中国自然资源航空物探遥感中心主办
地质出版社出版

原生晕中元素及元素组合空间变化性研究——以青海省扎家同哪金矿为例

侯振广, 袁兆宪. 2022. 原生晕中元素及元素组合空间变化性研究——以青海省扎家同哪金矿为例. 物探与化探, 46(4): 798-807. doi: 10.11720/wtyht.2022.1444
引用本文: 侯振广, 袁兆宪. 2022. 原生晕中元素及元素组合空间变化性研究——以青海省扎家同哪金矿为例. 物探与化探, 46(4): 798-807. doi: 10.11720/wtyht.2022.1444
HOU Zhen-Guang, YUAN Zhao-Xian. 2022. The spatial variations of elements and element associations in the primary geochemical halos:A case study of the Zhajiatongna gold deposit in Qinghai province. Geophysical and Geochemical Exploration, 46(4): 798-807. doi: 10.11720/wtyht.2022.1444
Citation: HOU Zhen-Guang, YUAN Zhao-Xian. 2022. The spatial variations of elements and element associations in the primary geochemical halos:A case study of the Zhajiatongna gold deposit in Qinghai province. Geophysical and Geochemical Exploration, 46(4): 798-807. doi: 10.11720/wtyht.2022.1444

原生晕中元素及元素组合空间变化性研究——以青海省扎家同哪金矿为例

  • 基金项目:

    国家重点研发计划项目(2021YFC2900100)

    国家自然科学基金项目(41602338)

    河北省自然基金项目(D2021403050)

详细信息
    作者简介: 侯振广(1985-),男,工程师,主要从事矿产勘查研究工作。Email: up.hzg@126.com
  • 中图分类号: P

The spatial variations of elements and element associations in the primary geochemical halos:A case study of the Zhajiatongna gold deposit in Qinghai province

  • 原生晕普遍存在于各种矿床尤其是热液矿床中,是深部找矿必不可少的地球化学标志。目前对于原生晕中元素的富集贫化及组分分带研究较多,而对于元素及组合元素的空间变化性关注较少。本文基于青海省扎家同哪金矿2 279个钻孔原生晕样品地球化学数据,拟使用元素富集系数计算和多元统计分析的方法,研究矿床不同空间位置的元素和元素组合的变化特征。结果显示,从围岩样品、矿化围岩样品、矿石样品和全体样品中都提取出了代表围岩组分和矿化组分的元素组合,反映了矿床形成过程的本质是矿化组分叠加于围岩组分。在矿石样品中,还提取出了中高温元素组合和中低温元素组合,而在矿化围岩样品中,提取出了高温成矿元素组合和中低温成矿元素组合,反映了矿质沉淀机制以及沉淀时间和空间的差异。研究揭示,在扎家同哪金矿原生晕中,从外围向矿化中心,从定量的角度,成矿相关元素总体上表现为富集程度递增及富集元素数量增多的趋势,而从定性的角度,表现为围岩—矿化元素组合叠加中高温—中低温和高温—中低温成矿元素组合。
  • 加载中
  • [1]

    刘崇民. 金属矿床原生晕研究进展[J]. 地质学报, 2006, 80(10):1528-1538.

    [2]

    Liu C M. Progress in studies on primary halos of ore deposit[J]. Acta Geologicasinica, 2006, 80(10):1528-1538.

    [3]

    李惠, 禹斌, 李德亮, 等. 化探深部预测新方法综述[J]. 矿产勘查, 2010, 1(2):156-160.

    [4]

    Li H, Yu B, Li D L, et al. Summary of new methods on deep prediction of geochemical exploration[J]. Mineral Exploration, 2010, 1(2):156-160.

    [5]

    邵跃. 热液矿床岩石测量(原生晕法)找矿[M]. 北京: 地质出版社, 1997.

    [6]

    Shao Y. Rock prospecting of hydrothermal deposit(primary halo method)[M]. Beijing: Geological Publishing House, 1997.

    [7]

    欧阳宗圻, 李惠, 刘汉忠. 典型有色金属矿床地球化学异常模式[M]. 北京: 科学出版社, 1990.

    [8]

    Ouyang Z Q, Li H, Liu H Z. Geochemical anomaly models for typical nonferrous metal deposits[M]. Beijing: Science Press, 1990.

