Application of multi-attribute fusion in quantitative prediction of reservoirs: A case study of Yangshuiwu buried hill in Langgu sag
-
摘要: 杨税务潜山位于廊固凹陷北部,裂缝孔隙型储层发育,地质综合研究表明该区处于油气运聚的有利方向,但由于其储层埋藏深,地震资料成像精度低,常规属性预测有效储层难度大,多解性强。本文在充分分析已钻井地球物理响应特征的基础上,优选了对有效储层响应敏感的3个属性——平均振幅、方差属性、弧长属性,并计算有效储层厚度与优选属性之间的相关系数,依据相关系数大小确定属性融合权重,最终得到反映有效储层厚度的融合属性,该融合属性有效降低了单属性预测的多解性,同时实现了有效储层的定量预测。实践证明,多属性融合技术有效实用,并在杨税务潜山地区取得了良好的应用效果。Abstract: The Yangshuiwu buried hill is located in the northern part of the Langgu sag,where fractured porous reservoirs are well developed.As indicated by comprehensive geological studies,it is in the direction favorable for hydrocarbon migration and accumulation.However,owing to the deep reservoirs and low imaging accuracy of seismic data,it is difficult to predict effective reservoirs using conventional attributes and the obtained prediction results feature strong multiplicity of solution.Based on full analyses of the geophysical response characteristics of existing drilled wells,this study selects three optimal attributes sensitive to the response of effective reservoirs,namely mean amplitude,variance,and arc length,and calculates the correlation coefficient between the thickness of effective reservoirs and each of the optimal attributes.Then it determines the fusion weight of each attribute according to corresponding correlation coefficient,and finally obtains the fused attribute than can reflect the thickness of effective reservoirs.The fused attribute can be used to effectively reduce the multiplicity of solution compared with single attribute prediction and quantitatively predict effective reservoirs.Practice has proved that the multi-attribute fusion technology is effective and practical and has achieved accurate application results in the Yangshuiwu buried hill.
-
-
[1] 杜金虎, 何海清, 赵贤正, 等. 渤海湾盆地廊固凹陷杨税务超深超高温奥陶系潜山油气勘探重大突破实践与启示[J]. 中国石油勘探, 2017,22(2):1-12.
[2] Du J H, He H Q, Zhao X Z, et al. Significant exploration breakthrough in Yangshuiwu ultra-deep and ultra-high temperature Ordovician buried-hill in Langgu sag Bohai Bay Basin[J]. China Petroleum Exploration, 2017,22(2):1-12.
[3] 吴伟涛, 高先志, 李理, 等. 渤海湾盆地大型潜山油气藏形成的有利因素[J]. 特种油气藏, 2015,22(2):22-26.
[4] Wu W T, Gao X Z, Li L, et al. Favorable conditions formed in large scale buried-hill reservoir in Bohai Bay Basin[J]. Special Oil and Gas Reservoirs, 2015,22(2):22-26.
[5] 何登发, 崔永谦, 张煜颖, 等. 渤海湾盆地冀中坳陷古潜山的构造成因类型[J]. 岩石学报, 2017,33(4):1338-1356.
[6] He D F, Cui Y Q, Zhang Y Y, et al. Structural genetic types of paleo-buried hill in Jizhong depression,Bohai Bay Basin[J]. Acta Petrologica Sinica, 2017,33(4):1338-1356.
[7] 赵贤正, 金凤鸣, 王权, 等. 冀中坳陷隐蔽深潜山及潜山内幕油气藏的勘探发现与认识[J]. 中国石油勘探, 2014,19(1):10-21.
[8] Zhao X Z, Jin F M, Wang Q, et al. Exploration and discovery of subtle deep buried hill and buried hill inner-curtain hydrocarbon reservoir in Jizhong Sag[J]. China Petroleum Exploration, 2014,19(1):10-21.
[9] 易院平, 桂志先, 冯舸, 等. 利用曲率属性进行小微断裂系统研究[J]. 科学技术与工程, 2017,17(11):175-182.
[10] Yi Y P, Gui Z X, Feng G, et al. The application of curvature properties in micro fracture system researching[J]. Science Technology and Engineering, 2017,17(11):175-182.
[11] 王建青, 杨晓东, 田忠斌, 等. 基于地震频谱属性的煤层厚度预测方法[J]. 物探与化探, 2017,41(2):364-368.
[12] Wang J Q, Yang X D, Tian Z B, et al. A coal seam thickness prediction method based on seismic spectral attribute[J]. Geophysical and Geochemical Exploration, 2017,41(2):364-368.
[13] 张平平, 秦德海. 含烃亮点属性在渤海黄河口凹陷明化镇组油气识别中的应用[J]. 物探与化探, 2017,41(4):684-688.
