中国自然资源航空物探遥感中心主办
地质出版社出版

致密储层孔隙结构研究综述

陈秀娟, 刘之的, 刘宇曦, 柴慧强, 王勇. 2022. 致密储层孔隙结构研究综述. 物探与化探, 46(1): 22-31. doi: 10.11720/wtyht.2022.1190
引用本文: 陈秀娟, 刘之的, 刘宇曦, 柴慧强, 王勇. 2022. 致密储层孔隙结构研究综述. 物探与化探, 46(1): 22-31. doi: 10.11720/wtyht.2022.1190
CHEN Xiu-Juan, LIU Zhi-Di, LIU Yu-Xi, CHAI Hui-Qiang, WANG Yong. 2022. Research into the pore structure of tight reservoirs:A review. Geophysical and Geochemical Exploration, 46(1): 22-31. doi: 10.11720/wtyht.2022.1190
Citation: CHEN Xiu-Juan, LIU Zhi-Di, LIU Yu-Xi, CHAI Hui-Qiang, WANG Yong. 2022. Research into the pore structure of tight reservoirs:A review. Geophysical and Geochemical Exploration, 46(1): 22-31. doi: 10.11720/wtyht.2022.1190

致密储层孔隙结构研究综述

  • 基金项目:

    陕西省教育厅重点科学研究计划项目(20JY056)

    西安石油大学研究生创新与实践能力培养计划(YCS20112015)

详细信息
    作者简介: 陈秀娟(1995-),女,在读硕士,主要研究方向为测井地质学。Email: 1559572335@qq.com
  • 中图分类号: P631.4

Research into the pore structure of tight reservoirs:A review

  • 国家对油气资源需求日益剧增的背景下,油气田勘探开发的主战场由常规转向非常规领域,致密油气成为当今及未来非常规油气勘探开发的热点和重点。我国致密储层多为陆相沉积,横向连续性差、纵向非均质性强、岩性复杂、物性变化大,致使致密储层的孔隙结构难以有效表征。储层孔隙结构不仅影响油气赋存,还严重制约着油气渗流和高效开采。为有针对性地分析致密储层的孔隙结构特征,系统调研了致密储层孔隙结构评价手段的相关文献资料,梳理了半渗透隔板等间接测定法、铸体薄片等直接观测法、数字岩心法之后,剖析了致密储层孔隙结构测井评价方法,并探讨了各方法的适用性和优缺点,进而基于该领域的研究现状展望了其发展趋势。
  • 加载中
  • [1]

    王振林, 毛志强, 孙中春, 等. 致密储层孔隙结构核磁共振测井评价方法[J]. 断块油气田, 2017,24(6):783-787.

    [2]

    Wang Z L, Mao Z Q, Sun Z C, et al. Evaluation of pore structure using NMR logs for tight oil reservoirs[J]. Fault-Block Oil & Gas Field, 2017,24(6):783-787.

    [3]

    Ning C X, Jiang Z X, Gao Z Y, et al. Quantitative evaluation of pore connectivity with nuclear magnetic resonance and high pressure mercury injection:A case study of the lower section of Es3 in Zhanhua sag[J]. Journal of China University of Mining & Technology, 2017,46(3):578-585.

    [4]

    查明, 苏阳, 高长海, 等. 致密储层储集空间特征及影响因素——以准噶尔盆地吉木萨尔凹陷二叠系芦草沟组为例[J]. 中国矿业大学学报, 2017,46(1):85-95.

    [5]

    Zha M, Su Y, Gao C H, et al. Tight reservoir space characteristics and controlling factors:An example from Permian Lucaogou Formation in Jimsar Sag,Junggar Basin,northwest China[J]. Journal of China University of Mining & Technology, 2017,46(1):85-95.

    [6]

    于爽. 萨中开发区储层微观孔隙结构及非均质性研究[D]. 大庆:东北石油大学, 2016.

    [7]

    Yu S. Study on the micro pore structure and heterogeneity of reservoir in central Saertu area[D]. Daqing:Northeast Petroleum University, 2016.

    [8]

    辛江. 甘谷驿油田顾屯区延长组长6油层组储层评价及控制因素分析[D]. 西安:长安大学, 2018.

    [9]

    Xin J. Study on the comprehensive reservoir evaluation and controlling factors of Chang 6 oil set,Yanchang Formation in Gutun area,Ganguyi oilfield [D]. Xi'an:Chang'an University, 2018.