    [9]

    史长义, 汪彩芳. 区域次生地球化学负异常模型及其意义[J]. 物探与化探, 1995, 19(2):104-113.

    [10]

    Shi C Y, Wang C F. The regional secondary geochemical negative anomaley model and its significance[J]. Geophysical and Geochemical Exploration, 1995, 19(2):104-113.

    [11]

    朴寿成, 刘树田, 连长云, 等. 地球化学负异常及其找矿意义[J]. 地质与勘探, 1996, 32(2):46-50.

    [12]

    Piao S C, Liu S T, Lian C Y, et al. Geochemical negative anomaly and its prospecting significances[J]. Geology and Prospecting, 1996, 32(2):46-50.

    [13]

    Goldberg I S, Abramson G Y, Los V L. Depletion and enrichment of primary haloes:Their importance in the genesis of and exploration for mineral deposits[J]. Geochemistry:Exploration,Environment,Analysis, 2003, 3(3):281-293.

    [14]

    徐明钻, 朱立新, 马生明, 等. 多重分形模型在区域地球化学异常分析中的应用探讨[J]. 地球学报, 2010, 31(4):611-618.

    [15]

    Xu M Z, Zhu L X, Ma S M, et al. A tentative discussion on the application of multi-fractal models to the analysis of regional geochemical anomalies[J]. Acta Geoscientica Sinica, 2010, 31(4):611-618.

    [16]

    马生明, 朱立新, 刘海良, 等. 甘肃北山辉铜山铜矿地球化学异常结构研究[J]. 地球学报, 2011, 32(4):405-412.

    [17]

    Ma S M, Zhu L X, Liu H L, et al. A study of geochemical anomaly structure of the Huitongshan copper deposit in Beishan Area,Gansu Province[J]. Acta GeoscienticaSinica, 2011, 32(4):405-412.

    [18]

    Goldberg I S, Abramson G Y, Haslam C O, et al. Depletion and enrichment zones in the Bendigo gold field:A possible source of gold and implications for exploration[J]. Economic Geology, 2007, 102(4):745-753.

    [19]

    Beus A A, Grigorian S V. Geochemical exploration methods for mineral deposits[M]. Wilmette: Applied Publishing Ltd, 1977.

    [20]

    Yate Z. Geochemical exploration for deeply hidden ore in southeastern Hubei Province[J]. Journal of Geochemical Exploration, 1989, 33(1):135-144.

    [21]

    Konstantinov M M, Strujkov S F. Application of indicator halos(signs of ore remobilization)in exploration for blind gold and silver deposits[J]. Journal of Geochemical Exploration, 1995, 54(1):1-17.

    [22]

    黄转莹, 路润安. 陕西省凤县铅硐山大型铅锌矿床原生异常分带及分带指数[J]. 地质与勘探, 2003, 39(3):39-44.

    [23]

    Huang Z Y, Lu R A. Zoning characteristics and index of primary geochemical anomalies in Qiandongshan Pb-Zn deposit,Shaanxi Province,China[J]. Geology And Prospecting, 2003, 39(3):39-44.

    [24]

    Liu L M, Peng S L. Prediction of hidden ore bodies by synthesis of geological,geophysical and geochemical information based on dynamic model in Fenghuangshan ore field,Tongling district,China[J]. Journal of Geochemical Exploration, 2004, 81(1):81-98.

    [25]

    Ghavami-Riabi R, Theart H F, De Jager C. Detection of concealed Cu-Zn massive sulfide mineralization below eolian sand and a calcrete cover in the eastern part of the Namaqua Metamorphic Province,South Africa[J]. Journal of Geochemical Exploration, 2008, 97(2/3):83-101.

    [26]

    Wang C M, Carranza E J, Zhang S T, et al. Characterization of primary geochemical haloes for gold exploration at the Huanxiangwa gold deposit,China[J]. Journal of Geochemical Exploration, 2013, 24:40-58.

    [27]

    Zheng C J, Luo X R, Wen M L, et al. Axial primary halo characterization and deep orebody prediction in the Ashele copper-zinc deposit,Xinjiang,NW China[J]. Journal of Geochemical Exploration, 2020, 213:106509.

    [28]

    李惠, 张国义, 王支农, 等. 构造叠加晕法在预测金矿区深部盲矿中的应用效果[J]. 物探与化探, 2003, 27(6):438-440.

