Seismic data reconstruction based on segmented random sampling and MCA
-
摘要: 数据重建是地震资料处理中一项重要的前期工作。压缩感知(compress sensing, CS)已经在数据重建领域取得了很好的应用。CS的关键是采样的随机性,随机采样将常规欠采样引起的互相干假频转化为较低能量的不相干噪声。一方面,传统的随机采样方法缺乏对采样点的约束,导致产生过多的噪声干扰,分段随机采样可有效地控制采样点之间的距离。另一方面,单一的数学变换会导致信号的不完全稀疏表达,影响数据重建效果,形态分量分析(morphological component analysis, MCA)将信号分解成几个具有显著特征的成分以逼近数据复杂的内部结构。本文在MCA框架下找到了一个新的字典组合(Shearlet+DCT),并使用块坐标松弛(block coordinate relaxation,BCR)算法得到最优解,从而获得理想重构结果。对实际资料的实验表明,该方法在重建分段随机采样数据时具有较好效果。Abstract: Data reconstruction is a critical preliminary work in the processing of seismic data.Compressed sensing (CS) has been well applied in data reconstruction.The key to CS is random sampling,which converts the mutual coherent alias caused by regular under-sampling into lower-amplitude incoherent noise. But traditional sampling methods lack constraints on sampling points, resulting in excessive noise interference. The segmented random sampling (SRS) method can effectively control the distance between sampling points. Furthermore, a single mathematical transformation will lead to incomplete sparse representation and impact data reconstruction. The morphological component analysis (MCA) can decompose a signal into several components with outstanding morphological features to approximate the complex internal structure of data. A new dictionary combination (Shearlet+DCT) has been found under the MCA framework, and the block coordinate relaxation (BCR) algorithm has been used to get the optimal solution to obtain desired reconstruction results. Tests of real data have proven that the proposed method can produce good effects when used to reconstruct the SRS data.
-
-
[1] 张华, 陈小宏. 基于Jitter采样和曲波变换的三维地震数据重建[J]. 地球物理学报, 2013, 56(5):1637-1649.
[2] Zhang H, Chen X H. Seismic data reconstruction based on jittered sampling and curvelet transform[J]. Chinese J. Geophys., 2013, 56(5):1637-1649.
[3] 唐刚. 基于压缩感知和稀疏表示的地震数据重建与去噪[D]. 北京: 清华大学, 2010.
[4] Tang G. Seismic data reconstruction and denoising based on compressive sensing and sparse representation[D]. Beijing: Tsinghua University, 2010.
[5] Leneman O. Random sampling of random processes:Impulse response[J]. Information and Control, 1966, 9(2):347-363.
[6] Hennenfent G, Herrmann F J. Simply denoise:Wavefield Reconstruction via jittered undersampling[J]. Geophysics, 2008, 73(3): V19-V28.
[7] Herrmann F J, Wang D, Hennenfent G, et al. Curvelet-based seismic data processing: A multiscale and nonlinear approach[J]. Geophysics, 2008, 73(1): A1-A5.
[8] Mosher C C. Generalized windowed transforms for seismic processing and imaging[C]// 82nd Annual International Meeting Expanded Abstracts,SEG, 2012.
[9] Yang P, Fomel S. Seislet-based morphological component analysis using scale-dependent exponential shrinkage[J]. Journal of Applied Geophysics, 2015, 118:66-74.
[10] Men Z, Ning H X, Zhang M G, et al. A method and application of irregular geometry design based on compressive sensing[C]// SEG Technical Program Expanded Abstracts, 2019.
[11] Sardy S, Bruce A G, Tseng P. Block coordinate relaxation methods for nonparametric wavelet denoising[J]. Journal of Computational and Graphical Statistics, 2000, 9(2):361-379.
[12] 刘成明, 王德利, 王通, 等. 基于Shearlet变换的地震随机噪声压制[J]. 石油学报, 2014, 35(4):692-699.
[13] Liu C M, Wang D L, Wang T, et al. Random seismic noise attenuation based on the Shearlet transform[J]. Acta Petrolei Sinica, 2014, 35(4): 692-699.
[14] 李海山, 吴国忱, 印兴耀. 形态分量分析在地震数据重建中的应用[J]. 石油地球物理勘探, 2012, 47(2):236-243.
[15] Li H S, Wu G C, Yin X Y. Morphological component analysis in seismic data reconstruction[J]. Oil Geophysical Prospecting, 2012, 47(2):236-243.
[16] 周亚同, 刘志峰, 张志伟. 形态分量分析框架下基于DCT与曲波字典组合的地震信号重建[J]. 石油物探, 2015, 54(5):560-568.