    [10]

    郝乐伟, 王琪, 唐俊. 储层岩石微观孔隙结构研究方法与理论综述[J]. 岩性油气藏, 2013,25(5):124-128.

    [11]

    Hao L W, Wang Q, Tang J. Research progress of reservoir microscopic pore structure[J]. Lithologic Reservoirs, 2013,25(5):124-128.

    [12]

    伍鹏. 致密储层的孔隙结构及渗透率表征[D]. 北京:中国石油大学, 2017.

    [13]

    Wu P. Characterization of pore structure and permeability prediction in tight oil reservoir[D]. Beijing:China University of Petroleum, 2017.

    [14]

    王超. 川西蓬莱镇组致密砂岩储层孔隙结构评价及气水微观赋存机理研究[D]. 成都:西南石油大学, 2017.

    [15]

    Wang C. Pore structure evaluation and gas water microscopic occurrence mechanism of tight sandstone reservoir in Penglaizhen formation, Western Sichuan[D]. Chengdu:Southwest Petroleum University, 2018.

    [16]

    车荣华. 低渗透油层微观孔隙结构研究[D]. 大庆:东北石油大学, 2016.

    [17]

    Che R H. Study on micro pore structure of low permeability reservoir[D]. Daqing:Northeast Petroleum University, 2016.

    [18]

    Christos D T, Alkiviades C P. Characterization of the pore structure of reservoir rocks with the aid of serial sectioning analysis,mercury porosimetry and network simulation[J]. Advances in Water Resources, 2000,23(7):773-789.

    [19]

    Hao L, Tang J, Wang Q, et al. Fractal characteristics of tight sandstone reservoirs: A case from the Upper Triassic Yanchang Formation,Ordos Basin,China[J]. Journal of Petroleum Science and Engine, 2017,46:80-92.

    [20]

    吴松涛, 朱如凯, 李勋, 等. 致密储层孔隙结构表征技术有效性评价与应用[J]. 地学前缘, 2018,25(2):192-203.

    [21]

    Wu S T, Zhu R K, Li X, et al. Evaluation and application of porous structure characterization technologies in unconventional tight reservoirs[J]. Earth Science Frontiers, 2018,25(2):191-203.

    [22]

    Clarkson C R, Bustin R M. The effect of pore structure and gas pressure upon the transport properties of coal:A laboratory and modeling study[J]. Adsorption Rate Modeling Fuel, 1999,78(11):1345-1362.

    [23]

    赵华伟. 致密储层微观孔隙结构及渗流规律研究[D]. 北京:中国石油大学, 2017.

    [24]

    Zhao H W. Study on micro scale pore structure and flow mechanism of tight oil sandstones[D]. Beijing:China University of Petroleum, 2017.

    [25]

    李鑫. 致密储层孔隙结构综合评价方法研究[D]. 北京:中国石油大学, 2017.

    [26]

    Li X. Study on comprehensive evaluation method of pore structure of tight oil reservoir[D]. Beijing:China University of Petroleum, 2017.

    [27]

    张维. 基于常规测井资料的储层微观孔隙结构评价方法[D]. 大庆:东北石油大学, 2017.

    [28]

    Zhang W. Microscopic pore structure evaluation method based on conventional logging data[D]. Daqing:Northeast Petroleum University, 2017.

    [29]

    张冲, 张超谟, 张占松, 等. 致密气储层岩心束缚水饱和度实验对比[J]. 天然气地球科学, 2016,27(2):352-358.

    [30]

    Zhang C, Zhang C M, Zhang Z S, et al. Comparative experimental study of the core irreducible water saturation of tight gas reservoir[J]. Natural Gas Geoscience, 2016,27(2):352-358.

    [31]

    李霏, 陈铭谦, 赵御庭, 等. 岩石微观孔隙结构研究方法综述[J]. 地下水, 2019,41(6):112-114.

    [32]

    Li F, Chen M Q, Zhao Y T, et al. A summary of research methods on microscopic pore structure of rocks[J]. Ground Water, 2019,41(6):112-114.

    [33]

    王伟明, 卢双舫, 田伟超, 等. 利用微观孔隙结构参数对辽河大民屯凹陷页岩储层分级评价[J]. 中国石油大学学报:自然科学版, 2016,40(4):12-19.

    [34]

    Wang W M, Lu S F, Tian W C, et al. Liaohe oilfield shale reservoir quality grading with micropore evaluation parameters in Damintun depression[J]. Journal of China University of Petroleum:Edition of Natural Science, 2016,40(4):12-19.