    [29]

    Li H, Zhang G Y, Wang Z N, et al. The effect of applying structural superimposed halos to the prognosis of deep blind orebodies in the gold ore district[J]. Geophysical and Geochemical Exploration, 2003, 27(6):438-440.

    [30]

    李惠, 禹斌, 李永才, 等. 热液型矿床深部盲矿预测的构造叠加晕实用理想模型及其意义[J]. 地质与勘探, 2020, 56(5):889-897.

    [31]

    Li H, Yu B, Li Y C, et al. A new practical ideal model of structural superimposed halos for prediction of deep blind hydrothermal deposits and its significance[J]. Geology and Exploration, 2020, 56(5):889-897.

    [32]

    王文, 李鹏, 夏有清, 等. 东昆仑大场金矿田扎家同哪矿床地质特征及找矿方向[J]. 青海大学学报:自然科学版, 2012, 30(5):60-68.

    [33]

    Wang W, Li P, Xia Y Q, et al. Geological features and prospecting orientation of Zhajiatongna deposit in Dachang golden orefield of Eastern Kunlun mountain[J]. Journal of Qinghai University:Nature Science Edition, 2012, 30(5):60-68.

    [34]

    袁兆宪, 侯振广, 任志栋, 等. 金属元素形成原生晕能力定量评价——以青海省扎家同哪金矿为例[J]. 物探与化探, 2021, 45(1):292-300.

    [35]

    Yuan Z X, Hou Z G, Ren Z D, et al. Quantitative evaluation of the ability of elements in forming primary halos:A case study of the Zhajiatongna gold deposit,Qinghai Province[J]. Geophysical and Geochemical Exploration, 2021, 45(1):292-300.

    [36]

    刘英俊, 曹励明, 李兆麟, 等. 元素地球化学[M]. 北京: 科学出版社, 1984.

    [37]

    Liu Y J, Cao L M, Li Z L, et al. Element geochemistry[M]. Beijing: Science Press, 1984.

    [38]

    Thompson J F, Sillitoe R H, Baker T, et al. Intrusion-related gold deposits associated with tungsten-tin provinces[J]. Mineralium Deposita, 1999, 34(4):323-334.

    [39]

    刘建明, 周渝峰, 付仁平, 等. 杂多酸络合物及其与热液成矿元素组合的关系[J]. 矿物岩石, 1994, 4(4):76-84.

    [40]

    Liu J M, Zhou Y F, Fu R P, et al. Heteropolyacide complexes in relationship to hydrothermal paragenesis of ore elements[J]. Journal of Mineralogy and Petrology, 1994, 4(4):76-84.

    [41]

    刘家军, 刘光智, 廖延福, 等. 甘肃寨上金矿床中白钨矿矿体的发现及其特征[J]. 中国地质, 2008, 35(6):1113-1120.

    [42]

    Liu J J, Liu G Z, Liao Y F, et al. Discovery and significance of scheelite orebodies in the Zhaishang gold deposit,southern Gansu[J]. Geology in China, 2008, 35(6):1113-1120.

    [43]

    Grigoryeva T A, Sukneva L S. Effects of sulfur and of antimony and arsenic sulfide on the solubility of gold[J]. Geochimica et Cosmochimica, 1981, 18:153-158.

    [44]

    Akhmedzhanova G M, Nekrasov I Y, Tikhomirova V I, et al. Solubility of gold in sulfide-arsenide solutions at 200-300 ℃[J]. Earth Science Sections, 1998, 300(3):189-191.

    [45]

    丁清峰, 王冠, 孙丰月, 等. 青海省曲麻莱县大场金矿床成矿流体演化:来自流体包裹体研究和毒砂地温计的证据[J]. 岩石学报, 2020, 26(12):3709-3719.

    [46]

    Ding Q F, Wang G, Sun F Y, et al. Ore-forming fluid evolution of Dachang gold deposit in Qumalai County,Qinghai Province:Evidence from fluid inclusion study and arsenopyrite geothermometer[J]. Acta Petrologica Sinica, 2010, 26(12):3709-3719.

  • 加载中
计量
  • 文章访问数:  494
  • PDF下载数:  32
  • 施引文献:  0
出版历程
收稿日期:  2021-08-12
修回日期:  2022-08-20
刊出日期:  2022-08-17

目录