flow in Antarctica: Current and future directions[J]. Cryosphere Discussions, 2020,14(11):3843-3873.
[35] Pfaffling A C, Haas, Reid J E. Empirical processing of HEM data for sea ice thickness mapping[C]//10th European Meeting of Environmental and Engineering Geophysics, Extended Abstracts, 2004.
[36] Reid J E, Pfaffling A, Worby A P, et al. In situ measurements of the direct-current conductivity of Antarctic sea ice: Implications for airborne electromagnetic sounding of sea-ice thickness[J]. Annals of Glaciology, 2006,44(7):217-223.
[37] Foley N, Tulaczyk S M, Grombacher D, et al. Evidence for pathways of concentrated submarine groundwater discharge in East Antarctica from helicopter-borne electrical resistivity measurements[J]. Hydrology, 2019,6(2):54.
-
计量
- 文章访问数: 1627
- PDF下载数: 280
- 施引文献: 0