中国自然资源航空物探遥感中心主办
地质出版社出版

莺歌海盆地乐东区深层异常高压成因机制及预测研究

艾能平, 宋鹏, 李伟, 吴云鹏, 李虎. 2023. 莺歌海盆地乐东区深层异常高压成因机制及预测研究. 物探与化探, 47(1): 190-198. doi: 10.11720/wtyht.2023.1007
引用本文: 艾能平, 宋鹏, 李伟, 吴云鹏, 李虎. 2023. 莺歌海盆地乐东区深层异常高压成因机制及预测研究. 物探与化探, 47(1): 190-198. doi: 10.11720/wtyht.2023.1007
AI Neng-Ping, SONG Peng, LI Wei, WU Yun-Peng, LI Hu. 2023. Genetic mechanisms and prediction of the deep abnormal high pressure in the Ledong area,Yinggehai Basin. Geophysical and Geochemical Exploration, 47(1): 190-198. doi: 10.11720/wtyht.2023.1007
Citation: AI Neng-Ping, SONG Peng, LI Wei, WU Yun-Peng, LI Hu. 2023. Genetic mechanisms and prediction of the deep abnormal high pressure in the Ledong area,Yinggehai Basin. Geophysical and Geochemical Exploration, 47(1): 190-198. doi: 10.11720/wtyht.2023.1007

莺歌海盆地乐东区深层异常高压成因机制及预测研究

  • 基金项目:

    中海油“十四五”重大科技项目“复杂边缘海盆地深层/超深层油气成藏条件与成藏机制研究—莺琼盆地”(KJGG2022-0404)

详细信息
    作者简介: 艾能平(1982-),男,工程师,2009年毕业于中国地质大学(武汉)矿产普查与勘探专业,硕士,现在中海石油(中国)有限公司海南分公司从事综合石油地质研究工作。Email:ainp@cnooc.com.cn
  • 中图分类号: P631.4

Genetic mechanisms and prediction of the deep abnormal high pressure in the Ledong area,Yinggehai Basin

  • 乐东区深层地层压力结构复杂,实测的地层压力数据表明:不同深度、不同层位地层孔隙压力差异较大,尤其是黄流组地层孔隙压力横向跨度大,黄流组顶部地层孔隙压力有降低回头特征,到底部地层压力系数又开始快速抬升至2.3,存在明显压力突变现象。单纯利用欠压实模式开展压力预测误差大,极易引发工程事故。为了解决地层压力预测面临的问题,须明确超压成因机制。利用垂直有效应力—测井响应交会图版可有效辨别超压形成机制,乐东区深层超压成因机制主要为机械不均衡压实、化学压实作用、断裂垂向传递、生烃增压,在明确超压成因机制前提下建立合理的压力预测方法,提高预测精度,以保证钻井工程的顺利实施。
  • 加载中
  • [1]

    郭令智, 钟志红, 王良书, 等. 莺歌海盆地周边区域构造演化[J]. 高校地质学报, 2001, 7(1):1-12

    . ;Guo L Z, Zhong Z H, Wang L S, et al. Regional tectonic evolution around Yinggehai basin of south China sea[J]. Geological Journal of China Universities, 2001, 7(1):1-12

    [2]

    张启明. 莺—琼盆地的演化与构造—热体制[J]. 天然气工业, 1999, 19(1):12-17.

    [3]

    Zhang Q M. Evolution of Ying-qiong basin and its tectonic thermal system[J]. Natural Gas Industry, 1999, 19(1):12-17.

    [4]

    范彩伟. 莺歌海大型走滑盆地构造变形特征及其地质意义[J]. 石油勘探与开发, 2018, 45(2):190-199.

    [5]

    Fan C W. Tectonic deformation features and petroleum geological significance in Yinggehai Large Strike-Slip Basin,south China sea[J]. Petroleum Exploration and Development, 2018, 45(2):190-199.

