中国自然资源航空物探遥感中心主办
地质出版社出版

黏声波高阶傅里叶有限差分法参数优化成像

肖世鹏, 熊高君, 袁梦雨, 毛明秋, 王胜艺, 韦增涛. 2022. 黏声波高阶傅里叶有限差分法参数优化成像. 物探与化探, 46(5): 1207-1213. doi: 10.11720/wtyht.2022.1419
引用本文: 肖世鹏, 熊高君, 袁梦雨, 毛明秋, 王胜艺, 韦增涛. 2022. 黏声波高阶傅里叶有限差分法参数优化成像. 物探与化探, 46(5): 1207-1213. doi: 10.11720/wtyht.2022.1419
XIAO Shi-Peng, XIONG Gao-Jun, YUAN Meng-Yu, MAO Ming-Qiu, WANG Sheng-Yi, WEI Zeng-Tao. 2022. Parameter optimization and imaging of visco-acoustic media using high-order Fourier finite-difference method. Geophysical and Geochemical Exploration, 46(5): 1207-1213. doi: 10.11720/wtyht.2022.1419
Citation: XIAO Shi-Peng, XIONG Gao-Jun, YUAN Meng-Yu, MAO Ming-Qiu, WANG Sheng-Yi, WEI Zeng-Tao. 2022. Parameter optimization and imaging of visco-acoustic media using high-order Fourier finite-difference method. Geophysical and Geochemical Exploration, 46(5): 1207-1213. doi: 10.11720/wtyht.2022.1419

黏声波高阶傅里叶有限差分法参数优化成像

  • 基金项目:

    四川省教育厅地震正演模拟项目(KZB029)

详细信息
    作者简介: 肖世鹏(1997-),男,在读硕士研究生,从事地震勘探方面的研究工作。Email:Xiao_Shipeng@163.com
  • 中图分类号: P631.4

Parameter optimization and imaging of visco-acoustic media using high-order Fourier finite-difference method

  • 黏声波高阶傅里叶有限差分法数值模拟可以更精准地反映具有大地吸收效应的高倾角地层地震响应,它能适应任意横向速度变化并压制大倾角处有限差分法出现的频散现象及背景噪声。高倾角地层偏移精度取决于差分算子常系数确定及阶数的求取。本文使用梯度下降法对傅里叶有限差分算子中的高阶有限差分校正项进行了优化,根据相对误差和约束系数优化结果,在不提高方程阶次的情况下达到更高阶方程的逼近效果,并将其扩展到黏声介质。通过设计的模型算例可以得出,文中方法适应具有吸收衰减效应的强空间变速介质的正演模拟,且具有较高的计算精度和计算效率,能对复杂地质构造进行准确的地震数值模拟。
  • 加载中
  • [1]

    俞寿朋. 高分辨率地震勘探[M]. 北京: 石油工业出版社,1993.

    [2]

    Yu S P. High resolution seismic exploration[M]. Beijing: Petroleum Industry Press,1993.

    [3]

    李庆忠. 走向精确勘探的道路[M]. 北京: 石油工业出版社,1994.

    [4]

    Li Q Z. The road to accurate exploration[M]. Beijing: Petroleum Industry Press,1994.

    [5]

    陈树民, 刘礼农, 张剑峰, 等. 一种补偿介质吸收叠前时间偏移技术[J]. 石油物探, 2018, 57(4):576-583.

    [6]

    Chen S M, Liu L N, Zhang J F, et al. A deabsorption prestack time migration technology[J]. Petroleum Geophysical Prospecting, 2018, 57(4):576-583.

    [7]

    徐凯, 孙赞东. 基于粘声衰减补偿的最小二乘逆时偏移[J]. 石油物探, 2018, 57(3):419-427.

    [8]

    Xu K, Sun Z D. Least-squares reverse time migration based on visco-acoustic attenuation compensation[J]. Geophysical Prospecting for Petroleum, 2018, 57(3):419-427.

    [9]

    冀国强, 石颖. 正则化形式的稳定粘声逆时偏移成像方法[J]. 石油物探, 2020, 59(3):374-381.

    [10]

    Ji G Q, Shi Y. Stable and regularized visco-acoustic reverse time migration[J]. Geophysical Prospecting for Petroleum, 2020, 59(3):374-381.

    [11]

    周斯琛. 频率域粘声介质全波形反演方法研究[D]. 青岛: 中国石油大学(华东), 2017.

    [12]

    Zhou S C. The research on frequency domain visco-acoustic full waveform insersion[D]. Qingdao: China University of Petroleum (East China), 2017.

    [13]

    廖建平, 王华忠, 刘和秀, 等. 精确的频率空间域黏声波有限差分数值模拟[J]. 物探与化探, 2011, 35(4):541-545.

    [14]

    Liao J P, Wang H Z, Liu H X, et al. Accurate visco-acoustic wave finite difference numerical simulation in frequency space domain[J]. Geophysical and Geochemical Exploration, 2011, 35(4):541-545.

    [15]

    Stolt R H. Migration by fourier transform[J]. Geophyscis, 2012, 43(1): 23-48.

    [16]

    牛滨华, 孙春岩. 半无限空间各向同性黏弹性介质与地震波传播[M]. 北京: 地质出版社, 2007.

