Scale effects of spatial variations in SOM and STN in semi-arid regions: A case study of Yan'an
-
摘要: 以高密度采样数据为数据集,经重采样分析,模拟不同尺度的采样空间分布场景,采用莫兰指数、半方差函数值和分形维数FD等空间分析方法,探讨土壤有机质和全氮空间变异的尺度效应特征,并分析其影响因素的尺度间转换关系。结果表明:随着尺度增大,空间集聚性降低,有机质和全氮含量空间总变异先增大后趋于稳定,但随机性变异逐渐减少,结构性变异先增大后减少。小尺度产生的空间变异中的随机变异占比较多,结构变异占比较少,而大尺度则相反。不同的影响因素对有机质和全氮空间变异具有不同的区分度,高程的区分度最小;土壤类型、植被指数、年均气温、湿度等影响因素的区分度次之;降水量的区分度最大。有机质和全氮空间变异影响因素具有尺度特征,随着尺度增大,小尺度因素引起的随机变异逐渐减少,而大尺度因素引起的结构性变异先增大后减弱,直至转换为相对的小尺度因素;各影响因素对土壤有机质和全氮含量的影响协同机制在尺度间差异较大,引起随机变异和结构变异出现尺度间消长,导致空间变异呈现出先减少后趋于平稳的变化规律。Abstract: Taking high-density sampling data as a dataset, the sampling spatial distribution scenarios on different scales were simulated through resampling analysis. Spatial analysis methods, such as Moran's I index, semi-variance function value, and fractal dimension FD, were used to explore the scale effects of spatial variations in soil organic matter (SOM) and soil total nitrogen (STN) and to analyze the conversion of influencing factors between different scales. The results are as follows. With an increase in scale, the spatial agglomeration decreased, and the spatial variation of SOM and STN in general increased first and then tended to be stable. By contrast, the random variation decreased gradually and the structural variation increased first and then decreased as the scales increased. The spatial variation generated on small scales consisted of a large proportion of random variation and a small proportion of structural variation, while the opposite is true on large scales. Different influencing factors had different distinguishing degrees for the spatial variations in SOM and STN. Their distinguishing degrees were in the order of height
-
Key words:
- sampling scale /
- spatial variation /
- fractal dimension /
- semi-variance function /
- SOM /
- STN /
- semi-arid regions
[1] 齐雁冰, 常庆瑞, 刘梦云, 等. 县域农田土壤养分空间变异及合理样点数确定[J]. 土壤通报, 2014, 45(3):556-561.
[2] Qi Y B, Chang Q R, Liu M Y, et al. County-scale spatial variability of soil nutrient distribution and determination of reasonable sampling density[J]. Chinese Journal of Soil Science, 2014, 45(3):556-561.
[3] 张法升, 刘作新. 分形理论及其在土壤空间变异研究中的应用[J]. 应用生态学报, 2011, 22(5):1351-1358.
[4] Zhang F S, Liu Z X. Fractal theory and its application in the analysis of soil spatial variability:A review[J]. Chinese Journal of Applied Ecology, 2011, 22(5): 1351-1358.
[5] Heuvelink GBM, Webster R. Modelling soil variation:Past, present and future[J]. Geoderma, 2001, 100: 269-301.
[6] Jenny H. Factors of soil formation:A system of quantitative pedology[M]. New York: Dover Publications, 1994.
[7] 姜秋香, 付强, 王子龙. 空间变异理论在土壤特性分析中的应用研究进展[J]. 水土保持研究, 2007, 14(4): 413-415.
[8] Jiang Q X, Fu Q, Wang Z L. Research progress of the spatial variability theory in application to soil characteristic analysis[J]. Research of Soil and Water Conservation, 2007, 14(4): 413-415.
[9] 霍霄妮, 李红, 张微微, 等. 北京耕作土壤重金属多尺度空间结构[J]. 农业工程学报, 2009, 25(3):223-229.
[10] Huo X N, Li H, Zhang W W, et al. Multi-S spatial structure of heavy metals in Beijing cultivated soils[J]. Transactions of the CSAE, 2009, 25(3): 223-229.
[11] 潘瑜春, 刘巧芹, 阎波杰, 等. 采样尺度对土壤养分空间变异分析的影响[J]. 土壤通报, 2010, 41(2):257-262.
[12] Pan Y C, Liu Q Q, Yan B J, et al. Effects of sampling S on soil nutrition spatial variability analysis[J]. Chinese Journal of Soil Science, 2010, 41(2): 257-262.
[13] 雷咏雯, 危常州, 李俊华, 等. 不同尺度下土壤养分空间变异特征的研究[J]. 土壤, 2004, 36(4):376-381.
[14] Lei Y W, Wei C Z, Li J H, et al. Characters of soil nutrient spatial variability in different S[J]. Soil, 2004, 36(4): 376-381.
[15] 刘伟, 郜允兵, 周艳兵, 等. 农田土壤重金属空间变异多尺度分析——以北京顺义土壤Cd为例[J]. 农业环境科学学报, 2019, 38(1):87-94.
[16] Liu W, Gao Y B, Zhou Y B, et al. Multi-S analysis of spatial variability of heavy metals in farmland soils: Case study of soil Cd in Shunyi District of Beijing,China[J]. Journal of Agro-Environment Science, 2019, 38(1): 87-94.
[17] 郑袁明, 陈煌, 陈同斌, 等. 北京市土壤中Cr、Ni含量的空间结构与分布特征[J]. 第四纪研究, 2003, 23(4):436-445.
[18] Zheng Y M, Chen H, Chen T B, et al. Spatialdistribution patterns of Cr and Ni in soils of beijing[J]. Quaternary Sciences, 2003, 23(4): 436-445.
