Physical property characteristics of rocks in Hanzhong and Ankang areas at the southern foot of Qinling Mountains and their application
-
摘要: 物性参数是地球物理与地质之间的纽带,也是地球物理解释和推断反演合理性的关键。为系统掌握南秦岭安康汉中地区岩(矿)石物性特征,提高解释准确性,服务基础地质研究和矿产资源调查评价,本次工作深入南秦岭安康汉中腹地,野外实测岩石物性点458处,采集磁化率数据13 740个、能谱数据458组,根据岩石地层年代及岩性对岩石物性进行分类统计。磁化率数据统计结果表明:古元古代基性及部分中性岩体在研究区内属于强磁性地质体,磁化率均值达4 000×10-5SI以上,其中辉长岩为最强;区内最主要的磁性地层为震旦系耀岭河组凝灰岩、古元古界西乡群,磁化率均值多接近1 000×10-5SI,高值者达2 000×10-5SI以上测量单位。经实验室测定,区内大多数磁性地质体以感磁为主,少数凝灰岩、辉长岩及含磁铁辉长岩具有较强的剩磁,在异常反演中必须加以考虑。能谱参数物性分析表明区内古生界和震旦系变质岩放射性较高,其中黑色岩石(含炭质)普遍放射性较高。通过庙坝村西和石泉县东南两处示例说明了磁、放物性参数在磁放资料解释中的重要作用,建立了航空磁放信息与地质信息之间的连接,提高了解释可靠性。Abstract: Physical property parameters are the link between geophysics and geology and are crucial to the rational inversion of geophysical interpretation and inference. To systematically grasp the physical properties of rocks (minerals) in Hanzhong and Ankang areas to the south of the Qinling Mountains, improve interpretation accuracy, and serve basic geological research and the surveys and evaluation of mineral resources, this study collected 458 physical property points of rocks, 13 740 pieces of susceptibility data, and 458 sets of energy spectrum data in the hinterland of the Hanzhong and Ankang areas at the southern foot of the Qinling Mountains. Then, this study classified and made statistics of the physical properties of rocks. The results of magnetic susceptibility data show that the Paleoproterozoic basic and partial intermediate rock masses are ferromagnetic geological bodies in the study area, with an average magnetic susceptibility of greater than 4 000×10-5 SI, and gabbro has the highest magnetic susceptibility; the dominant magnetic strata in the area are the Paleoproterozoic Xixiang Group and the tuff in the Sinian Yaolinghe Formation, which have average magnetic susceptibility of mostly close to 1 000×10-5 SI, and the high magnetic susceptibility can reach more than 2 000×10-5 SI. According to laboratory testing, most of the magnetic geological bodies in the study area have induced magnetism, and a few tuffs, gabbros, and magnetite-bearing gabbros in the study area have strong remanence, which must be considered in the anomaly inversion. The physical property analysis based on energy spectrum parameters shows that the Paleozoic and Sinian metamorphic rocks in the study area have high radioactivity and highly variable content, among which black rocks (carbonaceous) generally have high radioactivity. As indicated by two examples of western Miaoba Village and the southeastern Shiquan County, magnetic, radioactive, and physical-property parameters are important for the interpretation of magnetic and radioactive data, and they establish a link between aerial magnetic and radioactive information and geological information, improving the reliability of interpretation.
-
-
[1] 吴成平, 于长春, 王卫平, 等. 鲁西齐河地区岩(矿)石物性特征及应用[J]. 地球科学进展, 2019, 34(10):1099-1107.
[2] Wu C P, Yu C C, Wang W P, et al. Rock (mineral) physical properties and application in Qihe area of Shandong Province[J]. Advances in Earth Science, 2019, 34(10):1099-1107.
[3] 赵百民, 郝天珧, 徐亚, 等. 油气资源探测中的物性研究[J]. 地球物理学进展, 2009, 24(5):1689-1695.
[4] Zhao B M, Hao T Y, Xu Y, et al. Research on physical properties in oil and gas resource exploration[J]. Progress in Geophysics, 2009, 24(5):1689-1695.