    [6]

    解习农, 刘晓峰. 超压盆地流体动力系统与油气运聚关系[J]. 矿物岩石地球化学通报, 2000, 19(2):103-108.

    [7]

    Xie X N, Liu X F. Related to black shale seriesfluid dynamic system and relationship with accumulation of hydrocarbon in overpressured basin[J]. Bulletin of Mineralogy Petrology and Geochemisty, 2000, 19(2):103-108

    [8]

    万志峰, 夏斌, 林舸, 等. 超压盆地油气地质条件与成藏模式——以莺歌海盆地为例[J]. 海洋地质与第四纪地质, 2010, 30(6):91-97.

    [9]

    Wan Z F, Xia B, Ling G, et al. Hydrocarbon accumulation model for overpressure basin:An example from the Yinghehai basin[J]. Marine Geology & Quaternary Geology, 2010, 30(6):91-97.

    [10]

    张启明, 刘福宁, 杨计海. 莺歌海盆地超压体系与油气聚集[J]. 中国海上油气:地质, 1996, 10(2):65-75.

    [11]

    Zhang Q M, Liu F N, Yang J H. Overpressure system and hydrocarbon accumulation in the Yinggehai basin[J]. China Offshore Oil and Gas:Geology, 1996, 10(2):65-75.

    [12]

    刘爱群, 范彩伟, 吴云鹏, 等. 南海高温高压领域基于传递模式的它源压力预测方法研究[J]. 中国海上油气, 2021, 33(1):50-55.

    [13]

    Liu A Q, Fan C W, Wu Y P, et al. Study on prediction method of allochthonous pressure based on transfer mode in high temperature and high pressure field of south China sea[J]. China Offshore Oil and Gas, 2021, 33(1):50-55.

    [14]

    胡益涛, 刘挺, 陈现军, 等. 随钻地层压力综合评价技术在莺歌海盆地超压井中的应用[J]. 长江大学学报:自然科学版, 2019, 16(10):29-33.

    [15]

    Hu Y T, Liu T, Chen X J, et al. Application of comprehensive evaluation technology of formation pressure while drilling in ultra-high pressure wells in Yinggehai basin[J]. Journal of Yangtze University:Natural Science Edition, 2019, 16(10):29-33.

    [16]

    赵靖舟, 李军, 徐泽阳. 沉积盆地超压成因研究进展[J]. 石油学报, 2017, 38(9):973-998.

    [17]

    Zhao J Z, Li J, Xu Z Y. Advances in the origin of overpressures in sedimentary basins[J]. Acta Petrolei Sinica, 2017, 38(9):973-998.

    [18]

    Bowers G L. Pore pressure estimation from velocity data:Accounting for overpressure mechanisms besides under compaction[C]// IADC/SPE27488,IADC/SPE Drilling Conference, 1994:515-530

    [19]

    Ramdhanam, Goulty N R. Overpressure-generating mechanisms in the peciko field,lower kutai basin,indonesia[J]. Petroleum Geoscience, 2010, 16(4):367-376.

    [20]

    Goulty N R, Sargent C, Andras P, et al. Compaction of diagenetically altered mudstones Part 1:Mechanical and chemical contributions[J]. Marine and Petroleum Geology, 2016, 77:703-713.

    [21]

    Tingay M R P, Morley C K, Laird A, et al. Evidence for overpressure generation by kerogen to gas maturation in the Northern malay basin[J]. AAPG Bulletin, 2013, 97(4):639-672.

    [22]

    Van Ruth P, Hillis R, Tingate P. The origin of overpressure in the carnarvon basin,western australia:Implications for pore pressure prediction[J]. Petroleum Geoscience, 2004, 10(3):247-257.

    [23]

    Fertl W H. Abnormal formation pressure:Implication to exploration,drilling,and production of oil and gas resources[M]. Amsterdam:Elsevier, 1976:382.

    [24]

    Magara K. Compaction and fluid migration,practical petroleum geology[M]. Amsterdam:Elsevier, 1978:319.