    [17]

    Niu B H, Sun C Y. Half-space homogeneous isotropic viscoelastic medium and seismic wave propagation[M]. Beijing: Geological Publishing House, 2007.

    [18]

    李金丽, 李振春, 管路平, 等. 地震波衰减及补偿方法[J]. 物探与化探, 2015, 39(3):456-465.

    [19]

    Li J L, Li Z C, Guan L P, et al. The method of seismic attenuation and energy compensation[J]. Geophysical and Geochemical Exploration, 2015, 39(3):456-465.

    [20]

    邓文志, 李振春, 王延光, 等. 基于稳定逆时传播算子的黏声介质最小二乘逆时偏移[J]. 物探与化探, 2015, 39(4):791-796.

    [21]

    Deng W Z, Li Z C, Wang Y G, et al. The least-squares reverse time migration for visco-acoustic medium based on a stable reverse-time propagator[J]. Geophysical and Geochemical Exploration, 2015, 39(4):791-796.

    [22]

    李金丽, 曲英铭, 刘建勋, 等. 三维黏声最小二乘逆时偏移方法研究[J]. 物探与化探, 2018, 42(5):1013-1025.

    [23]

    Li J L, Qu Y M, Liu J X, et al. A model study of three-dimensional viscoacoustic least-squares reverse time migration[J]. Geophysical and Geochemical Exploration, 2018, 42(5):1013-1025.

    [24]

    赵连锋. 井间地震波速与衰减联合层析成像方法研究[D]. 成都: 成都理工大学, 2002.

    [25]

    Zhao L F. Study on crosswell seismic tomography combing velocity and attenuation[D]. Chengdu: Chengdu University of Technology, 2002.

    [26]

    贺振华, 赵宪生, 陈琴芳. 地震记录的快速f-k正演模拟[J]. 石油地球物理勘探, 1992, 27(3):336-342.

    [27]

    He Z H, Zhao X S, Chen Q F. Fast f-k forward modeling of seismic data[J]. Oil Geophysical Prospecting, 1992, 27(3):336-342.

    [28]

    张金海, 王卫民, 赵连锋, 等. 黏声波介质傅里叶有限差分法正演模拟[J]. 石油地球物理勘探, 2008, 43(2):174-178.

    [29]

    Zhang J H, Wang W M, Zhao L F, et al. Fourier finite-different forward modeling in viscoacoustic media[J]. Oil Geophysical Prospecting, 2008, 43(2):174-178.

    [30]

    Stoffa P L, Fokkema J T, de Luna Freire R M, et al. Split-step Fourier migration[J]. Geophysics, 1990, 55(4):410-421.

    [31]

    Ristow D, Rühl T. Fourier finite-difference migration[J]. Geophysics, 1994, 59(12):1882-1893.

    [32]

    邓巧琳. 地震波在反射与透射影响下的能量衰减分析[D]. 长沙: 湖南大学, 2013.

    [33]

    Deng Q L. Derivation of reflection and transmission coefficient of seismic waves in viscoelastic media[D]. Changsha: Hunan University, 2013.

    [34]

    Jo C H, Shin C, Suh J H. An optimal 9-point finite-difference frequency-space 2-D scalar wave extrapolator[J]. Geophysics, 1996, 61(2):529-537.

    [35]

    马在田. 高阶有限差分偏移[J]. 石油地球物理勘探, 1982, 17(1):6-15.

    [36]

    Ma Z T. The finite-difference migration of higher-order equation[J]. Oil Geophysical Prospecting, 1982, 17(1):6-15.

    [37]

    王华忠, 马在田, 曹景忠. 优化系数傍轴近似方程三维一步法偏移[J]. 石油地球物理勘探, 1998, 33(2):170-184.

    [38]

    Wang H Z, Ma Z T, Cao J Z. Three dimensional one-pass migration using paraxial approximate equation with optimized coefficients[J]. Oil Geophysical Prospecting, 1998, 33(2):170-184.

    [39]

    Liu L N, Zhang J F. 3D wavefield extrapolation with optimum split-step Fourier method[J]. Society of Exploration Geophysicists, 2006, 71(3):95-108.

    [40]

    Lee M W, Suh S Y. Optimization of one-way wave equations[J]. Geophysics, 1985, 50(10):1634-1637.

    [41]

    Kadalbajoo M K, Awasthi A. Crank-Nicolson finite difference method based on a midpoint upwind scheme on a non-uniform mesh for time-dependent singularly perturbed convection-diffusion equations[J]. International Journal of Computer Mathematics, 2008, 85(5):771-790.

    [42]

    Claerbout J F. Imaging the earth’s interior[J]. Geophysical Journal International, 1986, 86(1):217.

    [43]

    Li Z M, Liu C L. An ideal depth extrapolation of two-dimensional seismic wave field[J]. Oil Geophysical Prospecting, 1990, 25(5):517-528.

  • 加载中
计量
  • 文章访问数:  258
  • PDF下载数:  35
  • 施引文献:  0
出版历程
收稿日期:  2021-08-11
修回日期:  2022-10-20
刊出日期:  2023-01-03

目录