中国自然资源航空物探遥感中心主办
地质出版社出版

基于快速自适应非局部均值滤波的地震随机噪声压制方法

崔亚彤, 王胜侯, 蔡忠贤. 2022. 基于快速自适应非局部均值滤波的地震随机噪声压制方法. 物探与化探, 46(5): 1187-1195. doi: 10.11720/wtyht.2022.1522
引用本文: 崔亚彤, 王胜侯, 蔡忠贤. 2022. 基于快速自适应非局部均值滤波的地震随机噪声压制方法. 物探与化探, 46(5): 1187-1195. doi: 10.11720/wtyht.2022.1522
CUI Ya-Tong, WANG Sheng-Hou, CAI Zhong-Xian. 2022. Seismic random noise attenuation method based on the fast adaptive non-local means filtering algorithm. Geophysical and Geochemical Exploration, 46(5): 1187-1195. doi: 10.11720/wtyht.2022.1522
Citation: CUI Ya-Tong, WANG Sheng-Hou, CAI Zhong-Xian. 2022. Seismic random noise attenuation method based on the fast adaptive non-local means filtering algorithm. Geophysical and Geochemical Exploration, 46(5): 1187-1195. doi: 10.11720/wtyht.2022.1522

基于快速自适应非局部均值滤波的地震随机噪声压制方法

  • 基金项目:

    中国科学院战略性先导科技专项(A类)(XDA14010302)

详细信息
    作者简介: 崔亚彤(1993-),女,博士,2021年毕业于中国地质大学(北京)地球物理学专业,主要从事地球物理数据处理及相关研究工作。Email:YatongCui@email.cugb.edu.cn
  • 中图分类号: P631.4

Seismic random noise attenuation method based on the fast adaptive non-local means filtering algorithm

  • 地震资料的质量对于地质解释起着至关重要的作用。实际地震数据通常会携带大量噪声,使地层模糊,断层构造不清晰。非局部均值滤波方法(NLM)可以有效地压制随机噪声,但其计算效率较低,因此在大型地震数据处理应用中具有局限性。本文给出了一种快速自适应NLM算法,该方法利用中心对称数据积分算法提高NLM方法的计算效率,并利用相似度标准差估计均匀性来自适应地调整滤波参数,进一步提高去噪效果。因此,改进后的非局部均值滤波方法可以有效地提高计算效率,同时可以增强噪声压制效果。最后,通过模型数据和实际数据验证了该方法的可行性、有效性。
  • 加载中
  • [1]

    Naghizadeh M. Seismic data interpolation and denoising in the frequency-wavenumber domain[J]. Geophysics, 2012, 77(2): V71-V80.

    [2]

    Latif A, Mousa W A. An efficient undersampled high-resolution radon transform for exploration seismic data processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 55(2): 1010-1024.

    [3]

    鲁娥, 李庆春. 混合Radon变换地震噪声压制的应用[J]. 物探与化探, 2013, 37(4):706-710.

    [4]

    Lu E, Li Q C. The application of seismic noise attenuation based on hybrid radon transform[J]. Geophysical and Geochemical Exploration, 2013, 37(4): 706-710.

    [5]

    Oliveira M S, Henriques M V C, Leite F E A, et al. Seismic denoising using curvelet analysis[J]. Physica A: Statistical Mechanics and its Applications, 2012, 391(5): 2106-2110.

    [6]

    Yang H Y, Long Y, Lin J, et al. A seismic interpolation and denoising method with curvelet transform matching filter[J]. Acta Geophysica, 2017, 65: 1029-1042.

    [7]

    袁艳华, 王一博, 刘伊克, 等. 非二次幂Curvelet变换及其在地震噪声压制中的应用[J]. 地球物理学报, 2013, 56(3):1023-1032.

    [8]

    Yuan Y H, Wang Y B, Liu Y K, et al. Non-dyadic Curvelet transform and its application in seismic noise elimination[J]. Chinese Journal of Geophysics, 2013, 56(3): 1023-1032.