[19] 陈涛, 常庆瑞, 刘钊, 等. 耕地土壤有机质与全氮空间变异性对粒度的响应研究[J]. 农业机械学报, 2013, 44(10):122-129.
[20] Chen T, Chang Q R, Liu Z, et al. Spatial variablility response of farmland soil organic matter and total nitrogen to sampling grain size[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(10):122-129.
[21] 王鹏, 刘拓, 邱德明. 基于局部惩罚型变权的建设用地生态适宜性空间模糊评价——以陕西延安宝塔区为例[J]. 西北地质, 2021, 54(1):232-241.
[22] Wang P, Liu T, Qiu D M. Spatial fuzzy assessment of ecological suitability for urban land based on local penalty variable weights:A case study of Baota district[J]. Northwestern Geogloy, 2021, 54(1):232-241.
[23] 杨奇勇, 杨劲松, 刘广明. 土壤速效养分空间变异的尺度效应[J]. 应用生态学报, 2011, 22(2):431-436.
[24] Yang Q Y, Yang J S, Liu G M. S-dependency of spatial variability of soil available nutrients[J]. Chinese Journal of Applied Ecology, 2011, 22(2): 431-436.
[25] Antonio P M. Spatial variability patterns of phosphorus and potassium in no-tilled soils for two sampling scales[J]. Soil Science Society of America Journal, 1996, 60(5): 1473-1481.
[26] 李小昱, 雷廷武, 王为. 农田土壤特性的空间变异性及分形特征[J]. 干旱地区农业研究, 2000, 18(4): 61-65.
[27] Li X Y, Lei T W, Wang W. Spatial variablelity and fractal dimension of soil property in field[J]. Agricultural Research in the Arid Areas, 2000, 18(4): 61-65.
[28] 沈思源. 土壤空间变异研究中地统计学的应用及其展望[J]. 土壤学进展, 1989, 17(3):11-25.
[29] Shen S Y. Application and prospect of geostatistics in soil spatial variability research[J]. Advances in Soil Science, 1989, 17(3): 11-25.
[30] 盛建东, 肖华, 武红旗, 等. 不同取样间距农田土壤全量养分空间变异特征研究[J]. 土壤通报, 2006, 37(6):1062-1065.
[31] Sheng J D, Xiao H, Wu H Q, et al. Spatial variability of total nutrients in arable soil as affected by different sampling distances[J]. Chinese Journal of Soil Science, 2006, 37(6) : 1062-1065.
[32] 李雅琦, 田均良, 刘普灵. 黄土高原土壤元素含量地域分异规律[J]. 西北农业学报, 2000, 9(3):63-66.
[33] Li Y Q, Tian J L, Liu P L. A Study on laws of regional variance of soil element in loess plateau through trend surface analysis method[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2000, 9(3):63-66.
[34] 王鹏, 段星星, 赵禹, 等. 治沟造地新增耕地的土壤质量评价——延安宝塔区为例[J]. 土地开发工程研究, 2019, 4(1):41-45.
[35] Wang P, Duan X X, Zhao Y, et al. The evaluation of soil nutrient status in newly reclaimed land from trench construction:Taking Baota district of Yan'an city as example[J]. Land Development and Engineering Research, 2019, 4(1):41-45.
[36] 陈云坪, 王秀, 马伟, 等. 小麦多年产量空间变异与空间关联分析[J]. 农业机械学报, 2010, 41(10):180-184.
[37] Chen Y P, Wang X, Ma W, et al. Spatial autocorrelation analysis of wheat yield over five years[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(10): 180-184.
[38] Burrough P A. Multiscale sources of spatial variation in soil. I. The application of fractal concepts to nested levelsof soil variation[J]. European Journal of Soil Science, 1983, 34: 577-597.
[39] 张忠启. 采样点布设与区域土壤有机碳变异性研究[M]. 北京: 科学出版社, 2019:110-128.
[40] Zhang Z Q. Sampling site arrangement and regional soil organic carbon variability[M]. Beijing: Science Press, 2019:110-128.
[41] Lei G, Shao M A. The interpolation accuracy for seven soil properties at various sampling Ss on the Loess Plateau, China[J]. Journal of Soils and Sediments, 2012, 12(2): 128-142.
[42] Daniels, Lee W. The Nature and Properties of Soils, 15th Edition[J]. Soil Science Society of America Journal, 2016, 80(5):1428.
[43] 李元年. 基于熵理论的指标体系区分度测算与权重设计[D]. 南京: 南京航空航天大学, 2008.
[44] Li Y N. Evaluation and weight design of index system based on entropy theory[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008.
[45] 王鹏, 刘拓, 段星星, 等. 基于熵权的土壤养分地球化学多级模糊综合评判——以陕西省关中地区为例[J]. 水土保持通报, 2019, 39(6):136-141.
[46] Wang P, Liu T, Duan X X, et al. Multi-stage fuzzy comprehensive evaluation of soil nutrient geochemistry based on entropy weight:Take Guanzhong region for example[J]. Bulletin of Soil and Water Conservation, 2019, 39(6):136-141.
[47] 金继运, 白山路. 精准农业与土壤养分管理[M]. 北京: 中国大地出版社, 2001:5l-57.
[48] Jin J Y, Bai S L. Precision agriculture and soil nutrient management[M]. Beijing: China Dadi Publishing House, 2001:5l-57.
[49] 王鹏, 刘拓. 延安市宝塔区土壤养分地球化学评价中的变权效果[J]. 物探与化探, 2020, 44(4):847-854.
[50] Wang P, Liu T. Variational weight effect in the geochemical evaluation of soil nutrients in Baota District of Yan'an City[J]. Geophysical and Geochemical Exploration, 2020, 44(4):847-854.
计量
- 文章访问数: 269
- PDF下载数: 67
- 施引文献: 0