中国自然资源航空物探遥感中心主办
地质出版社出版

强干扰环境下铁矿导水通道精细探测研究

王荣军, 周超群, 崔杰, 谢明星, 秦壮杰. 2022. 强干扰环境下铁矿导水通道精细探测研究. 物探与化探, 46(6): 1396-1402. doi: 10.11720/wtyht.2022.1610
引用本文: 王荣军, 周超群, 崔杰, 谢明星, 秦壮杰. 2022. 强干扰环境下铁矿导水通道精细探测研究. 物探与化探, 46(6): 1396-1402. doi: 10.11720/wtyht.2022.1610
WANG Rong-Jun, ZHOU Chao-Qun, CUI Jie, XIE Ming-Xing, QIN Zhuang-Jie. 2022. Fine detection of water-conducting channels in iron mine under strong interferences. Geophysical and Geochemical Exploration, 46(6): 1396-1402. doi: 10.11720/wtyht.2022.1610
Citation: WANG Rong-Jun, ZHOU Chao-Qun, CUI Jie, XIE Ming-Xing, QIN Zhuang-Jie. 2022. Fine detection of water-conducting channels in iron mine under strong interferences. Geophysical and Geochemical Exploration, 46(6): 1396-1402. doi: 10.11720/wtyht.2022.1610

强干扰环境下铁矿导水通道精细探测研究

  • 基金项目:

    国家“十三五”重点研发计划项目(2016YFC0801600)

    河北省自然科学基金项目(D2020402032)

    河北省自然科学基金项目(D2020402013)

详细信息
    作者简介: 王荣军(1975-),男,高级工程师,研究方向为金属和非金属矿山安全开采。Email:wrjironmine@163.com
  • 中图分类号: P631

Fine detection of water-conducting channels in iron mine under strong interferences

  • 为实现北洺河铁矿不明涌水异常区域导水通道的精确定位,保证该矿安全生产,采用矿井瞬变电磁法对该铁矿-110 m水平11#穿脉顶板岩层进行了探测。在对金属干扰下的矿井瞬变电磁响应特征进行理论分析的基础上,结合该铁矿实际地质情况分析其地球物理特征,采用系数校正法对实测数据进行金属干扰校正,再将其作为初始模型进行全空间瞬变电磁蜂群算法反演处理,最终得到了工作面顶板高分辨率电阻率成像结果,结合已有地质资料,实现了富水异常区以及导水通道的精细探测;探测结果得到了钻孔验证。研究表明,采用有效的数据处理手段,矿井瞬变电磁法可以提高铁矿工作面顶板岩层的富水异常位置的探测精度,为铁矿防治水工作提供有效的技术保障。
  • 加载中
  • [1]

    程久龙, 李飞, 彭苏萍, 等. 矿井巷道地球物理方法超前探测研究进展与展望[J]. 煤炭学报, 2014, 39(8):1742-1750.

    [2]

    Cheng J L, Li F, Peng S P, et al. Research progress and development direction on advanced detection in mine roadway working face using geophysical methods[J]. Journal of China Coal Society, 2014, 39(8):1742 -1750.

    [3]

    赵家宏, 程久龙, 温来福. 基于矿井瞬变电磁法的侏罗系煤层顶板富水性研究[J]. 煤炭技术, 2018, 37(12):97-100.

    [4]

    Zhao J H, Cheng J L, Wen L F. Study on water-richness of mine roof rock in Jurassic coal seam based on mine transient electromagnetic method[J]. Coal Technology, 2018, 37(12):97-100.

    [5]

    徐栓祥, 程久龙, 董毅, 等. 矿井瞬变电磁与红外测温联合超前探测方法与应用[J]. 中国矿业, 2019, 28(5):136-139,145.

    [6]

    Xu S X, Cheng J L, Dong Y, et al. The ahead detection combined method of the mine transient electromagnetic and infrared surveying and its application[J]. China Mining Magazine, 2019, 28(5):136-139,145.

    [7]

    牟义, 李江华, 徐慧, 等. 矿井瞬变电磁法参数优化试验及超前探测应用[J]. 煤炭科学技术, 2020, 48(6): 184-190.

    [8]

    Mu Y, Li J H, Xu H, et al. Parameters optimization test of mine transient electromagnetic method and application of advanced detection[J]. Coal Science and Technology, 2020, 48(6): 184-190.

    [9]

    贾三石, 邵安林, 王海龙, 等. 基于TEM的井下铁矿采空区探测评价[J]. 东北大学学报:自然科学版, 2011, 32(9):1340-1343.

    [10]

    Jia S S, Shao A L, Wang H L, et al. Detection and evaluation of underground iron ore goaf based on TEM[J]. Journal of North-eastern University:Natural Science, 2011, 32(9):1340-1343.

    [11]

    李静, 刘向红, 张平松, 等. 矿井瞬变电磁精细探查技术在铁矿防治水中的应用[J]. 光谱实验室, 2013, 30(4):1807-1812.

    [12]

    Li J, Liu X H, Zhang P S, et al. Application of MTEM’s fine exploration technology to detection of iron mine[J]. Chinese Journal of Spectroscopy Laboratory, 2013, 30(4):1807-1812.

    [13]

    刘殿军, 贾三石, 王恩德, 等. 井下铁矿巷道掘进工作面超前预警探测[J]. 金属矿山, 2014(11):147-150.

    [14]

    Liu D J, Jia S S, Wang E D, et al. Advanced early warning detection ahead of tunneling in underground iron ore[J]. Mine Metal, 2014(11):147-150.

