中国自然资源航空物探遥感中心主办
地质出版社出版

重力异常曲化平的改进插值—迭代法

杨婧, 郭良辉. 2022. 重力异常曲化平的改进插值—迭代法. 物探与化探, 46(1): 123-129. doi: 10.11720/wtyht.2022.1403
引用本文: 杨婧, 郭良辉. 2022. 重力异常曲化平的改进插值—迭代法. 物探与化探, 46(1): 123-129. doi: 10.11720/wtyht.2022.1403
YANG Jing, GUO Liang-Hui. 2022. A modified interpolation-iteration method for gravity anomaly continuation from undulating surface to plane. Geophysical and Geochemical Exploration, 46(1): 123-129. doi: 10.11720/wtyht.2022.1403
Citation: YANG Jing, GUO Liang-Hui. 2022. A modified interpolation-iteration method for gravity anomaly continuation from undulating surface to plane. Geophysical and Geochemical Exploration, 46(1): 123-129. doi: 10.11720/wtyht.2022.1403

重力异常曲化平的改进插值—迭代法

  • 基金项目:

    国家重点研发计划项目月球内部圈层结构与演化过程的研究(2021YFA0715101)

    国家自然科学基金面上项目全波形与重力联合反演方法及在南岭—武夷—东南沿海成矿带岩石圈三维精细结构成像的应用(41974101)

    中央高校基本科研业务费专项资金

    地质过程与矿产资源国家重点实验室科技部专项经费

详细信息
    作者简介: 杨婧(1999-),女,硕士研究生,主要从事重震数据处理和反演研究工作。Email: 2010200015@cugb.edu.cn
  • 中图分类号: P631

A modified interpolation-iteration method for gravity anomaly continuation from undulating surface to plane

  • 重力异常曲化平即将起伏观测面上的重力异常延拓到平面上,从而为频率域处理和反演提供平坦观测面的重力异常数据。本文在常规插值—迭代法基础上,给出重力异常曲化平的改进插值—迭代法,即在异常迭代修正过程中引入起伏观测面修正因子,加快曲化平迭代收敛,促进曲化平效果提升。理论模型试验表明本文方法适用于观测面起伏较大、延拓跨度大的复杂条件下的稳定、有效曲化平,效果优于常规插值—迭代法。川滇地区实际重力异常数据试验表明本文曲化平方法有效增强了异常信号和细节特征,为后续处理和解释提供可靠数据。
  • 加载中
  • [1]

    曾华霖. 重力场与重力勘探[M]. 北京: 地质出版社, 2005.

    [2]

    Zeng H L. Gravity field and gravity exploration[M]. Beijing: Geological Publishing House, 2005.

    [3]

    Blakely R J. Potential theory in gravity and magnetic applications [M]. Cambridge: Cambridge University Press, 1995:316-320.

    [4]

    Guo L, Meng X, Chen Z, et al. Preferential filtering for gravity anomaly separation[J]. Computers & Geosciences, 2013,51:247-254.

    [5]

    Oldenburg D W. The inversion and interpretation of gravity anomalies[J]. Geophysics, 1974,39(4):526-536.

    [6]

    Cui Y, Guo L. A wavenumber-domain iterative approach for rapid 3-D imaging of gravity anomalies and gradients[J]. IEEE Access, 2019,7(1):34179-34188.

    [7]

    Pilkington M, Boulanger O. Potential field continuation between arbitrary surfaces-Comparing methods[J]. Geophysics, 2017,82(3):J9-J25.

    [8]

    Dampney C N G. The equivalent source technique[J]. Geophysics, 1969,34(1):39-53.

    [9]

    David A E. Equivalent sources used as an analytic base for processing total magnetic field profiles[J]. Geophysics, 1973,38(2):339-348.

    [10]

    Bhattacharyya B K, Chan K C. Reduction of magnetic and gravity data on an arbitrary surface acquired in a region of high topographic relief[J]. Geophysics, 1977,42(7):1411-1430.

    [11]

    Hansen R O, Miyazaki Y. Continuation of potential fields between arbitrary surfaces[J]. Geophysics, 1984,49(6):787-795.

    [12]

    Pilkington M, Urquhart W E S. Reduction of potential field data to a horizontal plane[J]. Geophysics, 1990,55(5):549-555.

    [13]

    Xia J, Sprowl D R, Adkins-Heljeson D. Correction of topographic distortions in potential-field data: A fast and accurate approach[J]. Geophysics, 1993,58(4):515-523.

    [14]

    Henderson R G, Cordell L. Reduction of unevenly spaced potential field data to a horizontal plane by means of finite harmonic series[J]. Geophysics, 1971,36(5):1046-1046.

    [15]

    Guspi F. Frequency-domain reduction of potential field measurements to a horizontal plane[J]. Geoexploration, 1987,24(2):87-98.

    [16]

    Pilkington M, Thurston J B. Draping corrections for aeromagnetic data: Line versus grid-based approaches[J]. Exploration Geophysics, 2001,32(2):95-101.

    [17]

    程振炎. 重磁场的有限元法曲化平[J]. 物探与化探, 1981,5(3):153-158.

    [18]

    Cheng Z Y. The finite element method of gravity and magnetic field[J]. Geophysical and Geochemical Exploration, 1981,5(3):153-158.

    [19]

    Xu S Z. The boundary element method in geophysics[M]. Tulsa: Society of Exploration Geophysicists, 2001:63-67.

    [20]

    Xu S Z, Yang C H, Dai S K, et al. A new method for continuation of 3D potential fields to a horizontal plane[J]. Geophysics, 2003,68(6):1917-1921.

    [21]

    徐世浙. 位场延拓的积分—迭代法[J]. 地球物理学报, 2006,49(4):1176-1182.

    [22]

    Xu S Z. The interpolation-iteration method for continuation of potential fields[J]. Chinese Journal of Geophysics, 2006,49(4):1176-1182.

    [23]

    刘东甲, 洪天求, 廖旭涛, 等. 位场曲化平积分方程的迭代解[J]. 地球物理学报, 2012,55(10):3467-3476.

    [24]

    Liu D J, Hong T Q, Liao X T, et al. Iterative solution of integral equation for potential field continuation from irregular surface to a horizontal plane[J]. Chinese Journal of Geophysics, 2012,55(10):3467-3476.

    [25]

    徐世浙, 余海龙. 位场曲化平的插值—迭代法[J]. 地球物理学报, 50(6):193-197.

    [26]

    Xu S Z, Yu H L. The interpolation-iteration method for potential fields continuation from undulating surface to plane[J]. Chinese Journal of Geophysics, 2007,50(6):193-197.

    [27]

    郭良辉, 孟小红, 石磊, 等. 优化滤波方法及其在中国大陆布格重力异常数据处理中的应用[J]. 地球物理学报, 2012,55(12):4078-4088.

    [28]

    Guo L H, Meng X H, Shi L, et al. Preferential filtering method and its application to Bouguer gravity anomaly of Chinese continent[J]. Chinese Journal of Geophysics, 2012,55(12):4078-4088.

  • 加载中
计量
  • 文章访问数:  1069
  • PDF下载数:  136
  • 施引文献:  0
出版历程
收稿日期:  2021-07-22
修回日期:  2022-02-20
刊出日期:  2022-02-25

目录