    [25]

    Luo X R, Vasseur G. Contributions of compaction and aquathermal pressuring to geopressure and the influence of environmental conditions[J]. AAPG Bulletin, 1992, 76(10):1550-1559.

    [26]

    Osborne M J, Swarbrick R E. Mechanisms for generating overpressure in sedimentary basins:A reevaluation[J]. AAPG Bulletin, 1997, 81(6):1023-1041.

    [27]

    Audet D M. Mathematical modeling of gravitational compaction and clay dehydration in thick sediment layers[J]. Geophysical Journal International, 1995, 122:283-98.

    [28]

    李超, 罗晓容, 范彩伟, 等. 莺歌海盆地乐东斜坡区乐东A构造储层超压形成机制及其对天然气成藏的启示[J]. 地质科学, 2021, 56(4):1034-1051.

    [29]

    Li C, Luo X R, Fan C W, et al. Generation mechanism of overpressure and its implication for natural gas accumulation in Miocene reservoir in Ledong A structrure,Ledong slope,Yinggehai Basin[J]. Chinese Journal of Geology, 2011, 56(4):1034-1051.

    [30]

    Lahann R W, Swarbrick R E. Overpressure generation by load transfer following shale framework weakening due to smectite diagenesis[J]. Geofluids, 2011, 11(4):362-375.

    [31]

    Goulty N R, Ramdhan A M, Jones S J. Chemical compaction of mudrocks in the presence of overpressure[J]. Petroleum Geoscience, 2012, 18(4):471-479.

    [32]

    李超, 罗晓容, 张立宽. 泥岩化学压实作用的超压响应与孔隙压力预测[J]. 中国矿业大学学报, 2020, 49(5):851-968.

    [33]

    Li C, Luo X R, Zhang L K. Overpressure responses for chemical compaction of mudstones and the pore pressure prediction[J]. Journal of China University of Mining & Technology, 2020, 49(5):851-968.

    [34]

    罗晓容. 数值盆地模拟方法在地质研究中的应用[J]. 石油勘探与开发, 2000, 27(2):6-10.

    [35]

    Luo X R. The application of numerical basin modeling in geological studies[J]. Petroleum Exploration and Development, 2000, 27(2):6-10.

    [36]

    罗晓容. 断裂成因他源高压及其地质特征[J]. 地质学报, 2004, 78(5):641-648.

    [37]

    Luo X R. Allogenic overpressuring associated with faulting and geological consequences[J]. Acta Geologica Sinica, 2004, 78(5):641-648.

    [38]

    刘晓峰, 解习农. 储层超压流体系统的成因机制述评[J]. 地质科技情报, 2003, 22(3):55-60.

    [39]

    Liu X F, Xie X N. Review on formation mechanism of the reservoir overpressure fluid system[J]. Geological Science and Technology Information, 2003, 22(3):55-60.

    [40]

    Luo X R, Vasseur G. Geopressuring mechanism of organic matter cracking:Numerical modeling[J]. AAPG Bulletin, 1996, 80(6):856-874.

    [41]

    谢玉洪. 莺歌海高温超压盆地压力预测模式及成藏新认识[J]. 天然气工业, 2011, 31(1):21-25.

    [42]

    Xie Y H. Models of pressure prediction and new understandings of hydrocarbon accumulation in the Yinggehai Basin with high temperature and super-high pressure[J]. Natural Gas Industry, 2011, 31(12):21-25.

    [43]

    Bowers G L. Pore pressure estimation from velocity data:Accounting for overpressure mechanisms besides undercompaction[J]. SPE Drilling and Complection, 1995, 10(2):89-95.

  • 加载中
计量
  • 文章访问数:  668
  • PDF下载数:  145
  • 施引文献:  0
出版历程
收稿日期:  2022-03-24
修回日期:  2023-02-20
刊出日期:  2023-02-24

目录