Seismic random noise attenuation method based on the fast adaptive non-local means filtering algorithm
-
摘要: 地震资料的质量对于地质解释起着至关重要的作用。实际地震数据通常会携带大量噪声,使地层模糊,断层构造不清晰。非局部均值滤波方法(NLM)可以有效地压制随机噪声,但其计算效率较低,因此在大型地震数据处理应用中具有局限性。本文给出了一种快速自适应NLM算法,该方法利用中心对称数据积分算法提高NLM方法的计算效率,并利用相似度标准差估计均匀性来自适应地调整滤波参数,进一步提高去噪效果。因此,改进后的非局部均值滤波方法可以有效地提高计算效率,同时可以增强噪声压制效果。最后,通过模型数据和实际数据验证了该方法的可行性、有效性。
-
关键词:
- 自适应非局部均值滤波 /
- 中心对称数据积分 /
- 均匀性估计 /
- 随机噪声压制
Abstract: The quality of seismic data plays a critical role in geological interpretation.However,the real seismic data usually contain a lot of noise,leading to fuzzy strata and unclear fault structures.The non-local means (NLM) filtering algorithm can effectively suppress random noise,but its computational efficiency is low.Therefore,it has limitations when being applied to large-scale seismic data processing.This study proposed a fast adaptive NLM algorithm,for which the computational efficiency was improved using the centrosymmetric data integration algorithm and the filtering parameters were adaptively adjusted using the standard deviation of similarity to estimate the homogeneity,thus further improving the noise attenuation effect.Therefore,the modified NLM filtering algorithm can effectively improve computational efficiency and enhance the noise attenuation effect.Furthermore,the feasibility and effectiveness of the algorithm were verified using model data and actual data. -
-
[1] Naghizadeh M. Seismic data interpolation and denoising in the frequency-wavenumber domain[J]. Geophysics, 2012, 77(2): V71-V80.
[2] Latif A, Mousa W A. An efficient undersampled high-resolution radon transform for exploration seismic data processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 55(2): 1010-1024.
[3] 鲁娥, 李庆春. 混合Radon变换地震噪声压制的应用[J]. 物探与化探, 2013, 37(4):706-710.
[4] Lu E, Li Q C. The application of seismic noise attenuation based on hybrid radon transform[J]. Geophysical and Geochemical Exploration, 2013, 37(4): 706-710.
[5] Oliveira M S, Henriques M V C, Leite F E A, et al. Seismic denoising using curvelet analysis[J]. Physica A: Statistical Mechanics and its Applications, 2012, 391(5): 2106-2110.
[6] Yang H Y, Long Y, Lin J, et al. A seismic interpolation and denoising method with curvelet transform matching filter[J]. Acta Geophysica, 2017, 65: 1029-1042.
[7] 袁艳华, 王一博, 刘伊克, 等. 非二次幂Curvelet变换及其在地震噪声压制中的应用[J]. 地球物理学报, 2013, 56(3):1023-1032.
[8] Yuan Y H, Wang Y B, Liu Y K, et al. Non-dyadic Curvelet transform and its application in seismic noise elimination[J]. Chinese Journal of Geophysics, 2013, 56(3): 1023-1032.
[9] Huang W L, Wu R S, Wang R Q. Damped dreamlet representation for exploration seismic data interpolation and denoising[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(6), 3159-3172.
[10] Goudarzi A, Riahi M A. Seismic coherent and random noise attenuation using the undecimated discrete wavelet transform method with WDGA technique[J]. Journal of Geophysics and Engineering, 2012, 9(6): 619-631.
[11] Liu N H, Yang Y, Li Z, et al. Seismic signal de-noising using time-frequency peak filtering based on empirical wavelet transform[J]. Acta Geophysica, 2020, 68: 425-434.
[12] Canales, Luis L. Random noise reduction[J]. SEG Technical Program Expanded Abstracts, 1984:329.
[13] 梁传坤. 频波谱在地震噪声分析与衰减中的应用[J]. 物探与化探, 1995, 19(1):34-40.
[14] Liang C K. The application of frequency wave spectra to the analysis and attenuation of seismic noise[J]. Geophysical and Geochemical Exploration, 1995, 19(1): 34-40.
[15] Liu Y, Liu N, Liu C. Adaptive prediction filtering in t-x-y domain for random noise attenuation using regularized nonstationary autoregression[J]. Geophysics, 2015, 80(1): V13-V21
[16] Bonar D, Sacchi M D. Denoising seismic data using the nonlocal means algorithm[J]. Geophysics, 2012, 77(1): A5-A8.
[17] 黄英, 文晓涛, 贺振华. 地震图像随机噪声的非局部均值去噪法[J]. 断块油气田, 2013, 20(6):730-732.
[18] Huang Y, Wen X T, He Z H. Denoising algorithm of random noise with seismic image based on nonlocal means[J]. Fault-Block Oil & Gas Field, 2013, 20(6): 730-732.
[19] Shang S, Han L G, Lyu Q T, et al. Seismic random noise suppression using an adaptive nonlocal means algorithm[J]. Applied Geophysics, 2013, 10(1): 33-40.
[20] Manjón V J, Pierrick C, Luis M, et al. Adaptive non-local means denoising of mr images with spatially varying noise levels[J]. Journal of Magnetic Resonance Imaging, 2010, 31(1): 192-203.
