Deep occurrence characteristics of the Malugou fault zone in the Xicha section of the Longshoushan metallogenic belt determined based on AMT
-
摘要: 为减少铀矿钻探工程风险,基于音频大地电磁法(AMT)资料,对龙首山成矿带中的马路沟断裂及次级断裂的深部发育特征进行了探究。通过对马路沟断裂与次级断裂正演理论模型响应特征分析,论证了方法的可行性,在此基础上,结合地质、岩石电性参数和钻探资料,对反演电阻率断面进行了推断解释,大致查明了区内断裂的深部发育特征。研究结果表明:马路沟断裂(F101)走向NW,倾角约80°,其中X501—X502剖面之间倾向NE,X502—X506剖面倾向SW;次级断裂F102、F103走向NW,均倾向NE,倾角75°~80°;上述断裂具有切割深度大、倾角较陡特征。该结果为后期钻探工程的布置提供了依据,提升了铀矿地质勘查的效果与效益。Abstract: This study explored the deep occurrence characteristics of the Malugou fault and its secondary faults in the study area based on the data obtained using audio-frequency magnetotellurics (AMT), aiming to provide a basis for the drilling layout and improve the effects and benefits of the geological exploration of uranium deposits. The feasibility of the AMT method was demonstrated by analyzing the response characteristics of the forward theoretical model of the Malugou fault and its secondary faults. Based on this, this study deduced and interpreted the inverted resistivity cross-sections by combining geological setting, the electrical parameters of rocks, and the drilling data collected. As a result, the deep development characteristics of faults in the study area were roughly identified, and the details are as follows. The Malugou fault (F101) has an NW strike, a dip angle of approximately 80°, and dip directions of NE and SW along sections X501-X502 and sections X502-X506, respectively. Secondary faults F102 and F103 have an NW strike, a dip direction of NE, and a dip angle of 75°~80°. The above-mentioned faults are characterized by large cutting depths and high dip angles.
-
Key words:
- AMT /
- fault /
- Longshoushan metallogenic belt /
- deep structure
-
-
[1] 赵如意, 王刚, 陈云杰, 等. 甘肃省龙首山成矿带铀资源调查评价报告[R]. 咸阳: 核工业203研究所, 2014.
[2] Zhao R Y, Wang G, Chen Y J, et al. Investigation and evaluation report on uranium resources in Longshoushan metallogenic belt, Gansu Province[R]. Xianyang:203 Institute of Nuclear Industry, 2014.
[3] 王承花. 龙首山成矿带成矿规律及找矿方向[J]. 甘肃科技, 2010, 26(10):39-44.
[4] Wang C H. Metallogenic regularity and prospecting direction of Longshoushan metallogenic belt[J]. Geology of Gansu, 2010, 26(10): 39-44.
[5] 宋振涛, 张立新, 管少斌, 等. 龙首山成矿带铀成矿规律及其地质构造运动、地壳演化关系探讨[J]. 矿产与地质, 2018, 32(5):792-793.
[6] Song Z T, Zhang L X, Guan S B, et al. The discussion of uranium mineralization regularity of Longshoushan metallogenic belt and its relationship with geological tectonic movement and crustal evolution[J]. Mineral Resources and Geology, 2018, 32(5): 792-793.
[7] 赵如意, 王刚, 陈云杰, 等. 甘肃省龙首山成矿带西岔—芨岭西铀资源调查评价报告[R]. 咸阳: 核工业203研究所, 2015.
[8] Zhao R Y, Wang G, Chen Y J, et al. Investigation and evaluation report on uranium resources in Xicha-Changling west area of Longshoushan metallogenic belt, Gansu Province[R]. Xianyang:203 Institute of Nuclear Industry, 2015.
[9] 安国堡, 辛存林, 杨涛, 等. 甘肃龙首山成矿带地质构造演化及其对铀成矿的控制作用[J]. 地球科学与环境学报, 2016, 38(6):804-805.
