Application of comprehensive geophysical prospecting method in detecting concealed karst collapses
-
摘要: 我国岩溶分布范围广泛,岩溶区地质环境脆弱,地质灾害频发,严重威胁到人民群众的生命财产安全,造成了巨大的经济损失。本文采用可控源音频大地电磁法(CSAMT)和微重力法,通过二维拟断面反演、小波多尺度提取剩余重力异常,较好地划分了岩溶区的岩土界面及强岩溶发育带,圈定了溶洞的位置、埋深、规模及空间分布情况。通过钻孔验证,CSAMT解释的岩土界面及强岩溶发育带与钻孔基本吻合,微重力圈定的塌陷溶洞规模及埋深与工勘钻孔基本吻合,表明CSAMT配合微重力法在探测隐伏岩溶塌陷时效果较为显著,可为潜在的岩溶塌陷区及类似地质灾害防治预警提供科学探查方法。Abstract: Karst is widely distributed in China. However, geological disasters frequently occur in karst zones due to the fragile geological environment, which seriously threatens the safety of people’s life and property and cause huge economic losses. In this study, the controlled source audio-frequency magnetotelluric (CSAMT) method and microgravity were used to extract residual gravity anomalies through the two-dimensional inversion of pseudosections and multi-scale wavelet analysis. As a result, rock-soil interfaces of karst zones and the development zones of strong karst were well divided; the locations, burial depths, scales, and spatial distribution of karst caves were delineated. As verified by drilling, the rock-soil interfaces and strong-karst development zones determined by CSAMT interpretation were roughly consistent with those revealed by boreholes, and the sizes and burial depths of collapsed karst caves that were delineated by microgravity roughly correspond to those revealed by boreholes of engineering exploration. These results show that the CSAMT combined with the microgravity method can achieve significant effects in the detection of concealed karst collapses and serves as a scientific detection method for the early warning of the prevention and treatment of potential karst collapses and similar geological disasters.
-
Key words:
- karst collapse /
- CSAMT /
- microgravimetry
-
-
[1] 李大通, 罗雁. 中国碳酸盐岩分布面积测量[J]. 中国岩溶, 1983(2):61-64.
[2] Li D T, Luo Y. Measurement of the distribution area of carbonate rock in China[J]. Chinese Karst, 1983(2):61-64.
[3] 袁道先, 朱德浩, 翁金桃, 等. 中国岩溶学[M]. 北京: 地质出版社, 1993.
[4] Yuan D X, Zhu D H, Wen J T, et al. Karst science in China[M]. Beijing: Geology Press, 1993.
[5] 蒋忠诚, 裴建国, 夏日元, 等. 我国“十一五”期间的岩溶研究进展与重要活动[J]. 中国岩溶, 2010, 29(4):349-354.
[6] Jiang Z C, Pei J G, Xia R Y, et al. The progress and important activities of karst research during the 11th five-year plan period in China[J]. Chinese Karst, 2010, 29(4):349-354.
[7] 蒙彦, 雷明堂. 岩溶塌陷研究现状及趋势分析[J]. 中国岩溶, 2019, 38(3):411-417.
[8] Meng Y, Lei M T. Analysis of the current situation and trend of karst collapse research[J]. Chinese Karst, 2019, 38(3):411-417.
[9] 刘崧. 物探方法在岩溶勘查中的应用综述[J]. 地质科技情报, 1997(2):86-92.
[10] Liu S. A review of the application of geophysical methods in karst exploration[J]. Geological Scientific Information, 1997(2):86-92.
[11] 胡让全, 黄健民. 综合物探方法在广州市金沙洲岩溶地面塌陷、地面沉降地质灾害调查中的应用[J]. 物探与化探, 2014, 38(3):610-615.
[12] Hu R Q, Huang J M. The application of comprehensive prospecting method in the investigation of geological disasters of karst subsidence and subsidence in Jinshazhou, Guangzhou[J]. Geophysical Exploration and Geochemical Exploration, 2014, 38(3):610-615.