[5] 宋恩明. 陕西省宁陕县旬阳坝地区综合矿产普查总结[R]. 陕西省地质局第7地质队, 1982.
[6] Song E M. Summary of the comprehensive mineral survey in Xunyangba area, Ningshan County, Shaanxi Province[R]. The 7th Geological Team of the Geological Bureau of Shaanxi Province, 1982.
[7] 候广惠, 倪映有, 王国深. 陕西省石泉县漆树沟—西乡县乔儿沟一带物化探详查报告[R]. 陕西省地质局第2地质队, 1981.
[8] Hou G H, Ni Y Y, Wang G S. Detailed survey report of geophysical and chemical exploration in Qishugou-Qiaoergou, Xixiang County, Shiquan County, Shaanxi Province[R]. The 2nd Geological Team of Shaanxi Provincial Geological Bureau, 1981.
[9] 雍朝发, 唐应芳, 詹旗, 等. 西秦岭南部碳硅泥岩型金(铀)矿地质、地球物理、地球化学找矿模型研究与预测[R]. 陕西省地矿局综合研究队, 1993.
[10] Yong C F, Tang Y F, Zhan Q, et al. Research and prediction of geological, geophysical, and geochemical prospecting models for carbon-silica mudstone gold (uranium) deposits in the southern West Qinling[R]. Comprehensive Research Team of Shaanxi Provincial Bureau of Geology and Mineral Resources, 1993.
[11] 管志宁. 地磁场与磁力勘探[M]. 北京: 地质出版社, 2005.
[12] Guan Z N. Geomagnetic field and magnetic prospecting[M]. Beijing: Geological Publishing House, 2005.
[13] 熊盛青, 陈斌, 赵百民, 等. DZ/T 0142—2010航空磁测技术规范[S]. 中华人民共和国自然资源部, 2010.
[14] Xiong S Q, Chen B, Zhao B M, et al. Z/T 0142—2010 Aeronautical magnetic measurement technology specification[S]. Ministry of Natural and Resources of the People's Republic of China, 2010.
[15] 任四清. 南秦岭铀成矿带铀矿化特征与找矿前景[J]. 甘肃地质, 2008, 17(4):58-63.
[16] Ren S Q. Uranium mineralization characteristics and prospecting prospects of the South Qinling uranium metallogenic belt[J]. Gansu Geology, 2008, 17(4): 58-63.
[17] 陕西冶金地质勘探公司, 冶金工业部情报标准研究所. 陕西省铁矿资源概述[R]. 1975.
[18] Shaanxi Metallurgical and Geological Exploration Company, Information Standards Institute of the Ministry of Metallurgical Industry. Anonymity overview of iron ore resources in Shaanxi Province[R]. 1975.
[19] 郭友钊, 林天亮, 李磊. DD2006—03岩矿石物性调查技术规范[S]. 中国地质调查局, 2006.
[20] Guo Y Z, Lin T L, Li T L. DD2006-03 Technical specification for rock and ore physical property survey[S]. China Geological Survey, 2006.
[21] 李才明, 李军. 重磁勘探原理与方法[M]. 北京: 科学出版社, 2012.
[22] Li C M, Li J. Principles and methods of gravity and magnetic exploration[M]. Beijing: Science Press, 2012.
[23] 邓耀辉. 剩余磁化强度影响下磁异常特征研究[D]. 成都: 成都理工大学, 2016.
[24] Deng Y H. Research on the characteristics of magnetic anomalies under the influence of residual magnetization[D]. Chengdu: Chengdu University of Technology, 2016.
[25] 张昌达, 董浩斌. 磁异常解释中的剩余磁化问题[J]. 物探与化探, 2011, 35(1):1-5.
[26] Zhang C D, Dong H B. The problem of residual magnetization in the interpretation of magnetic anomalies[J]. Geophysical and Geochemical Exploration, 2011, 35(1):1-5.
-
计量
- 文章访问数: 266
- PDF下载数: 138
- 施引文献: 0