[10] An G B, Xin C L, Yang T, et al. Geotectonic evolution of Longshoushan metallogenic belt in gansu and its control function on uranium[J]. Journal of Earth Sciences and Environment, 2016, 38(6): 804-805.
[11] 陈云杰, 赵如意. 甘肃龙首山地区芨岭铀矿床隐爆角砾岩发现及成因探讨[J]. 地质勘探, 2012, 48(6):1101-1108.
[12] Chen Y J, Zhao R Y. Discovery and genesis of cryptoexplosive breccia in Jiling uranium deposit,Longshoushan area,Gansu Province[J]. Geologic Survey, 2012, 48(6): 1101-1108.
[13] 贾恒, 荣骁, 等. 甘肃省龙首山成矿带芨岭东—牛角沟地区铀矿预查报告[R]. 咸阳:核工业203研究所, 2017.
[14] Jia H, Rong X, et al. Pre-investigation report on uranium deposits in Jiling-Niujiaogou west area of Longshoushan metallogenic belt,Gansu Province[R]. Xianyang:203 Institute of Nuclear Industry, 2017.
[15] 王会波, 王志宏, 陈志财, 等. 甘肃省龙首山小青羊—白芨芨地区物探测量项目报告[R]. 石家庄:核工业航测遥感中心, 2013.
[16] Wang H B, Wang Z H, Chen Z C, et al. Geophysical survey report of Xiaoqingyang-Baijiji rrea in Longshou mountain, Gansu Province[R]. Shijiazguang: Nuclear Industry Aerial Survey Remote Sensing Center, 2013.
[17] 李茂, 陈志财, 吴勇, 等. 甘肃省龙首山成矿带火石岭-新水井地区物探测量报告[R]. 石家庄:核工业航测遥感中心, 2014.
[18] Li M, Chen Z C, Wu Y, et al. Geophysical survey report of Huoshiling-Xinshuijing area in Longshou mountain, Gansu Province[R]. Shijiazguang: Nuclear Industry Aerial Survey Remote Sensing Center, 2014.
[19] 刘波, 宋振涛, 李肖, 等. 芨岭岩体北部地区革命沟断裂地电结构特征[J]. 物探与化探, 2016, 40(5):877-878.
[20] Liu B, Song Z T, Li X, et al. Geoelectrical characteristics of Geminggou fracture in northern Jiling mass[J]. Geophysical and Geochemical Exploration, 2016, 40(5): 877-878.
[21] 宋振涛, 祁程, 韩栋昱. 芨岭地区铀矿地质-地球物理特征研究[J]. 物探与化探, 2018, 42(5):910-911.
[22] Song Z T, Qi C, Han D Y. Study on geological and geophysical characteristics of uranium deposits in Jiling area[J]. Geophysical and Geochemical Exploration, 2018, 42(5): 910-911.
[23] 谢明宏, 李茂. 芨岭岩体南部牛角沟断裂深部发育特征[J]. 矿产与地质, 2019, 33(3):516-517.
[24] Xie M H, Li M. Deep development characteristics of Niujiaogou fault in south of changling pluton[J]. Deposit and Geology, 2019, 33(3): 516-517.
[25] 李茂, 宋振涛, 陈志财, 等. 甘肃省龙首山成矿带中东段西岔地段物探测量项目报告[R]. 石家庄:核工业航测遥感中心, 2015.
[26] Li M, Song Z T, Chen Z C, et al. Geophysical survey report of Xichag section of Longshou mountain metallogenic belt, Gansu Province[R]. Shijiazguang: Nuclear Industry Aerial Survey Remote Sensing Center, 2015.
[27] 高翔, 李茂, 牛禹, 等. 高岭子井地段马路沟断裂产状及深部延伸特征[J]. 矿产与地质, 2018, 32(3):521-522.
[28] Gao X, Li M, Niu Y. Dccurrence and deep extension characteristics of Malugou fault in Gaolingzijing section[J]. Deposit and Geology, 2018, 32(3): 521-522.
-
计量
- 文章访问数: 239
- PDF下载数: 40
- 施引文献: 0