Channel calibration calculation program for OBEMs
-
摘要: 海底电磁接收机(OBEM, ocean bottom electromagnetic receiver)是用于观测海底大地电磁信号的主要仪器。为了验证仪器的功能并提升仪器测量精度,在仪器入水前采用通道标定的方式进行仪器自检。现有的OBME-Ⅲ在进行标定计算时,需将通道标定生成的标定文件从仪器中导出,再借助PC端的Matlab程序进行计算,存在海上作业复杂、计算效率低等不足。针对这一系列问题,笔者开发编写了基于ARM-Linux平台的标定计算程序。通过输入相关命令,便可在OBEM-Ⅲ本地实现通道标定计算,减少了导出数据进行多平台计算引起的麻烦。所采用的混合基快速傅里叶变换计算方法,在保证计算精度的同时,将计算时间从90s缩短到11s,大大提升了计算速度,提高了仪器海上作业的效率。在2020年7~8月南海西南开展的大地电磁科研任务中,该程序表现出色,成功获得高质量海底大地电磁测深数据。Abstract: An ocean bottom electromagnetic receiver (OBEM) is primarily designed to measure the submarine electromagnetic signal. In order to verify the function of the instrument and improve the accuracy of result, the instrument is self-checked by a built-in channel calibration before OBEM enters the water. OBME-Ⅲ needs to export the calibration file generated by channel calibration from the instrument, and then use the Matlab program on the PC side to perform calibration calculation, which has shortcomings such as complex offshore operations and low calculation efficiency. In order to solve these problems, the author developed a calibration calculation program based on the ARM-Linux platform. By entering the relevant commands, the channel calibration calculation can be realized locally in OBEM-Ⅲ, reducing the trouble of exporting data for calculation on multiple platforms. The mixed-base fast Fourier transform calculation method adopted reduces the calculation time from 90 s to 11 s while ensuring the calculation accuracy, which greatly improves the calculation speed and improves the efficiency of the instrument's offshore operations. In the magnetotelluric scientific research mission carried out in the southwest of the South China Sea from July to August 2020, the program performed well and successfully obtained high-quality submarine magnetotelluric sounding data.
-
Key words:
- magnetotelluric /
- OBEM /
- calibration calculation /
- mixed radix FFT
-
-
[1] Steven C C, Arnold S O, Michael H, et al. Marine magnetotellurics for petroleum exploration Part I: A sea-floor equipment system[J]. Geophysics, 1998, 63(3),816-825.
[2] 何继善. 海洋电磁法现状和进展[J]. 地球物理学进展, 1999, 14(1):7-39.
[3] He J S. The situation and progressof marine electromagnetic method research[J]. Progress in Geophysics, 1999, 14(1):7-39.
[4] 赵宁, 王绪本, 秦策, 等. 三维频率域可控源电磁反演研究[J]. 地球物理学报, 2016, 59(1): 330-341.
[5] Zhao N, Wang X B, Qin C, et al. 3D frequency-domain CSEM inversion[J]. Chinese Journal of Geophysics, 2016, 59(1): 330-341.
[6] 李勇, 吴小平, 林品荣. 基于二次场电导率分块连续变化的三维可控源电磁有限元数值模拟[J]. 地球物理学报, 2015, 58(3) :1072-1087.
[7] Li Y, Wu X P, Lin P R. Three-dimensional controlled source electromagnetic finite element simulation using the secondary field for continuous variation of electrical conductivity within each block[J]. Chinese Journal of Geophysics, 2015, 58(3) :1072-1087.
[8] 殷长春, 贲放, 刘云鹤, 等. 三维任意各向异性介质中海洋可控源电磁法正演研究[J]. 地球物理学报, 2014, 57 (12): 4110-4122.
[9] Yin C C, Ben F, Liu Y H, et al. MCSEM 3D modeling for arbitrarily anisotropic media[J]. Chinese Journal of Geophysics, 2014, 57 (12): 4110-4122.
[10] 王猛, 张汉泉, 伍忠良, 等. 勘查天然气水合物资源的海洋可控源电磁发射系统[J]. 地球物理学报, 2013, 56(11): 3708-3717.
[11] Wang M, Zhang H Q, Wu Z L, et al. Marine controlled source electromagnetic launch system for natural gas hydrate resource exploration[J]. Chinese Journal of Geophysics, 2013, 56(11): 3708-3717.
[12] 何展翔, 王志刚, 孟翠贤, 等. 基于三维模拟的海洋 CSEM 资料处理[J]. 地球物理学报, 2009, 52(8):2165-2173.
[13] He Z X, Wang Z G, Meng C X, et al. Data processing of marine CSEM based on 3D modeling[J]. Chinese Journal of Geophysics, 2009, 52(8):2165-2173.
[14] 杜刚, 魏文博, 姜景捷, 等. ARM 嵌入式系统在海底大地电磁信号采集中的应用研究初探[J]. 地球物理学进展, 2004, 19(4):773-777.
[15] Du G, Wei W B, Jiang J J, et al. Research and application of ARM—embedded system in the seabed magnetotelluric data acquisition system[J]. Progress in Geophysics, 2004, 19(4):773-777.
[16] 魏文博, 邓明, 温珍河, 等. 南黄海海底大地电磁测深试验研究[J]. 地球物理学报, 2009, 52(3):740-749.
[17] Wei W B, Deng M, Wen Z H, et al. Experimental study of marine magnetotellurics in southern Huanghai[J]. Chinese Journal of Geophysics, 2009, 52(3):740-749.
[18] 景建恩, 伍忠良, 邓明, 等. 南海天然气水合物远景区海洋可控源电磁探测试验[J]. 地球物理学报, 2016, 59(7):2564-2572.
[19] Jing J E, Wu Z L, Deng M, et al. Experimental of marine controlled-source electromagnetic detection in a gas hydrate prospective region of South China Sea[J]. Chinese Journal of Geophysics, 2016, 59(7):2564-2572.
[20] Hoversten G M, Constable S C, Morrison H F. Marine magnetotellurics for base-of-salt mapping: Gulf of Mexico field test at the Gemini structure[J]. Geophysics, 2000, 65(5):1476-1488.
[21] Ueda T, Mitsuhata Y, Uchida T, et al. A new marine magnetotelluric measurement system in a shallow-water environment for hydrogeological study[J]. Journal of Applied Geophysics, 2014, 100:23-31.
[22] Kiyoshi B, Alan D C, Rob L E. Mantle dynamics beneath the East Pacific Rise at 17 degrees S: Insights from the mantle electromagnetic and tomography (MELT) experiment[J]. Journal Of Geophysical Research-Solid Earth, 2006, 111(B2):148-227.
[23] Constable S, Heinson G. Hawaiian hot-spot swell structure from seafloor MT sounding[J]. Tectonophysics, 2004, 389(1-2),111-124.
-
计量
- 文章访问数: 637
- PDF下载数: 66
- 施引文献: 0