中国自然资源航空物探遥感中心主办
地质出版社出版

基于曲波稀疏变换的拉伸校正方法

刘仕友, 张明林, 宋维琪. 2022. 基于曲波稀疏变换的拉伸校正方法. 物探与化探, 46(1): 114-122. doi: 10.11720/wtyht.2022.1328
引用本文: 刘仕友, 张明林, 宋维琪. 2022. 基于曲波稀疏变换的拉伸校正方法. 物探与化探, 46(1): 114-122. doi: 10.11720/wtyht.2022.1328
LIU Shi-You, ZHANG Ming-Lin, SONG Wei-Qi. 2022. Stretch correction method based on Curvelet sparse transform. Geophysical and Geochemical Exploration, 46(1): 114-122. doi: 10.11720/wtyht.2022.1328
Citation: LIU Shi-You, ZHANG Ming-Lin, SONG Wei-Qi. 2022. Stretch correction method based on Curvelet sparse transform. Geophysical and Geochemical Exploration, 46(1): 114-122. doi: 10.11720/wtyht.2022.1328

基于曲波稀疏变换的拉伸校正方法

  • 基金项目:

    中海石油(中国)有限公司重大科技项目南海西部油田上产2000万方关键技术研究(CNOOC-KJ135ZDXM38ZJ02ZJ)

详细信息
    作者简介: 刘仕友(1982-),男,高级工程师,2007 年毕业于中国石油大学(华东),主要从事储层预测及烃类检测工作。Email: liushiyou@139.com
  • 中图分类号: P631.4

Stretch correction method based on Curvelet sparse transform

  • 动校正是地震数据处理中的重要步骤,但它在校正过程中会产生子波拉伸畸变效应,随着偏移距的增大,会出现主频降低、振幅扩大的现象。由于存在拉伸畸变,同相轴未被拉平,导致非同相叠加,会引起水平叠加剖面的频率失真和分辨率下降,因此,拉伸校正是提高水平叠加剖面分辨率的关键。子波拉伸畸变在曲波稀疏域中是不相干的,可以将拉伸校正视为是一个非线性优化过程。通过度量稀疏域中数据的稀疏性,使用一种快速有效的算法,来优化子波拉伸畸变生成的非线性问题,最终实现消除子波拉伸畸变的目的。曲波稀疏变换拉伸校正方法能够消除由动校正带来的子波拉伸畸变,恢复远偏移距处的高频信息,校平同相轴。综合模型数据和实际资料处理,曲波稀疏拉伸校正方法能够显著提高水平叠加剖面的分辨率。
  • 加载中
  • [1]

    夏洪瑞, 葛川庆, 邹少峰. 动校拉伸现象分析及其消除[J]. 石油物探, 2005,44(3):220-224.

    [2]

    Xia H R, Ge C Q, Zou S F. Analysis and elimination of stretch phenomenon in dynamic school[J]. Geophysical Prospecting for Petroleum, 2005,44(3):220-224.

    [3]

    赵小龙, 吴国忱. 基于非稳态匹配的角度域叠前道集去调谐方法[J]. 物探与化探, 2017,41(1):141-146.

    [4]

    Zhao X L, Wu G C. Angle domain prestack gather detuning method based on unsteady matching[J]. Geophysical and Geochemical Exploration, 2017,41(1):141-146.

    [5]

    孙成禹, 谢俊法, 闫月锋. 一种无拉伸畸变的动校正方法[J]. 石油物探, 2016,55(5):664-673.

    [6]

    Sun C Y, Xie J F, Yan Y F. A dynamic correction method without stretching distortion[J]. Geophysical Prospecting for Petroleum, 2016,55(5):664-673.

    [7]

    Rupert G B, Chun J H. The block move sum normal moveout correction[J]. Geophysics, 1975,40(1):17-24.

    [8]

    Shatilo A, Aminzadeh F. Constant normal-moveout (CNMO) correction: a technique and test results[J]. Geophysical Prospecting, 2000: 48.

    [9]

    Hicks G J. Removing NMO stretch using the Radon and Fourier-Radon transforms[C]//63rd EAGE Conference & Exhibition, 2001.

    [10]

    Trickett S. Stretch-free stacking[C]//73rd Annual International Meeting,SEG,Expanded Abstracts, 1949: 4645.

    [11]

    崔宝文, 王维红. 频谱代换无拉伸动校正方法研究[J]. 地球物理学进展, 2007,22(3):960-965.

    [12]

    Cui B W, Wang W H. Study on spectrum substitution non stretching NMO method[J]. Progress in Geophysics, 2007,22(3):960-965.

    [13]

    Kazemi N, Siahkoohi H R. Local stretch zeroing NMO correction[J]. Geophysical Journal International, 2014,188(1):123-130.

    [14]

    Zhang B, Zhang K, Guo S, et al. Nonstretching NMO correction of prestack time-migrated gathers using a matching-pursuit algorithm[J]. Geophysics, 2013,78(1):U9-U18.

    [15]

    Abedi M M, Riahi M A. Nonhyperbolic stretch-free normal moveout correction[J]. Geophysics, 2016,81(6):U87-U95.

    [16]

    Zhang F, Lan N. Seismic gather wavelet stretching correction based on multi-wavelet decomposition algorithm[J]. Geophysics, 2020,85(5):1-33.

    [17]

    Barnes A E. Another look at NMO stretch[J]. Geophysics, 2012,57(5):749.

    [18]

    Buchholtz H. A note on signal distortion due to dynamic (NMO) corrections[J]. Geophysical Prospecting, 1972,20(2):395-402.

    [19]

    Candes E, Romberg J, Tao T. Stable signal recovery from incomplete and inaccurate measurements[J]. Comm. Pure Appl. Math., 2005,59(8):1-15.

    [20]

    罗勇, 毛海波, 杨晓海, 等. 基于双重稀疏表示的地震资料随机噪声衰减方法[J]. 物探与化探, 2018,42(3):608-615.

    [21]

    Luo Y, Mao H B, Yang X H, et al. Random noise attenuation method for seismic data based on double sparse representation[J]. Geophysical and Geochemical Exploration, 2018,42(3):608-615.

    [22]

    Herrmann F J, Moghaddam P, Stolk C C. Sparsity- and continuity-promoting seismic image recovery with curvelet frames[J]. Applied & Computational Harmonic Analysis, 2008,24(2):150-173.

    [23]

    Gholami A. Residual statics estimation by sparsity maximization[J]. Geophysics, 2013,78(1):V11-V19.

    [24]

    Gholami A, Hosseini S M. A general framework for sparsity based denoising and inversion[J]. IEEE Transactions on Signal Processing, 2011,59(11):5202-5211.

  • 加载中
计量
  • 文章访问数:  851
  • PDF下载数:  52
  • 施引文献:  0
出版历程
收稿日期:  2021-06-15
修回日期:  2022-02-20
刊出日期:  2022-02-25

目录