中国自然资源航空物探遥感中心主办
地质出版社出版

藏东南冻错曲塘布段冰碛物电阻率特征

蒋首进, 陈永凌, 李怀远, 胡俊峰. 2023. 藏东南冻错曲塘布段冰碛物电阻率特征. 物探与化探, 47(1): 73-80. doi: 10.11720/wtyht.2023.1107
引用本文: 蒋首进, 陈永凌, 李怀远, 胡俊峰. 2023. 藏东南冻错曲塘布段冰碛物电阻率特征. 物探与化探, 47(1): 73-80. doi: 10.11720/wtyht.2023.1107
JIANG Shou-Jin, CHEN Yong-Ling, LI Huai-Yuan, HU Jun-Feng. 2023. Resistivity of moraine deposits in the Tangbu section, Dongcuoqu, southeastern Tibet. Geophysical and Geochemical Exploration, 47(1): 73-80. doi: 10.11720/wtyht.2023.1107
Citation: JIANG Shou-Jin, CHEN Yong-Ling, LI Huai-Yuan, HU Jun-Feng. 2023. Resistivity of moraine deposits in the Tangbu section, Dongcuoqu, southeastern Tibet. Geophysical and Geochemical Exploration, 47(1): 73-80. doi: 10.11720/wtyht.2023.1107

藏东南冻错曲塘布段冰碛物电阻率特征

  • 基金项目:

    中国地质调查局“公益性基础性综合地质调查”项目(DD20211555)

详细信息
    作者简介: 蒋首进(1987-),男,硕士研究生,工程师,研究方向为电法、电磁法的理论与应用。Email:3125007187@qq.com
  • 中图分类号: P631

Resistivity of moraine deposits in the Tangbu section, Dongcuoqu, southeastern Tibet

  • 藏东南怒江流域冻错曲塘布段周边区域普遍发育有冰斗、刀脊、角峰、高山湖泊等冰川地貌,表明该区历史上曾发生强烈的冰川活动,但实地调查发现该段第四系地表主要分布崩坡积物、冲洪积物。对该区域音频大地电磁测深和高密度测量成果开展综合分析时发现,该段第四系电性特征与冰碛堆积结构具有高度一致性,结合周边普遍发育的冰川地貌,推断该段第四系主要是以冰碛堆积为主、在冰碛堆积上覆盖有一层崩坡积物和冲洪积物。从物探成果电性结构特征看,音频大地电磁测深电阻率成果可有效反映冰碛堆积厚度、基岩面冰蚀凹谷、冰碛透镜体等结构特征;高密度测量电阻率成果可较好反映冰碛混杂堆积、冰碛透镜体、大体积块石长轴方向等特征。
  • 加载中
  • [1]

    蒲健辰. 中国冰川目录9-10澜沧江流域怒江流域[M]. 西安: 西安地图出版社, 2002.

    [2]

    Pu J C. China glacier catalogue 9-10 Lancang River Basin Nujiang River Basin[M]. Xi'an: Xi'an Map Publishing House, 2002.

    [3]

    谢尧武, 彭兴阶, 陈德泉, 等. 西藏1∶25万拉萨市、泽当镇、囊谦县、昌都县、江达县、贡觉县、八宿县、然乌区、芒康县、巴昔卡、巴沙(1/5)、察隅县、曼加得(1/7)、德钦县幅区调报告[R]. 西藏自治区地质调查院一分院, 2007.

    [4]

    Xie R W, Peng X J, Chen D Q, et al. Tibet 1∶250000 Regional survey report of Lhasa City,Zedang Town,Paoqian County,Qamdo County,Jiangda County,Gongjue County,Basu County,Ranwu District,Mangkang County,Baxika,Basha(1/5),Chayu County,mangad (1/7)and Deqin County[R]. The First Branch of Geological Survey Institute of Tibet Autonomous Region, 2007.

    [5]

    袁广祥, 丁仁伟, 尚彦军, 等. 川藏公路帕隆藏布段沿线第四纪堆积体的成因及其分布规律[J]. 地质与勘探, 2012, 48(1):170-176.

    [6]

    Yuan G X, Ding R W, Shang Y J, et al. Origin and distribution of Quaternary accumulation along Palong Zangbu section of Sichuan Tibet highway[J]. Geology and Exploration, 2012, 48(1):170-176.