    [15]

    平守国, 王永增, 张忠海, 等. 齐大山铁矿南帮含水构造带探测研究[J]. 金属矿山, 2020(1):56-62.

    [16]

    Ping S G, Wang Y Z, Zhang Z H, et al. Study on the detection of water-bearing structural zones in the south side of Qidashan iron mine[J]. Mine Metal, 2020(1):56-62.

    [17]

    于景邨. 矿井瞬变电磁法勘探[M]. 徐州: 中国矿业大学出版社, 2007.

    [18]

    Yu J C. Mine transient electromagnetic prospecting[M]. Xuzhou: China University of Mining and Technology Press, 2007.

    [19]

    周金, 程久龙, 温来福. 矿井瞬变电磁法反演方法研究进展与展望[J]. 煤矿安全, 2017, 48(4):180-183,187.

    [20]

    Zhou J, Cheng J L, Wen L F. Research progress and prospect on inversion methods of mine transient electromagnetic method[J]. Safety in Coal Mines, 2017, 48(4):180-183,187.

    [21]

    李明星, 程建远. 基于标准差标准化的矿井瞬变电磁数据处理方法研究[J]. 煤炭科学技术, 2019, 47(5): 225-229.

    [22]

    Li M X, Cheng J Y. Study on mine transient electromagnetic data processing method based on standard deviation standardization[J]. Coal Science and Technology, 2019, 47(5): 225-229.

    [23]

    程久龙, 李明星, 肖艳丽, 等. 全空间条件下矿井瞬变电磁法粒子群优化反演研究[J]. 地球物理学报, 2014, 57(10):3478-3484.

    [24]

    Cheng J L. Li M X, Xiao Y L, et al. Study on particle swarm optimization inversion of mine transient electromagnetic method in whole-space[J]. Chinese Journal of Geophysics, 2014, 57(10):3478-3484.

    [25]

    李明星. 矿井瞬变电磁PSO-DLS组合算法反演研究[J]. 煤炭科学技术, 2019, 47(9): 268-272.

    [26]

    Li M X. Study on mine transient electromagnetic method inversion based on PSO-DLS combination algorithm[J]. Coal Science and Technology, 2019, 47(9): 268-272.

    [27]

    牛之琏. 时间域电磁法原理[M]. 长沙: 中南大学出版社, 2007.

    [28]

    Niu Z L. The principle of transient electromagnetic method[M]. Changsha: Central South University Press, 2007.

    [29]

    李飞, 程久龙, 温来福, 等. 瞬变电磁场有限差分与数字滤波双模型三维正演方法[J]. 地球物理学进展, 2020, 35(3): 963-969.

    [30]

    Li F, Cheng J L, Wen L F, et al. Double model method for 3D TEM modeling based on combination of FDTD and digital filtering method[J]. Progress in Geophysics, 2020, 35(3): 963-969.

    [31]

    周超群. 强干扰条件下矿井电梯井井壁损伤精细探测[J]. 地球科学前沿, 2021, 11(1): 12-20.

    [32]

    Zhou C Q. Fine detection of mine elevator shaft wall damage under the condition of strong interference[J]. Advances in Geosciences, 2021, 11(1): 12-20.

    [33]

    杨允林, 程久龙, 赵家宏, 等. 带式输送机影响下矿井瞬变电磁响应特征与校正研究[J]. 煤矿安全, 2019, 50(7):282-284,288.

    [34]

    Yang Y L, Cheng J L, Zhao J H, et al. Study on characteristics of mine transient electromagnetic response under the influence of belt conveyor and interference correction[J]. Safety in Coal Mines, 2019, 50(7):282-284,288.

    [35]

    时志浩, 程久龙, 董毅, 等. 锚网支护对矿井瞬变电磁响应的影响与校正[J]. 煤矿安全, 2019, 50(4):108-111.

    [36]

    Shi Z H, Cheng J L, Dong Y, et al. Influence of bolt-net support on mine transient electromagnetic response and its correction[J]. Safety in Coal Mines, 2019, 50(4):108-111.

    [37]

    周金, 程久龙, 温来福. 矿井瞬变电磁金属干扰响应特征与校正方法[J]. 中国矿业, 2017, 26(8):146-149,164.

    [38]

    Zhou J, Cheng J L, Wen L F. Response characteristics of metallic facilities and correction method on mine transient electromagnetic surveying[J]. China Mining Magazine, 2017, 26(8):146-149,164.

    [39]

    周璇, 刘树才, 常江浩, 等. 金属棚支架对矿井瞬变电磁探测影响及校正技术[J]. 煤炭科学技术, 2014, 42(11): 101-104.

    [40]

    Zhou X, Liu S C, Chang J H, et al. Influences on metal support to mine transient electromagnetic detection and correction tech-nology[J]. Coal Science and Technology, 2014, 42(11): 101-104.

    [41]

    Huang S H, Cheng J L, Wen L F, et al. Study on metal interference correction method in mine TEM based on the fitting function[C]// 7th International Conference on Environmental and Engineering Geophysics, 2016.

    [42]

    Karaboga D. An idea based on honey bee swarm for numerical optimization[R]. Technical Report-TR06, Erciyes. University, Engineering Faculty, Computer Engineering Department, 2005.

  • 加载中
计量
  • 文章访问数:  384
  • PDF下载数:  63
  • 施引文献:  0
出版历程
收稿日期:  2021-11-19
修回日期:  2022-12-20
刊出日期:  2023-01-03

目录