[17] Zhou Y T, Liu Z F, Zhang Z W. Seismic signal reconstruction under the morphological component analysis framework combined with discrete cosine transform (DCT) and curvelet dictionary[J]. Geophysical Prospecting for Petroleum, 2015, 54(5):560-568.
[18] 张良, 韩立国, 许德鑫, 等. 基于压缩感知技术的Shearlet变换重建地震数据[J]. 石油地球物理勘探, 2017, 52(2):220-225.
[19] Zhang L, Han L G, Xu D X, et al. Seismic data reconstruction with Shearlet transform based on compressed sensing technology[J]. Oil Geophysical Prospecting, 2017, 52(2): 220-225.
[20] 徐卫, 张华, 张落毅. 基于复值曲波变换的地震数据重建方法[J]. 物探与化探, 2016, 40(4):750-756.
[21] Xu W, Zhang H, Zhang L Y. A study of seismic data reconstruction based on complex-valued curvelet transform[J]. Geophysical and Geochemical Exploration, 2016, 40(4):750-756.
[22] 石战战, 夏艳晴, 周怀来, 等. 一种基于L1-L1范数稀疏表示的地震反演方法[J]. 物探与化探, 2019, 43(4):851-858.
[23] Shi Z Z, Xia Y Q, Zhou H L, et al. Seismic reflectivity inversion based on L1-L1-norm sparse representation[J]. Geophysical and Geochemical Exploration, 2019, 43(4): 851-858.
[24] 孔旭, 密文天, 莫雄, 等. 基于MRAS证据权重法的湖南怀化地区金矿成矿预测[J]. 物探与化探, 2016, 40(3):467-474.
[25] Kong X, Mi W T, Mo X, et al. Metallogenic prediction of gold deposits with weighting of evidence based on MRAS in Huaihua area,Hunan Province[J]. Geophysical and Geochemical Exploration, 2016, 40(3): 467-474.
[26] Wu R S, Geng Y, Ye L. Preliminary study on Dreamlet based compressive sensing data recovery[C]// SEG Technical Program Expanded Abstracts, 2013.
[27] 何真, 曹思远, 郝婳婕, 等. 基于自适应K-SVD的能量泄漏恢复研究[J]. 物探与化探, 2020, 44(2):362-371.
[28] He Z, Cao S Y, Hao H J, et al. Research on energy leakage recovery of adaptive K-SVD[J]. Geophysical and Geochemical Exploration, 2020, 44(2):362-371.
[29] 张凯, 张医奎, 李振春, 等. MCA框架下Shearlet和DCT字典组合地震数据重建[J]. 石油地球物理勘探, 2019, 54(5):12.
[30] Zhang K, Zhang Y K, Li Z C, et al. Seismic data reconstruction method combined with Discrete Cosine Transform and Shearlet dictionary under Morphological Component Analysis framework[J]. Oil Geophysical Prospecting, 2019, 54(5):12.
[31] Li X, Guo M J, Li W H, et al. Sparsity promoting reconstruction with compressively acquired land data[C]// SEG Technical Program Expanded Abstracts, 2019.
[32] Zwartjes P, Gisolf A. Fourier reconstruction with sparse inversion[J]. Geophysical Prospecting, 2007, 5(2):199-221.
[33] 郭奇, 曾昭发, 于晨霞, 等. 基于高精度字典学习算法的地震随机噪声压制[J]. 物探与化探, 2017, 41(5):907-913.
[34] Guo Q, Zeng Z F, Yu C X, et al. Seismic random noise suppression based on the high-precision dictionary learning algorithm[J]. Geophysical and Geochemical Exploration, 2017, 41(5):907-913.
[35] Kumar R, Wason H, Herrmann F J. Source separation for simultaneous towed-streamer marine acquisition—A compressed sensing approach[J]. Geophysics, 2015, 80(6):WD73-WD88.
[36] Mosher C C, Kaplan S T, Janiszewski F D. Non-uniform optimal sampling for seismic survey design[C]// 74th EAGE Conference and Exhibition, 2012.
[37] Neelamani R, Baumstein A, Gillard D, et al. Coherent and random noise attenuation using the curvelet transform[J]. The Leading Edge, 2008, 27:240-248.
[38] 罗勇, 毛海波, 杨晓海, 等. 基于双重稀疏表示的地震资料随机噪声衰减方法[J]. 物探与化探, 2018, 42(3):608-615.
[39] Luo Y, Mao H B, Yang X H, et al. Seismic random seismic noise attenuation method on basis of the double sparse representation[J]. Geophysical and Geochemical Exploration, 2018, 42(3):608-615.
-
计量
- 文章访问数: 361
- PDF下载数: 38
- 施引文献: 0