    [35]

    李昊远. 氮气吸附法的致密砂岩孔隙结构分析[J]. 云南化工, 2019,46(12):87-90.

    [36]

    Li H Y. Pore structure analysis of tight sandstone by nitrogen adsorption method[J]. Yunnan Chemical Technology, 2019,46(12):87-90.

    [37]

    戚灵灵, 王兆丰, 杨宏民, 等. 基于低温氮吸附法和压汞法的煤样孔隙研究[J]. 煤炭科学技术, 2012,40(8):36-39.

    [38]

    Qi L L, Wang Z F, Yang H M, et al. Study on porosity of coal samples based on low temperature nitrogen adsorption method and mercury porosimetry[J]. Coal Science and Technology, 2012,40(8):36-39.

    [39]

    谢晓永, 唐洪明, 王春华, 等. 氮气吸附法和压汞法在测试泥页岩孔径分布中的对比[J]. 天然气工业, 2006,26(12):100-102.

    [40]

    Xie X Y, Tang H M, Wang C H, et al. Contrast of nitrogen adsorption method and mercury porosimetry method in analysis of shale's pore size distribution[J]. Natural Gas Industry, 2006,26(12):100-102.

    [41]

    彭攀, 宁正福, 祁丽莎, 等. 致密储层孔隙结构研究方法概述[J]. 油气藏评价与开发, 2014,4(1):30-31.

    [42]

    Peng P, Ning Z F, Qi L S, et al. Research method of pore structure in tight reservoir[J]. Reservoir Evaluation and Development, 2014,4(1):30-31.

    [43]

    张林浩, 徐嫣然, 孙梦迪, 等. 利用小角中子散射表征页岩闭孔结构与演化[J]. 沉积学报, 2021,39(2):1-22.

    [44]

    Zhang L H, Xu Y R, Sun M D, et al. The structure and evolution of closed pores in shale determined by small angle neutron scattering[J]. Acta Sedimentologica Sinica, 2021,39(2):1-22.

    [45]

    Ghiasi-Freez J, Soleimanpour I, Kadkhodaie-Ilkhchi A, et al. Semi-automated porosity identification from thin section images using image analysis and intelligent discriminant classifiers[J]. Computers & Geosciences, 2012,45:36-45.

    [46]

    张天付, 鲍征宇, 李东, 等. 页岩孔隙系统研究实验方法[J]. 地质科技情报, 2016,35(4):192-198.

    [47]

    Zhang T F, Bao Z Y, Li D, et al. Information experimental methods for shale pore system[J]. Geological Science and Technology, 2016,35(4):192-198.

    [48]

    宋梓语. 塔里木油田克深地区砂岩酸化伤害实验研究[D]. 北京:中国石油大学, 2018.

    [49]

    Song Z Y. Experimental analysis of sandstone formation damage with acidizing treatment in Keshen area(Tarim Oilfield)[D]. Beijing:China University of Petroleum, 2018.

    [50]

    胡勇. 致密砂岩气藏储层渗流机理研究[D]. 大庆:东北石油大学, 2016.

    [51]

    Hu Y. Research on percolation mechanism of tight sandstone gas reservoir[D]. Daqing:Northeast Petroleum University, 2016.

    [52]

    常敏. 准噶尔盆地车排子地区白垩系清水河组储层特征研究[D]. 北京:中国石油大学, 2017.

    [53]

    Chang M. Study on reservoir characteristics of the cretaceous Qingshuihe Formation in Chepaizi area,Junggar Basin[D]. Beijing:China University of Petroleum, 2017.

    [54]

    Bonnet N, Herbin M, Vautrot P. Multivariate image analysis and segmentation in microanalysis[J]. Scanning Microsc, 1997,11(1):1-21.

    [55]

    Zhang Y X, Ghanbarnezhad M, Rouzbeh, et al. Pore structure characterization of a shale sample using SEM images[C]//California:SPE Western Regional Meeting, 2019.

    [56]

    Nadeau P H, Hurst A H. Application of back-scattered electron microscopy to the quantification of clay mineral microporosity in sandstones[J]. Journal of Sedimentary Research, 1991,61(6):921-925.

    [57]

    Adrian C, Louis H, René B. Petrophysical properties of porous medium from petrographic image analysis data[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2001: 187.

    [58]

    王丽, 袁伟, 程光华, 等. 基于常规测井的储层孔隙结构评价新方法[J]. 海洋石油, 2018,38(2):58-65.

    [59]

    Wang L, Yuan W, Cheng G H, et al. A new method of reservoir pore structure evaluation based on conventional logging data[J]. Offshore Oil, 2018,38(2):58-65.