[21] Gao J J, Sacchi M D, Chen X H. A fast reduced-rank interpolation method for prestack seismic volumes that depend on four spatial dimensions[J]. Geophysics, 2013, 78(1): V21-V30.
[22] Wang S H, Gao J J, Li J Y. A fast uncoiled randomized QR decomposition method for 5D seismic data reconstruction[J]. Journal of Seismic Exploration, 2018, 27(3): 255-276.
[23] Xu Y K, Cao S Y, Pan X, et al. Random noise attenuation using a structure-oriented adaptive singular value decomposition[J]. Acta Geophysica, 2019, 67: 1091-106.
[24] Gao J J, Stanton A, Sacchi M D. Parallel matrix factorization algorithm and its application to 5D seismic reconstruction and denoising[J]. Geophysics, 2015, 80(6): V173-V187.
[25] Kreimer N, Sacchi M D. A tensor higher-order singular value decomposition for prestack seismic data noise reduction and interpolation[J]. Geophysics, 2012, 77(3): V113-V122.
[26] Liu L, Plonka G, Ma J W. Seismic data interpolation and denoising by learning a tensor tight frame[J]. Inverse Problems, 2017, 33(10): 105011.
[27] Si X, Yuan Y J, Si T H, et al. Attenuation of random noise using denoising convolutional neural networks[J]. Interpretation, 2019, 7(3): SE269-SE280.
[28] Wang S N, Li Y, Zhao Y X. Desert seismic noise suppression based on multimodal residual convolutional neural network[J]. Acta Geophysica, 2020, 68: 389-401.
[29] Zhao Y, Li Y, Dong X, et al. Low-frequency noise suppression method based on improved DnCNN in desert seismic data[J]. Geoscience and Remote Sensing Letters,IEEE, 2018, 16(5): 811-815.
[30] 郭奇, 曾昭发, 于晨霞, 等. 基于高精度字典学习算法的地震随机噪声压制[J]. 物探与化探, 2017, 41(5):907-913.
[31] Guo Q, Zeng Z F, Yu C X, et al. Seismic random noise suppression based on the high-preicision dictionary learning algorithm[J]. Geophysical and Geochemical Exploration, 2017, 41(5): 907-913.
[32] 李勇, 张益明, 雷钦, 等. 模型约束下的在线字典学习地震弱信号去噪方法[J]. 地球物理学报, 2019, 62(1):411-420.
[33] Li Y, Zhang Y M, Lei Q, et al. Online dictionary learning seismic weak signal denoising method under model constraints[J]. Chinese Journal of Geophysics, 2019, 62(1): 411-420.
[34] Buades A, Coll B, Morel J M. Image denoising methods. A new nonlocal principle[J]. SIAM Review, 2010, 52(1): 113-147.
[35] Coupe P, Yger, P, Prima S, et al. An optimized blockwise nonlocal means denoising filter for 3-d magnetic resonance images[J]. IEEE Transactions on Medical Imaging, 2008, 27(4): 425-441.
[36] Lai R, Yang Y T. Accelerating non-local means algorithm with random project[J]. Electronics Letters, 2011, 47(3): 182-183.
[37] 周兵, 韩媛媛, 徐明亮, 等. 快速非局部均值图像去噪算法. 计算机辅助设计与图形学学报, 2016, 28(8):1260-1268.
[38] Zhou B, Han Y Y, Xu M L. A fast non-local means image denoising algorithm[J]. Journal of Computer-Aided Design & Computer Graphics, 2016, 28(8): 1260-1268.
[39] Maraschini M, Turton N. Random noise attenuation preserving geological detail - A fast and effective Non-Local-Means filter[C]// London: European Association of Geoscientists & Engineers, 2013.
[40] Froment J. Parameter-free fast pixel wise non-local means denoising[J]. Image Processing on Line 4, 2014: 300-326.
[41] Yang S, Chen A Q, Chen H D. Seismic data filtering using non-local means algorithm based on structure tensor[J]. Open Geosciences, 2017, 9(1): 151-160.
[42] Zeng W L, Du Y J, Hu C H. Noise suppression by discontinuity indicator controlled non-local means method[J]. Multimedia Tools and Applications, 2017, 76: 13239-13253.
[43] Chen P, Wu S Q, Fang H P, et al. Gaussian noise detection and adaptive non-local means filter[J]. China: Pacificrim Symposium on Image and Video Technology, 2017: 396-405.
[44] Verma R, Pandey R. Grey relational analysis based adaptive smoothing parameter for non-local means image denoising[J]. Multimedia tools and applications, 2018, 77: 25919-25940.
[45] Colom M, Buades A. Analysis and extension of the percentile method, estimating a noise curve from a single image[J]. Image Processing on Line 5, 2013, 365-390.
[46] Wang J, Guo Y W, Ying Y T, et al. Fast non-local algorithm for image denoising[C]// Atlanta: IEEE International Conference on Image Processing, 2007:1429-1432.
[47] Yu S, Sun J G, Meng X F, et al. Seismic random noise attenuation based on PCC classification in transform domain[J]. IEEE Access, 2019, 8:30368-30377.
[48] Yusra A N, Chen S D. Comparison of image quality assessment: PSNR, HVS, SSIM, UIQI[J]. International Journal of scientific and Engineering Research, 2012, 3(8): 1-5.
-
计量
- 文章访问数: 322
- PDF下载数: 41
- 施引文献: 0