中国自然资源航空物探遥感中心主办
地质出版社出版

基于综合物探的关中眉县构造裂隙型地热水靶区预测及钻孔验证

韩元红, 申小龙, 李兵, 徐德才, 贾志刚, 吴大林, 王伟, 吕俊. 2023. 基于综合物探的关中眉县构造裂隙型地热水靶区预测及钻孔验证. 物探与化探, 47(1): 65-72. doi: 10.11720/wtyht.2023.1209
引用本文: 韩元红, 申小龙, 李兵, 徐德才, 贾志刚, 吴大林, 王伟, 吕俊. 2023. 基于综合物探的关中眉县构造裂隙型地热水靶区预测及钻孔验证. 物探与化探, 47(1): 65-72. doi: 10.11720/wtyht.2023.1209
HAN Yuan-Hong, SHEN Xiao-Long, LI Bing, XU De-Cai, JIA Zhi-Gang, WU Da-Lin, WANG Wei, Lyu Jun. 2023. Target area prediction and drilling verification of the tectonic fissure-hosted geothermal water in Meixian County, Guanzhong Plain based on the integrated geophysical exploration. Geophysical and Geochemical Exploration, 47(1): 65-72. doi: 10.11720/wtyht.2023.1209
Citation: HAN Yuan-Hong, SHEN Xiao-Long, LI Bing, XU De-Cai, JIA Zhi-Gang, WU Da-Lin, WANG Wei, Lyu Jun. 2023. Target area prediction and drilling verification of the tectonic fissure-hosted geothermal water in Meixian County, Guanzhong Plain based on the integrated geophysical exploration. Geophysical and Geochemical Exploration, 47(1): 65-72. doi: 10.11720/wtyht.2023.1209

基于综合物探的关中眉县构造裂隙型地热水靶区预测及钻孔验证

  • 基金项目:

    国家自然科学基金项目(42102203)

    陕西省自然科学基金项目(2021J LM-14)

详细信息
    作者简介: 韩元红(1988-),女,博士,高级工程师,2015年毕业于中国科学院大学,目前从事地热及伴生资源相关地质研究工作。Email:hanyuanhong222@163.com
  • 中图分类号: P631

Target area prediction and drilling verification of the tectonic fissure-hosted geothermal water in Meixian County, Guanzhong Plain based on the integrated geophysical exploration

  • “双碳”目标背景下,地热能作为广泛分布的绿色清洁能源具有广阔的利用前景。构造裂隙型地热水因出水量大、易回灌等优势,成为当前水热型地热能开发利用的重要类型。运用区域综合物探方法,系统分析关中西部眉县城区区域构造、地层岩性、储水空间及富水性,指导热水井靶区预测和井位布局。结果表明,目标区发育3条隐伏断层,其中富水性好、规模较大的2条断层可以作为靶区断层,在此基础上将地热井布局于断层上盘靠近断层预测线的位置,垂向上沿着断层倾向方向钻穿基岩面风化带,结合断层和基岩面埋深等实际地质条件,该区地热井平均钻进基岩面以下500 m。钻井结果显示眉县地区二元结构热储发育,即新近系碎屑岩孔隙水热储和基岩裂隙水热储,完钻的8口地热井中7口井出水量超过100 m3/h,出水主要为基岩构造裂隙水,另1口井出水量较小,推测未取得基岩构造裂隙水,出水主要为新近系碎屑岩孔隙水。
  • 加载中
  • [1]

    周琛杰. 高密度电法与AMT在断裂构造调查中的综合应用[J]. 工程地球物理学报, 2017, 14(3):300-307.

    [2]

    Zhou C J. Application of high-density resistivity method and AMT to the investigation of fault structure[J]. Chinese Journal of Engineering Geophysics, 2017, 14(3):300-307.

    [3]

    马峰, 王贵玲, 张薇, 等. 雄安新区容城地热田热储空间结构及资源潜力[J]. 地质学报, 2020, 94(7):1981-1990.

    [4]

    Ma F, Wang G L, Zhang W, et al. Structure of geothermal reservoirs and resource potential in the Rongcheng geothermal field in Xiong’an New Area[J]. Acta Geologoca Sinica, 2020, 94(7):1981-1990.

    [5]

    邱辉, 朱育坤, 李朋. 广东河源市黄村地热田地热地质特征及地热流体化学特征[J]. 地质与勘探, 2021, 57(6):1391-1400.

    [6]

    Qiu H, Zhu Y K, Li P. Characteristics of geology and hydrochemistry of the Huangcun geothermal field in Heyuan City,Guangdong Province[J]. Geology and Exploration, 2021, 57(6):1391-1400.

    [7]

    董月霞, 黄红祥, 任路, 等. 渤海湾盆地北部新近系馆陶组地热田特征及开发实践——以河北省唐山市曹妃甸地热供暖项目为例[J]. 石油勘探与开发, 2021, 48(3):666-676.