    [9]

    Huang W L, Wu R S, Wang R Q. Damped dreamlet representation for exploration seismic data interpolation and denoising[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(6), 3159-3172.

    [10]

    Goudarzi A, Riahi M A. Seismic coherent and random noise attenuation using the undecimated discrete wavelet transform method with WDGA technique[J]. Journal of Geophysics and Engineering, 2012, 9(6): 619-631.

    [11]

    Liu N H, Yang Y, Li Z, et al. Seismic signal de-noising using time-frequency peak filtering based on empirical wavelet transform[J]. Acta Geophysica, 2020, 68: 425-434.

    [12]

    Canales, Luis L. Random noise reduction[J]. SEG Technical Program Expanded Abstracts, 1984:329.

    [13]

    梁传坤. 频波谱在地震噪声分析与衰减中的应用[J]. 物探与化探, 1995, 19(1):34-40.

    [14]

    Liang C K. The application of frequency wave spectra to the analysis and attenuation of seismic noise[J]. Geophysical and Geochemical Exploration, 1995, 19(1): 34-40.

    [15]

    Liu Y, Liu N, Liu C. Adaptive prediction filtering in t-x-y domain for random noise attenuation using regularized nonstationary autoregression[J]. Geophysics, 2015, 80(1): V13-V21

    [16]

    Bonar D, Sacchi M D. Denoising seismic data using the nonlocal means algorithm[J]. Geophysics, 2012, 77(1): A5-A8.

    [17]

    黄英, 文晓涛, 贺振华. 地震图像随机噪声的非局部均值去噪法[J]. 断块油气田, 2013, 20(6):730-732.

    [18]

    Huang Y, Wen X T, He Z H. Denoising algorithm of random noise with seismic image based on nonlocal means[J]. Fault-Block Oil & Gas Field, 2013, 20(6): 730-732.

    [19]

    Shang S, Han L G, Lyu Q T, et al. Seismic random noise suppression using an adaptive nonlocal means algorithm[J]. Applied Geophysics, 2013, 10(1): 33-40.

    [20]

    Manjón V J, Pierrick C, Luis M, et al. Adaptive non-local means denoising of mr images with spatially varying noise levels[J]. Journal of Magnetic Resonance Imaging, 2010, 31(1): 192-203.

    [21]

    Gao J J, Sacchi M D, Chen X H. A fast reduced-rank interpolation method for prestack seismic volumes that depend on four spatial dimensions[J]. Geophysics, 2013, 78(1): V21-V30.

    [22]

    Wang S H, Gao J J, Li J Y. A fast uncoiled randomized QR decomposition method for 5D seismic data reconstruction[J]. Journal of Seismic Exploration, 2018, 27(3): 255-276.

    [23]

    Xu Y K, Cao S Y, Pan X, et al. Random noise attenuation using a structure-oriented adaptive singular value decomposition[J]. Acta Geophysica, 2019, 67: 1091-106.

    [24]

    Gao J J, Stanton A, Sacchi M D. Parallel matrix factorization algorithm and its application to 5D seismic reconstruction and denoising[J]. Geophysics, 2015, 80(6): V173-V187.

    [25]

    Kreimer N, Sacchi M D. A tensor higher-order singular value decomposition for prestack seismic data noise reduction and interpolation[J]. Geophysics, 2012, 77(3): V113-V122.

    [26]

    Liu L, Plonka G, Ma J W. Seismic data interpolation and denoising by learning a tensor tight frame[J]. Inverse Problems, 2017, 33(10): 105011.

    [27]

    Si X, Yuan Y J, Si T H, et al. Attenuation of random noise using denoising convolutional neural networks[J]. Interpretation, 2019, 7(3): SE269-SE280.

    [28]

    Wang S N, Li Y, Zhao Y X. Desert seismic noise suppression based on multimodal residual convolutional neural network[J]. Acta Geophysica, 2020, 68: 389-401.

    [29]

    Zhao Y, Li Y, Dong X, et al. Low-frequency noise suppression method based on improved DnCNN in desert seismic data[J]. Geoscience and Remote Sensing Letters,IEEE, 2018, 16(5): 811-815.