[14] Zhang P P, Qing D H. Application of bright spot containing hydrocarbon in oil and gas identification of Ming Huazhen Formation in Bohai Huang Hekou depression[J]. Geophysical and Geochemical Exploration, 2017,41(4):684-688.
[15] 刁新东, 李映涛, 顾伟欣, 等. 三角洲水下分流河道砂体地震预测方法研究—以塔河油田三叠系河道砂岩为例[J]. 物探与化探, 2018,42(3):569-575.
[16] Diao X D, Li Y T, Gu W X, et al. A study of seismic prediction method of underwater distributary channel sandbody in delta:A case study of the Tahe Oilfied[J]. Geophysical and Geochemical Exploration, 2018,42(3):569-575.
[17] 明君, 夏庆龙, 周东红, 等. 锦州南油田潜山裂缝储层地震预测技术研究[J]. 中国石油勘探, 2014,19(1):60-64.
[18] Ming J, Xia Q L, Zhou D H, et al. Study of seismic prediction technology for buried hill fractured reservoir of Jinzhounan oilfield[J]. China Petroleum Exploration, 2014,19(1):60-64.
[19] 陈志刚, 刘雷颂, 高军, 等. 云变换在中东地区H油田碳酸盐岩储集层预测中的应用[J]. 新疆石油地质, 2016,37(1):107-110.
[20] Chen Z G, Liu L S, Gao J, et al. Application of cloud transform to prediction of H oilfield Carbonate reservoirs in Middle East[J]. Xinjiang Petroleum Geology, 2016,37(1):107-110.
[21] 韩翀, 陈明江, 赵辉, 等. 现代体属性分析技术在风化壳气藏勘探中的应用——以苏里格气田桃7 区块马五31段为例[J]. 物探与化探, 2016,40(3):445-451.
[22] Han C, Chen M J, Zhao H, et al. The application of analysis technology of modern volumetric attributes to the exploration of weathering crust reservoir:A case study of M531 Sub-members of Ordovician Majiagou Formation in TAO7 Block,the Sulige Gas field[J]. Geophysical and Geochemical Exploration, 2016,40(3):445-451.
[23] 王光强, 周小康, 朱焕. 沉积相结合地球物理属性预测碳酸盐岩储层——以东沙隆起ZJ33-1含油构造为例[J]. 石油地质与工程, 2017,31(1):48-51.
[24] Wang G Q, Zhou X K, Zhu H. Prediction of Carbonate reservoir by sedimentary facies combined with geophysical attributes—A case study of oil-bearing structures in Dongsha Uplift ZJ33-1[J]. Petroleum Geology and Engineering, 2017,31(1):48-51.
[25] 鲜强, 蔡志东, 王祖君, 等. AVO分析技术在塔中碳酸盐岩油气检测中的应用[J]. 物探化探计算技术, 2017,39(2):260-265.
[26] Xian Q, Cai Z D, Wang Z J, et al. Application of AVO in hydrocarbon detection at Tazhong area[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2017,39(2):260-265.
[27] 陈德元, 张保卫, 岳航羽, 等. 基于特征曲线构建的地质统计反演在薄砂体预测中的应用[J]. 物探与化探, 2018,42(5):999-1005.
[28] Chen D Y, Zhang B W, Yue H Y, et al. The application of geostatistical inversion based on characteristic curve structuring technology to thin sand body reservoir prediction[J]. Geophysical and Geochemical Exploration, 2018,42(5):999-1005.
[29] 束宁凯, 汪新文, 宋亮, 等. 基于地震影像学的砂砾岩体多属性融合裂缝预测——以济阳坳陷车西地区北部陡坡带沙三段为例[J]. 油气地质与采收率, 2016,23(2):57-61.
[30] Shu N K, Wang X W, Song L, et al. Fracture prediction of sand-gravel body by multi-attribute fusion based on seismic imaging theory:A case study of the third member of Shahejie Formation in northern zone of Chexi area in Jiyang depression[J]. Petroleum Geology and Recovery Efficiency, 2016,23(2):57-61.
[31] 姚威, 吴冲龙, 史原鹏, 等. 利用地震属性融合技术研究洪浩尔舒特凹陷下白垩统沉积相特征[J]. 石油地球物理勘探, 2013,48(4):634-642.
[32] Yao W, Wu C L, Shi Y P, et al. Sedimentary characteristics research on lower Cretaceous in Honghaoershute Depression using seismic multi-attribute fusion[J]. Oil Geophysical Prospecting, 2013,48(4):634-642.
[33] 郭彪. 川南某工区地震属性多尺度融合方法及油气检测研究[D]. 成都: 成都理工大学, 2016.
[34] Guo B. Study on detection method of oil and gas in southern Sichuan seismic attribute a multi-scale fusion[D]. Chengdu:Chengdu University of Technology, 2016.
-
计量
- 文章访问数: 1556
- PDF下载数: 91
- 施引文献: 0