    [60]

    陈超, 魏彪, 梁婷, 等. 一种基于工业CT技术的岩芯样品孔隙度测量分析方法[J]. 物探与化探, 2013,37(3):500-507.

    [61]

    Chen C, Wei B, Liang T, et al. The application of industrial computation tomography (CT) to the analysis of core sample porosity[J]. Geophysical and Geochemical Exploration, 2013,37(3):500-507.

    [62]

    李易霖, 张云峰, 丛琳, 等. X-CT扫描成像技术在致密砂岩微观孔隙结构表征中的应用——以大安油田扶余油层为例[J]. 吉林大学学报:地球科学版, 2016,46(2):379-387.

    [63]

    Li Y L, Zhang Y F, Cong L, et al. Application of X-CT scanning technique in the characterization of micro pore structure of tight sandstone reservoir:Taking the Fuyu oil layer in Daan oilfield as an example[J]. Journal of Jilin University:Earth Science Edition, 2016,46(2):379-387.

    [64]

    Kazak A, Chugunov S, Chashkov A, et al. Integration of large-area scanning-electron-microscopy imaging and automated mineralogy petrography data for selection of nanoscale pore-space characterization sites[C]//SPE Res Eval & Eng, 2018,21:821-836.

    [65]

    尹海生. 古流向分析及储层评价技术在砂岩型铀矿床勘探中的应用[J]. 四川地质学报, 2005(3):131-135.

    [66]

    Yin H S. The application of paleocurrent analysis and reservoir assessment technology to the exploration of sandstone-type uranium deposits[J]. Acta Geologica Sichuan, 2005(3):131-135.

    [67]

    Galaup S, Liu Y, Cerepi A. New integrated 2D-3D physical method to evaluate the porosity and microstructure of carbonate and dolomite porous system[J]. Microporous and Mesoporous Materials, 2012,154(Special Issue:Characterization of Porous Solids IX):175-186.

    [68]

    宋梓语. 塔里木油田克深地区砂岩酸化伤害实验研究[D]. 北京:中国石油大学, 2018.

    [69]

    Song Z Y. Experimental analysis of sandstone formation damage with acidizing treatment in Keshen area(Tarim Oilfield)[D]. Beijing:China University of Petroleum, 2018.

    [70]

    姚军, 赵秀才, 衣艳静, 等. 数字岩心技术现状及展望[J]. 油气地质与采收率, 2005,12(6):52-54.

    [71]

    Yao J, Zhao X C, Yi Y J, et al. The current situation and prospect on digital core technology[J]. Petroleum Geology and Recovery Efficiency, 2005,12(6):52-54.

    [72]

    Coenen J, Tchouparova E, Jing X. Measurement parameters and resolution aspects of micro X-ray tomography for advanced core analysis[C]//Abu Dhab:Proceedings of International Symposium of the Society of Core Analysts, 2004:256-261.

    [73]

    李建胜, 王东, 康天合. 基于显微CT试验的岩石孔隙结构算法研究[J]. 岩土工程学报, 2010,32(11):1703-1708.

    [74]

    Li J S, Wang D, Kang T H. Algorithmic study on rock pore structure based on micro-CT experiment[J]. Chinese Journal of Geotechnical Engineering, 2010,32(11):1703-1708.

    [75]

    Wu K, Nunan N, Crawford J W, et al. An efficient Markov chain model for the simulation of heterogeneous soil structure[J]. Soil Sci. Soc. Am. J., 2004,68(2):346-351.

    [76]

    Dal F N, Delmas P, Duwig C, et al. Coupling X-ray microtomography and mercury intrusion porosimetry to quantify aggregate structures of a cambisol under different fertilisation treatments[J]. Soil and Tillage Research, 2012,119:13-21.

    [77]

    Dernaika M, Efnik M S, Koronful M S, et al. Evaluation of water saturation from laboratory to logs and the effect of pore geometry on capillarity[C]//Abu Dhabi:SPWLA Middle East Regional Symposium, 2007.

    [78]

    陈杰. 基于电阻率测井资料研究致密砂岩孔隙结构特征[D]. 成都:西南石油学院, 2005.

    [79]

    Chen J. Study on pore structure characteristics of tight sandstone based on resistivity logging data[D]. Chengdu:Southwest Petroleum University, 2005.

    [80]

    Carlos A, Grattoni. The effect of differences of multiphase spatial distributions on the electric properties of porous media[J]. Log Analyst, 1998,39(4):47-57.