[13] 岳想平, 彭小珂, 韩埃洋. CSAMT在水文地质勘查中的应用[J]. 地下水, 2020, 42(6):102-105.
[14] Yue X P, Peng X K, Han A Y. Application of CSAMT in hydrogeological survey[J]. Groundwater, 2020, 42(6):102-105.
[15] 岳想平, 何萌, 彭小珂. CSAMT在探测隐伏断裂构造与岩层划分中的应用[J]. 甘肃地质, 2018, 27(2):93-97.
[16] Yue X P, He M, Peng X K. The application of CSAMT in detecting the formation of hidden fracture and the division of rock formations[J]. Gansu Geology, 2018, 27(2):93-97.
[17] 贾民育. 微重力测量技术的应用[J]. 地震研究, 2000, 23(4):452-456.
[18] Jia M Y. Application of microgravity measurement technology[J]. Seismic Research, 2000, 23(4):452-456.
[19] 刘芳, 祝意青, 陈石. 华北时变重力场离散小波多尺度分解[J]. 中国地震, 2013, 29(1):124-131.
[20] Liu F, Zhu Y Q, Chen S. The discrete wavelets of the variable gravity field in North China are decomposed on a multiscale scale[J]. China Earthquake, 2013, 29(1):124-131.
[21] 杨文采, 施志群, 侯遵泽, 等. 离散小波变换与重力异常多重分解[J]. 地球物理学报, 2001, 44(4):534-541,582.
[22] Yang W C, Shi Z Q, Hou Z Z, et al. Discrete wavelet transformation and gravity anomaly multi-decomposition[J]. Journal of Geophysics, 2001, 44(4):534-541,582.
[23] 杨文采, 郭爱缨, 谢玉清, 等. 重磁异常在频率域的解释方法(上)[J]. 物化探电子计算技术, 1979(1):1-16.
[24] Yang W C, Guo A Y, Xie Y Q, et al. Method of interpretation of heavy magnetic anomalies in the frequency domain (above)[J]. Physical Exploration Electronic Computing Technology, 1979(1):1-16.
[25] 侯遵泽, 杨文采, 王允, 等. 重力场实数尺度小波分解及其应用[J]. 地球物理学报, 2015, 58(3):1035-1041.
[26] Hou Z Z, Yang W C, Wang Y, et al. The decomposition and application of real-scale wavelets in gravity field[J]. Journal of Geophysics, 2015, 58(3):1035-1041.
[27] 吴咏敬, 董平, 王良书, 等. 东北地区构造分区与深断裂研究——基于重力场小波多尺度分解[J]. 地球物理学进展, 2012, 27(1):45-57.
[28] Wu Y J, Dong P, Wang L S, et al. The study of tectonic zoning and deep fracture in Northeast China—Multi-scale decomposition based on small waves of gravitational field[J]. Advances in Geophysics, 2012, 27(1):45-57.
[29] 刁博, 王家林, 程顺有. 重力异常小波多分辨分析分解阶次的确定[J]. 地球科学:中国地质大学学报, 2007(4):564-568.
[30] Diao B, Wang J L, Chen S Y. Gravitational anomaly wavelet multi-resolution analysis of decomposition order[J]. Earth Science:Journal of China University of Geology, 2007(4):564-568.
[31] 陈玉玲, 韩凯, 陈贻祥, 等. 可控源音频大地电磁法在岩溶塌陷勘察中的应用[J]. 地球物理学进展, 2015, 30(6):2616-2622.
[32] Chen Y L, Han K, Chen Y X, et al. Application of controlled source audio geomagnetic method in karst collapse survey[J]. Advances in Geophysics, 2015, 30(6):2616-2622.
[33] 邓中俊, 杨玉波, 姚成林, 等. 综合物探在地面塌陷区探测中的应用[J]. 物探与化探, 2019, 43(2):441-448.
[34] Deng Z J, Yang Y B, Yao C L, et al. Application of integrated exploration in ground subsidence detection[J]. Geophysical Exploration and Geochemical Exploration, 2019, 43(2):441-448.
-
计量
- 文章访问数: 895
- PDF下载数: 103
- 施引文献: 0