    [7]

    邹任洲, 张佳佳, 刘健康, 等. 藏东南帕龙藏布流域索通平台第四纪堆积体成因[J]. 四川师范大学学报:自然科学版, 2018, 41(4):551-559.

    [8]

    Zhou R Z, Zhang J J, Liu J K, et al. Origin of Quaternary accumulation of sotong platform in Palong Zangbu basin Southeast Tibet[J]. Journal of Sichuan Normal University:Natural Science Edition, 2018, 41(4):551-559.

    [9]

    贺书恒, 胡御文, 刘波, 等. 川藏铁路洛隆车站察达大型堆积体成因分析[J]. 工程地质学报, 2021, 29(2):353-364.

    [10]

    He S H, Hu Y W, Liu B. Genetic analysis of Chada large accumulation body in Luolong station of Sichuan Tibet Railway[J]. Journal of Engineering Geology, 2021, 29(2):353-364.

    [11]

    许佑顶, 姚令侃. 川藏铁路沿线特殊环境地质问题的认识与思考[J]. 铁道工程学报, 2017, 34(1):1-5,59.

    [12]

    Xu Y D, Yao L K. Understanding and thinking of special environmental geological problems along Sichuan Tibet Railway[J]. Journal of Railway Engineering, 2017, 34(1):1-5,59.

    [13]

    杨东旭, 游勇, 王军朝, 等. 藏东南帕隆藏布流域冰碛物典型特征及工程效应[J]. 防灾减灾工程学报, 2020, 40(6):841-851.

    [14]

    Yang D X, You Y, Wang J C, et al. Typical characteristics and engineering effects of Moraine in Palong Zangbu basin in Southeast Tibet[J]. Journal of Disaster Prevention and Mitigation Engineering, 2020, 40(6):841-851.

    [15]

    郭长宝, 张永双, 蒋良文, 等. 川藏铁路沿线及邻区环境工程地质问题概论[J]. 现代地质, 2017, 31(5):877-889.

    [16]

    Guo C B, Zhang Y S, Jiang L W, et al. Introduction to environmental engineering geological problems along Sichuan Tibet railway and its adjacent areas[J]. Modern Geology, 2017, 31(5):877-889.

    [17]

    赖月荣, 韩磊, 杨树生. 高精度磁测在阿勒泰冰碛物覆盖区地质填图中的应用[J]. 物探与化探, 2014, 38(6):1181-1185.

    [18]

    Nai Y R, Han L, Yang S S. The effects of applying high precision magnetic survey to geological mapping in Altay glacial tiu covering area[J]. Geophysical and Geochemical Exploration, 2014, 38(6):1181-1185.

    [19]

    苗景春, 阮帅, 张悦. 音频大地电磁测深法对正、逆断层的精细解释[J]. 物探与化探, 2013, 37(4):681-686.

    [20]

    Miao J C, Ruan S, Zhang Y. Fine interpretation of normal and reverse faults by audio magnetotelluric sounding[J]. Geophysical and Geochemical Exploration, 2013, 37(4):681-686.

    [21]

    郝治国, 贾树林, 文群林. 综合物探方法在采空区及其富水性探测中的应用[J]. 物探与化探, 2012, 36(S):102-106.

    [22]

    Hao Z G, Jia S L, Wen Q L. Application of comprehensive geophysical method in goaf and its water rich detection[J]. Geophysical and Geochemical Exploration, 2012, 36(S):102-106.

    [23]

    严加永, 孟贵祥, 吕庆田, 等. 高密度电法的进展与展望[J]. 物探与化探, 2012, 36(4):576-584.

    [24]

    Yan J Y, Meng G X, Lyu Q T, et al. Progress and prospect of high density electrical method[J]. Geophysical and Geochemical Exploration, 2012, 36(4):576-584.

    [25]

    陈亚乾, 李天, 普新凯, 等. 高密度电法立体显示技术在岩溶探测中的应用[J]. 工程地球物理学报, 2020, 17(3):366-372.

    [26]

    Chen Y Q, Li T, Pu X K, et al. Application of stereoscopic display technology of high density electrical method in Karst Exploration[J]. Journal of Engineering Geophysics, 2020, 17(3):366-372.

  • 加载中
计量
  • 文章访问数:  509
  • PDF下载数:  68
  • 施引文献:  0
出版历程
收稿日期:  2022-03-17
修回日期:  2023-02-20
刊出日期:  2023-02-24

目录