A modified interpolation-iteration method for gravity anomaly continuation from undulating surface to plane
-
摘要: 重力异常曲化平即将起伏观测面上的重力异常延拓到平面上,从而为频率域处理和反演提供平坦观测面的重力异常数据。本文在常规插值—迭代法基础上,给出重力异常曲化平的改进插值—迭代法,即在异常迭代修正过程中引入起伏观测面修正因子,加快曲化平迭代收敛,促进曲化平效果提升。理论模型试验表明本文方法适用于观测面起伏较大、延拓跨度大的复杂条件下的稳定、有效曲化平,效果优于常规插值—迭代法。川滇地区实际重力异常数据试验表明本文曲化平方法有效增强了异常信号和细节特征,为后续处理和解释提供可靠数据。Abstract: Gravity anomaly continuation from undulating surface to plane can provide gravity data on a flat horizontal plane for frequency-domain data processing and inversion. Based on the theory of conventional interpolation-iteration methods, this study proposed a modified interpolation-iteration method by introducing a correction factor of the undulating observation surface in the iteration and correction process. The improved method accelerated the iterative convergence speed and promoted the continuation effects. The theoretical model-based tests show that this method can be used to achieve stable and effective large-span gravity anomaly continuation from greatly undulating surface to plane. The continuation results presented by this method are better than those obtained using conventional interpolation-iteration methods. The application of Bouguer gravity anomaly data of the Sichuan-Yunnan region demonstrates that the modified interpolation-iteration method effectively enhanced anomalous signals and details and can provide reliable data for subsequent processing and interpretation.
-
-
[1] 曾华霖. 重力场与重力勘探[M]. 北京: 地质出版社, 2005.
[2] Zeng H L. Gravity field and gravity exploration[M]. Beijing: Geological Publishing House, 2005.
[3] Blakely R J. Potential theory in gravity and magnetic applications [M]. Cambridge: Cambridge University Press, 1995:316-320.
[4] Guo L, Meng X, Chen Z, et al. Preferential filtering for gravity anomaly separation[J]. Computers & Geosciences, 2013,51:247-254.
[5] Oldenburg D W. The inversion and interpretation of gravity anomalies[J]. Geophysics, 1974,39(4):526-536.
[6] Cui Y, Guo L. A wavenumber-domain iterative approach for rapid 3-D imaging of gravity anomalies and gradients[J]. IEEE Access, 2019,7(1):34179-34188.
[7] Pilkington M, Boulanger O. Potential field continuation between arbitrary surfaces-Comparing methods[J]. Geophysics, 2017,82(3):J9-J25.
[8] Dampney C N G. The equivalent source technique[J]. Geophysics, 1969,34(1):39-53.
[9] David A E. Equivalent sources used as an analytic base for processing total magnetic field profiles[J]. Geophysics, 1973,38(2):339-348.
[10] Bhattacharyya B K, Chan K C. Reduction of magnetic and gravity data on an arbitrary surface acquired in a region of high topographic relief[J]. Geophysics, 1977,42(7):1411-1430.
[11] Hansen R O, Miyazaki Y. Continuation of potential fields between arbitrary surfaces[J]. Geophysics, 1984,49(6):787-795.
[12] Pilkington M, Urquhart W E S. Reduction of potential field data to a horizontal plane[J]. Geophysics, 1990,55(5):549-555.
[13] Xia J, Sprowl D R, Adkins-Heljeson D. Correction of topographic distortions in potential-field data: A fast and accurate approach[J]. Geophysics, 1993,58(4):515-523.
[14] Henderson R G, Cordell L. Reduction of unevenly spaced potential field data to a horizontal plane by means of finite harmonic series[J]. Geophysics, 1971,36(5):1046-1046.
[15] Guspi F. Frequency-domain reduction of potential field measurements to a horizontal plane[J]. Geoexploration, 1987,24(2):87-98.
[16] Pilkington M, Thurston J B. Draping corrections for aeromagnetic data: Line versus grid-based approaches[J]. Exploration Geophysics, 2001,32(2):95-101.
[17] 程振炎. 重磁场的有限元法曲化平[J]. 物探与化探, 1981,5(3):153-158.
[18] Cheng Z Y. The finite element method of gravity and magnetic field[J]. Geophysical and Geochemical Exploration, 1981,5(3):153-158.
[19] Xu S Z. The boundary element method in geophysics[M]. Tulsa: Society of Exploration Geophysicists, 2001:63-67.
[20] Xu S Z, Yang C H, Dai S K, et al. A new method for continuation of 3D potential fields to a horizontal plane[J]. Geophysics, 2003,68(6):1917-1921.
[21] 徐世浙. 位场延拓的积分—迭代法[J]. 地球物理学报, 2006,49(4):1176-1182.
[22] Xu S Z. The interpolation-iteration method for continuation of potential fields[J]. Chinese Journal of Geophysics, 2006,49(4):1176-1182.
[23] 刘东甲, 洪天求, 廖旭涛, 等. 位场曲化平积分方程的迭代解[J]. 地球物理学报, 2012,55(10):3467-3476.
[24] Liu D J, Hong T Q, Liao X T, et al. Iterative solution of integral equation for potential field continuation from irregular surface to a horizontal plane[J]. Chinese Journal of Geophysics, 2012,55(10):3467-3476.
[25] 徐世浙, 余海龙. 位场曲化平的插值—迭代法[J]. 地球物理学报, 50(6):193-197.
[26] Xu S Z, Yu H L. The interpolation-iteration method for potential fields continuation from undulating surface to plane[J]. Chinese Journal of Geophysics, 2007,50(6):193-197.
[27] 郭良辉, 孟小红, 石磊, 等. 优化滤波方法及其在中国大陆布格重力异常数据处理中的应用[J]. 地球物理学报, 2012,55(12):4078-4088.
[28] Guo L H, Meng X H, Shi L, et al. Preferential filtering method and its application to Bouguer gravity anomaly of Chinese continent[J]. Chinese Journal of Geophysics, 2012,55(12):4078-4088.
-
计量
- 文章访问数: 1069
- PDF下载数: 136
- 施引文献: 0