    [30]

    郭奇, 曾昭发, 于晨霞, 等. 基于高精度字典学习算法的地震随机噪声压制[J]. 物探与化探, 2017, 41(5):907-913.

    [31]

    Guo Q, Zeng Z F, Yu C X, et al. Seismic random noise suppression based on the high-preicision dictionary learning algorithm[J]. Geophysical and Geochemical Exploration, 2017, 41(5): 907-913.

    [32]

    李勇, 张益明, 雷钦, 等. 模型约束下的在线字典学习地震弱信号去噪方法[J]. 地球物理学报, 2019, 62(1):411-420.

    [33]

    Li Y, Zhang Y M, Lei Q, et al. Online dictionary learning seismic weak signal denoising method under model constraints[J]. Chinese Journal of Geophysics, 2019, 62(1): 411-420.

    [34]

    Buades A, Coll B, Morel J M. Image denoising methods. A new nonlocal principle[J]. SIAM Review, 2010, 52(1): 113-147.

    [35]

    Coupe P, Yger, P, Prima S, et al. An optimized blockwise nonlocal means denoising filter for 3-d magnetic resonance images[J]. IEEE Transactions on Medical Imaging, 2008, 27(4): 425-441.

    [36]

    Lai R, Yang Y T. Accelerating non-local means algorithm with random project[J]. Electronics Letters, 2011, 47(3): 182-183.

    [37]

    周兵, 韩媛媛, 徐明亮, 等. 快速非局部均值图像去噪算法. 计算机辅助设计与图形学学报, 2016, 28(8):1260-1268.

    [38]

    Zhou B, Han Y Y, Xu M L. A fast non-local means image denoising algorithm[J]. Journal of Computer-Aided Design & Computer Graphics, 2016, 28(8): 1260-1268.

    [39]

    Maraschini M, Turton N. Random noise attenuation preserving geological detail - A fast and effective Non-Local-Means filter[C]// London: European Association of Geoscientists & Engineers, 2013.

    [40]

    Froment J. Parameter-free fast pixel wise non-local means denoising[J]. Image Processing on Line 4, 2014: 300-326.

    [41]

    Yang S, Chen A Q, Chen H D. Seismic data filtering using non-local means algorithm based on structure tensor[J]. Open Geosciences, 2017, 9(1): 151-160.

    [42]

    Zeng W L, Du Y J, Hu C H. Noise suppression by discontinuity indicator controlled non-local means method[J]. Multimedia Tools and Applications, 2017, 76: 13239-13253.

    [43]

    Chen P, Wu S Q, Fang H P, et al. Gaussian noise detection and adaptive non-local means filter[J]. China: Pacificrim Symposium on Image and Video Technology, 2017: 396-405.

    [44]

    Verma R, Pandey R. Grey relational analysis based adaptive smoothing parameter for non-local means image denoising[J]. Multimedia tools and applications, 2018, 77: 25919-25940.

    [45]

    Colom M, Buades A. Analysis and extension of the percentile method, estimating a noise curve from a single image[J]. Image Processing on Line 5, 2013, 365-390.

    [46]

    Wang J, Guo Y W, Ying Y T, et al. Fast non-local algorithm for image denoising[C]// Atlanta: IEEE International Conference on Image Processing, 2007:1429-1432.

    [47]

    Yu S, Sun J G, Meng X F, et al. Seismic random noise attenuation based on PCC classification in transform domain[J]. IEEE Access, 2019, 8:30368-30377.

    [48]

    Yusra A N, Chen S D. Comparison of image quality assessment: PSNR, HVS, SSIM, UIQI[J]. International Journal of scientific and Engineering Research, 2012, 3(8): 1-5.

  • 加载中
计量
  • 文章访问数:  322
  • PDF下载数:  41
  • 施引文献:  0
出版历程
收稿日期:  2021-09-23
修回日期:  2022-10-20
刊出日期:  2023-01-03

目录