    [81]

    况晏. 致密砂砾岩储层孔隙结构及饱和度测井评价方法研究[D]. 成都:西南石油大学, 2018.

    [82]

    Kuang Y. Study on the well logging evaluation method of pore structure and saturation in the tight sandy conglomerate reservoirs[D]. Chengdu:Southwest Petroleum University, 2018.

    [83]

    Ge X, Fan Y, Cao Y, et al. Reservoir pore structure classification technology of carbonate rock based on NMR T2 spectrum decomposition[J]. Applied Magnetic Resonance, 2014,45(2):155-167.

    [84]

    王学武, 杨正明, 李海波, 等. 核磁共振研究低渗透储层孔隙结构方法[J]. 西南石油大学学报:自然科学版, 2010,32(2):70-72.

    [85]

    Wang X W, Yang Z M, Li H B, et al. Experimental study on pore structure of low permeability core with NMR spectra[J]. Journal of Southwest Petroleum University:Science & Technology Edition, 2010,32(2):70-72.

    [86]

    陈国军, 高明, 李静, 等. 核磁共振测井在致密储层孔隙结构评价中的应用[J]. 天然气勘探与开发, 2014,37(2):41-44.

    [87]

    Chen G J, Gao M, Li J, et al. Application of NMR well logging to evaluating porous structure of tight oil reservoir[J]. Natural Gas Exploration & Development, 2014,37(2):41-44.

    [88]

    Huang X, Li A, Li X, et al. Influence of typical core minerals on tight oil recovery during CO2 flooding using NMR technique[J]. Energy & Fuels, 2019,33(8):7147-7154.

    [89]

    Yakov V. A practical approach to obtain drainage capillary pressure curves from NMR core and log data[J]. Petrophysics, 2001,4:334-343.

    [90]

    刘堂宴, 王绍民, 傅容珊, 等. 核磁共振谱的岩石孔喉结构分析[J]. 石油地球物理勘探, 2003,38(3):328-333.

    [91]

    Liu T Y, Wang S M, Fu R S, et al. Analysis of rock pore throat structure with NMR spectra[J]. Oil Geophysical Prospecting, 2003,38(3):328-333.

    [92]

    何雨丹, 毛志强, 肖立志, 等. 利用核磁共振T2分布构造毛管压力曲线的新方法[J]. 吉林大学学报:地球科学版, 2005,35(2):177-181.

    [93]

    He Y D, Mao Z Q, Xiao L Z, et al. A new method to obtain capillary pressure curve using NMR T2 distribution[J]. Journal of Jilin University:Earth Science Edition, 2005,35(2):177-181.

    [94]

    童茂松. 泥质砂岩激发极化弛豫时间谱的正则化反演[J]. 物探与化探, 2015,39(1):186-191.

    [95]

    Tong M S. The regularization inversion of induced polarization relaxation time spectrum of agrillaceous sand[J]. Geophysical and Geochemical Exploration, 2015,39(1):186-191.

    [96]

    Eslami M, Kadkhodaie A, Sharghi Y, et al. Construction of synthetic capillary pressure curves from the joint use of NMR log data and conventional well logs[J]. Journal of Petroleum Science & Engineering, 2013,111(11):50-58.

    [97]

    Liang X, Zou C C, Mao Z Q, et al. An empirical approach of evaluating tight sandstone reservoir pore structure in the absence of NMR logs[J]. Journal of Petroleum Science & Engineering, 2015,137:227-239.

    [98]

    陈文祥. 致密砂岩油藏孔隙特征与衰竭式开采实验研究[D]. 北京:中国地质大学, 2019.

    [99]

    Chen W X. Experimental investigation of tight oil pore characteristic and depletion[D]. Beijing:China University of Geosciences, 2019.

    [100]

    侯波, 康洪全, 程涛. 综合成岩作用和孔隙形状的岩石物理模型及其应用[J]. 物探与化探, 2019,43(1):161-167.

    [101]

    Hou B, Kang H Q, Cheng T. A new rock physics model integrating diagenesis and pore shape and its application[J]. Geophysical and Geochemical Exploration, 2019,43(1):161-167.

    [102]

    Tao G, King M S. Porosity and pore structure from acoustic well logging data[J]. Geophysical Prospecting, 1993,41(4):435-451.

    [103]

    Sun Y F. A two-parameter model of elastic wave velocities in rocks and numerical AVO modeling[J]. Journal of Computational Acoustics, 2004,12(4):619-630.

