中国自然资源航空物探遥感中心主办
地质出版社出版

基于梯度投影法的全变差正则化全波形反演

姚含, 徐海. 2022. 基于梯度投影法的全变差正则化全波形反演. 物探与化探, 46(4): 977-981. doi: 10.11720/wtyht.2022.1320
引用本文: 姚含, 徐海. 2022. 基于梯度投影法的全变差正则化全波形反演. 物探与化探, 46(4): 977-981. doi: 10.11720/wtyht.2022.1320
YAO Han, XU Hai. 2022. Total variation regularized full waveform inversion based on gradient projection method. Geophysical and Geochemical Exploration, 46(4): 977-981. doi: 10.11720/wtyht.2022.1320
Citation: YAO Han, XU Hai. 2022. Total variation regularized full waveform inversion based on gradient projection method. Geophysical and Geochemical Exploration, 46(4): 977-981. doi: 10.11720/wtyht.2022.1320

基于梯度投影法的全变差正则化全波形反演

  • 基金项目:

    贵州高层次人才科研启动专项资金资助项目(0203001018040)

详细信息
    作者简介: 姚含(1972-),男,2006年毕业于贵州工业大学,主要研究方向包括水文地质、工程地质及环境地质。Email: 124121080@qq.com
  • 中图分类号: P631.4

Total variation regularized full waveform inversion based on gradient projection method

  • 为降低地震全波形反演的不适定性,常用方法是引入未知模型的先验信息,从而将反演问题正则化。但是,传统正则化方法在包含多个先验信息的情况下,仍然面临挑战。本文提出一种扩展的全波形反演公式,其中包含对模型的凸集约束。本文以慢度平方作为反演的模型参数,展示了如何在施加全变差约束的同时,施加边界约束令其保持在一个物理意义上的可行范围内。为验证本文所提算法的适用性,分别开展简单模型及国际标准地质模型数值实验研究,结果表明,全变差正则化的引入可以提高光滑背景模型下高速扰动体的重构效果。
  • 加载中
  • [1]

    Virieux J, Operto S. An overview of full-waveform inversion in exploration geophysics[J]. Geophysics, 2009, 74(6):WCC1-WCC26.

    [2]

    Andrew P V, Malcolm S. Elastic versus acoustic inversion for marine surveys[J]. Geophysical Journal International, 2018, 215(1):1003-1021.

    [3]

    Lailly P. The seismic inverse problem as a sequence of before-stack migrations[C]// Conference on Inverse Scattering: Theory and Applications,Expanded Abstracts, 1983:206-220.

    [4]

    Tarantola A. Inversion of seismic reflection data in the acoustic approximation[J]. Geophysics, 1984, 49(8):1259-1266.

    [5]

    Mora P, Wu Z. Elastic versus acoustic inversion for marine surveys[J]. Geophysical Journal International, 2018, 214(1):596-622.

    [6]

    Lin Y Z, Huang L J. Acoustic and elastic-waveform inversion using a modified total-variation regularization scheme[J]. Geophysical Journal International, 2015, 200:489-502.

    [7]

    Du Z, Liu D, Wu G, et al. A high-order total-variation regularisation method for full-waveform inversion[J]. Journal of Geophysics and Engineering, 2021, 18(2): 241-252.

    [8]

    Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms[J]. Physica D:Nonlinear Phenomena, 1992, 60:259-268.

    [9]

    Chung E T, Chan T F, Tai X C. Electrical impedance tomography using level set representation and total variational regularization[J]. Journal of Computational Physics, 2005, 205:357-372.

    [10]

    屈勇, 曹俊兴, 朱海东, 等. 一种改进的全变分地震图像去噪技术[J]. 石油学报, 2011, 32(5):815-819.

    [11]

    Qu Y, Cao J X, Zhu H D, et al. An improved total variation technique for seismic image denoising[J]. Acta Petrolei Sinica, 2011, 32(5):815-819.

    [12]

    公成敏. 全变分原理在地震数据去噪中的应用[J]. 计算机与数字工程, 2014, 42(7):1271-1274.

    [13]

    Gong C M. Application of variational principle in seismic data denoising[J]. Computer & Digital Engineering, 2014, 42(7):1271-1274.

    [14]

    Anagaw A Y. Total variation and adjoint stat methods for seismic wavefield imaging[M]. Alberta: Physics Department of University of Alberta, 2009.

    [15]

    Anagaw A Y, Sacchi M D. Edge-preserving seismic imaging using the total variation method[J]. Joutnal of Geophysics and Engineering, 2012, 9(2):138-146.

    [16]

    卢昕婷, 韩立国, 张盼, 等. 基于全变分原理的多震源混合数据直接偏移方法[J]. 地球物理学报, 2015, 58(9):3335-3345.

    [17]

    Lu X T, Han L G, Zhang P, et al. Direct migration method of multi-source blended data based on total variation[J]. Chinese Journal of Geophysics, 2015, 58(9):3335-3345.

    [18]

    Esser E, Guasch L, Leeuwen T V, et al. Total variation regularization strategies in full-waveform inversion[J]. SIAM Journal on Imaging sciences, 2018, 11(1):376-406.

    [19]

    Birgin E G, Martínez J M, Raydan M. Nonmonotone spectral projected gradient methods on convex sets[J]. SIAM Journal on Control and Optimization, 2000, 10(4):1196-1211.

    [20]

    Bertsekas D P. Nonlinear programming:2nd edition[M]. Belmont: Athena Scientific, 1999.

    [21]

    van Leeuwen T, Herrmann F J. Mitigating local minima in full-waveform inversion by expanding the search space[J]. Geophysical Journal International, 2013, 195:661-667.

  • 加载中
计量
  • 文章访问数:  621
  • PDF下载数:  162
  • 施引文献:  0
出版历程
收稿日期:  2021-06-22
修回日期:  2022-08-20
刊出日期:  2022-08-17

目录