Stretch correction method based on Curvelet sparse transform
-
摘要: 动校正是地震数据处理中的重要步骤,但它在校正过程中会产生子波拉伸畸变效应,随着偏移距的增大,会出现主频降低、振幅扩大的现象。由于存在拉伸畸变,同相轴未被拉平,导致非同相叠加,会引起水平叠加剖面的频率失真和分辨率下降,因此,拉伸校正是提高水平叠加剖面分辨率的关键。子波拉伸畸变在曲波稀疏域中是不相干的,可以将拉伸校正视为是一个非线性优化过程。通过度量稀疏域中数据的稀疏性,使用一种快速有效的算法,来优化子波拉伸畸变生成的非线性问题,最终实现消除子波拉伸畸变的目的。曲波稀疏变换拉伸校正方法能够消除由动校正带来的子波拉伸畸变,恢复远偏移距处的高频信息,校平同相轴。综合模型数据和实际资料处理,曲波稀疏拉伸校正方法能够显著提高水平叠加剖面的分辨率。Abstract: NMO correction is an important step in seismic data processing, but it will produce the wavelet stretching distortion effect in the process of correction. With the increase of offset, the dominant frequency will decrease and the amplitude will increase.Due to stretch distortion, the in-phase axis is not leveled, leading to non-in-phase stacking, which will lead to frequency distortion and resolution decrease of horizontal stacking profile. Therefore, stretch correction is the key to improve the resolution of horizontal stacking profile.The stretching distortion of wavelet is incoherent in the curved sparse domain, and the stretching correction can be regarded as a nonlinear optimization process.By measuring the sparsity of the data in the sparse domain, a fast and effective algorithm is used to optimize the nonlinear problem generated by the wavelet stretching distortion, and finally the purpose of eliminating the wavelet stretching distortion is realized.The curved sparse transform stretching correction method can eliminate the wavelet stretching distortion caused by NMO correction, recover the high frequency information at the far offset and level the in-phase axis.Combining model data and actual data processing, the curved wave sparse stretch correction method can significantly improve the resolution of horizontal superposition profile.
-
-
[1] 夏洪瑞, 葛川庆, 邹少峰. 动校拉伸现象分析及其消除[J]. 石油物探, 2005,44(3):220-224.
[2] Xia H R, Ge C Q, Zou S F. Analysis and elimination of stretch phenomenon in dynamic school[J]. Geophysical Prospecting for Petroleum, 2005,44(3):220-224.
[3] 赵小龙, 吴国忱. 基于非稳态匹配的角度域叠前道集去调谐方法[J]. 物探与化探, 2017,41(1):141-146.
[4] Zhao X L, Wu G C. Angle domain prestack gather detuning method based on unsteady matching[J]. Geophysical and Geochemical Exploration, 2017,41(1):141-146.
[5] 孙成禹, 谢俊法, 闫月锋. 一种无拉伸畸变的动校正方法[J]. 石油物探, 2016,55(5):664-673.
[6] Sun C Y, Xie J F, Yan Y F. A dynamic correction method without stretching distortion[J]. Geophysical Prospecting for Petroleum, 2016,55(5):664-673.
[7] Rupert G B, Chun J H. The block move sum normal moveout correction[J]. Geophysics, 1975,40(1):17-24.
[8] Shatilo A, Aminzadeh F. Constant normal-moveout (CNMO) correction: a technique and test results[J]. Geophysical Prospecting, 2000: 48.
[9] Hicks G J. Removing NMO stretch using the Radon and Fourier-Radon transforms[C]//63rd EAGE Conference & Exhibition, 2001.
[10] Trickett S. Stretch-free stacking[C]//73rd Annual International Meeting,SEG,Expanded Abstracts, 1949: 4645.
[11] 崔宝文, 王维红. 频谱代换无拉伸动校正方法研究[J]. 地球物理学进展, 2007,22(3):960-965.
[12] Cui B W, Wang W H. Study on spectrum substitution non stretching NMO method[J]. Progress in Geophysics, 2007,22(3):960-965.
[13] Kazemi N, Siahkoohi H R. Local stretch zeroing NMO correction[J]. Geophysical Journal International, 2014,188(1):123-130.
[14] Zhang B, Zhang K, Guo S, et al. Nonstretching NMO correction of prestack time-migrated gathers using a matching-pursuit algorithm[J]. Geophysics, 2013,78(1):U9-U18.
[15] Abedi M M, Riahi M A. Nonhyperbolic stretch-free normal moveout correction[J]. Geophysics, 2016,81(6):U87-U95.
[16] Zhang F, Lan N. Seismic gather wavelet stretching correction based on multi-wavelet decomposition algorithm[J]. Geophysics, 2020,85(5):1-33.
[17] Barnes A E. Another look at NMO stretch[J]. Geophysics, 2012,57(5):749.
[18] Buchholtz H. A note on signal distortion due to dynamic (NMO) corrections[J]. Geophysical Prospecting, 1972,20(2):395-402.
[19] Candes E, Romberg J, Tao T. Stable signal recovery from incomplete and inaccurate measurements[J]. Comm. Pure Appl. Math., 2005,59(8):1-15.
[20] 罗勇, 毛海波, 杨晓海, 等. 基于双重稀疏表示的地震资料随机噪声衰减方法[J]. 物探与化探, 2018,42(3):608-615.
[21] Luo Y, Mao H B, Yang X H, et al. Random noise attenuation method for seismic data based on double sparse representation[J]. Geophysical and Geochemical Exploration, 2018,42(3):608-615.
[22] Herrmann F J, Moghaddam P, Stolk C C. Sparsity- and continuity-promoting seismic image recovery with curvelet frames[J]. Applied & Computational Harmonic Analysis, 2008,24(2):150-173.
[23] Gholami A. Residual statics estimation by sparsity maximization[J]. Geophysics, 2013,78(1):V11-V19.
[24] Gholami A, Hosseini S M. A general framework for sparsity based denoising and inversion[J]. IEEE Transactions on Signal Processing, 2011,59(11):5202-5211.
-
计量
- 文章访问数: 851
- PDF下载数: 52
- 施引文献: 0