    [104]

    Eberli G P, Batzle M L, Anselmetti F S, et al. Factors controlling elastic properties in carbonate sediments and rocks[J]. The Leading Edge, 2003,22(1):654-660.

    [105]

    唐晓明. 含孔隙、裂隙介质弹性波动的统一理论——Biot理论的推广[J]. 中国科学:地球科学, 2011,41(6):784-795.

    [106]

    Tang X M. A unified theory for elastic wave propagation through porous media containing cracks—an extension of Biot’s poroelastic wave theory[J]. Science China Earth Science, 2011,41(6):784-795.

    [107]

    陈雪莲, 唐晓明, 钱玉萍. 含孔隙、裂隙致密介质中多极子声波的传播特征[J]. 地球物理学报, 2014,57(9):2961-2970.

    [108]

    Chen X L, Tang X M, Qian Y P. Characteristics of multipole acoustic logging in cracked porous tight formations[J]. Chinese Journal of Geophysics Propagation, 2014,57(9):2961-2970.

    [109]

    张明明, 梁利喜, 蒋少龙. 不同孔隙结构碳酸盐岩对声波时频特性的影响[J]. 断块油气田, 2016,23(6):825-828.

    [110]

    Zhang M M, Liang L X, Jiang S L. Influence of different pore structures of carbonate rock on time and frequency characteristics of acoustic wave spread[J]. Fault-Block Oil & Gas Field, 2016,23(6):825-828.

    [111]

    承秋泉, 陈红宇, 范明, 等. 盖层全孔隙结构测定方法[J]. 石油实验地质, 2006,28(6):604-608.

    [112]

    Cheng Q Q, Chen H Y, Fan M, et al. Determination of the total pore texture of caprock[J]. Petroleum Geology & Experiment, 2006,28(6):604-608.

    [113]

    李宁. 火成岩储层孔隙结构表征与储层参数分类评价[D]. 长春:吉林大学, 2010.

    [114]

    Li N. Characterization of igneous reservoir pore structure and classified evaluation of reservoir parameter[D]. Changchun:Jilin University, 2010.

    [115]

    黄婧. 多孔介质孔隙结构研究综述[J]. 内江师范学院学报, 2016,31(4):13-18.

    [116]

    Huang J. A review of the research progress of the multi-pore media porous structure[J]. Journal of Neijiang Normal University, 2016,31(4):13-18.

    [117]

    Clelland W D, Fens, Koninklijke T W. Automated rock characterization with SEM image-analysis techniques[J]. SPE Formation Evaluation, 1991,6(4):437-443.

    [118]

    朱如凯, 吴松涛, 苏玲, 等. 中国致密储层孔隙结构表征需注意的问题及未来发展方向[J]. 石油学报, 2016,37(11):1324-1336.

    [119]

    Zhu R K, Wu S T, Su L, et al. Problems and future works of porous texture characterization of tight reservoirs in China[J]. Acta Petrolei Sinica, 2016,37(11):1324-1336.

    [120]

    章新文, 毛海艳, 谢春安, 等. 泌阳凹陷深层致密砂岩孔隙结构测井评价方法研究[J]. 特种油气藏, 2019,26(4):27-32.

    [121]

    Zhang X W, Mao H Y, Xie C A, et al. Logging evaluation method for the tight sandstone pore structure in Biyang depression[J]. Special Oil and Gas Reservoirs, 2019,26(4):27-32.

    [122]

    夏培. 含泥质致密砂岩储层三孔隙导电模型[J]. 物探与化探, 2017,41(4):748-752.

    [123]

    Xia P. A triple-porosity conducting model for shaly tight sandstone reservoir[J]. Geophysical and Geochemical Exploration, 2017,41(4):748-752.

    [124]

    范雨霏, 潘保芝, 张芳. 复杂孔隙几何形态导电理论与火山岩饱和度模型研究[J]. 物探与化探, 2018,42(1):172-177.

    [125]

    Fan Y F, Pan B Z, Zhang F. Research on conductive mechanism and saturation model of the volcanic reservoir with complex pore structure[J]. Geophysical and Geochemical Exploration, 2018,42(1):172-177.

    [126]

    Li C X, Liu M, Guo B C. Classification of tight sandstone reservoirs based on NMR logging[J]. Applied Geophysics, 2019,16(4):554-556.

  • 加载中
计量
  • 文章访问数:  992
  • PDF下载数:  30
  • 施引文献:  0
出版历程
收稿日期:  2021-04-12
修回日期:  2022-02-20
刊出日期:  2022-02-25

目录