    [8]

    Dong Y X, Huang H X, Ren L, et al. Geology and development of geothermal field in Neogene Guantao Formation in northern Bohai Bay Basin:A case of the Caofeidian geothermal heating project in Tangshan,China[J]. Petroleum Exploration and Development, 2021, 48(3):666-676.

    [9]

    杨询昌, 康凤新, 王学鹏, 等. 砂岩孔隙热储地温场水化学场特征及地热水富集机理——鲁北馆陶组热储典型案例[J]. 地质学报, 2019, 93(3):738-748.

    [10]

    Yang X C, Kang F X, Wang X P, et al. Hydrochemical features of geothermal reservoir geotemperature field in sandstone porosity and enrichment mechanism of geothermal water:A case study of geothermal reservoir of Guantao Formation in the Lubei[J]. Acta Geologica Sinica, 2019, 93(3):738-750.

    [11]

    李弘, 俞建宝, 吕慧, 等. 雄县地热田重磁响应及控热构造特征研究[J]. 物探与化探, 2017, 41(2):242-248.

    [12]

    Li H, Yu J B, Lyu H, et al. Gravity and aeromagnetic responses and heat-controlling structures of Xiongxian geothermal area[J]. Geophysical and Geochemical Exploration, 2017, 41(2):242-248.

    [13]

    张攀, 陈金国, 傅清心. 英罗地区地热资源成因分析及勘查靶区预测[J]. 资源环境与工程, 2018, 32(S):44-47.

    [14]

    Zhang P, Chen J G, Fu Q X. Genetic analysis of geothermal resources and prediction of exploration targets in Yingluo Area[J]. Resources Environment & Engineering, 2018, 32(S):44-47.

    [15]

    Zheng X, Si G, Xia B. The sustainable development of geothermal resources in China[J]. Transactions-Geothermal Resources Council, 2005, 29:321-323.

    [16]

    Cheng W Q, Lin J W, Tang Y X, et al. Geothermal Reinjection in Tianjin,China[C]// Proceedings World Geothermal Congress,Bali,Indonesia, 2010:2305.

    [17]

    任战利, 陈玉林, 李晓辉, 等. 西安市地热资源可持续利用的回灌试验研究[C]// 中国地球物理学会第二十七届年会论文集, 2011.

    [18]

    Ren Z L, Chen Y L, Li X H, et al. Geothermal reinjection test study on sustainable utilization of Geothermal-energy resources in xi’an[C]// The 27th Annual Meeting of Chinese Geophysical Society, 2011.

    [19]

    Duan Z, Pang Z, Wang X. Sustainability evaluation of limestone geothermal reservoirs with extended production histories in Beijing and Tianjin,China[J]. Geothermics, 2011, 40(2):125-135.

    [20]

    王兴. 渭河盆地地热资源赋存与开发[M]. 西安: 陕西科学技术出版社, 2005.

    [21]

    Wang X. Occurrence and development of geothermal resources in Weihe Basin[M]. Xi’an: Shaanxi Science and Technology Press, 2005.

    [22]

    穆根胥, 李峰, 闫文中, 等. 关中盆地地热资源赋存规律及开发利用关键技术[M]. 北京: 地质出版社, 2016:39-46.

    [23]

    Mu G X, Li F, Yan W Z, et al. Occurrence law and key technology of development and utilization of geothermal resources in Guanzhong Basin[M]. Beijing: Geological Publishing House, 2016:39-46.

    [24]

    张育平, 黄少鹏, 杨甫, 等. 关中盆地西安凹陷深层地热U型对接井地温特征[J]. 中国煤炭地质, 2019, 31(6):54-59.

    [25]

    Zhang Y P, Huang S P, Yang F, et al. Geothermal features of two deep U-shape downhole heat exchangers in the Xi'an Depression,Guanzhong Basin[J]. Coal Geology of China, 2019, 31(6):54-59.

    [26]

    范基姣. 关中盆地地下热水循环模式及可更新性研究[D]. 西安: 长安大学, 2006.

    [27]

    Fan J J. Study on groundwater circulation model and its renewability in Guanzhong Basin[D]. Xi'an: Chang'an University, 2006.

    [28]

    马致远, 郑会菊, 郑磊. 关中盆地深层热储流体锶同位素演化及其指示意义[J]. 水文地质工程地质, 2015, 42(1):154-160.

    [29]

    Ma Z Y, Zheng H J, Zheng L. Evolution and instruction of the strontium isotope in the deep geothermal water in the Guanzhong basin[J]. Hydrogeology & Engineering Geology, 2015, 42(1):154-160.

    [30]

    马致远, 吴敏, 郑会菊, 等. 对关中盆地腹部深层地下热水δ18O富集主控因素的再认识[J]. 地质通报, 2018, 37(Z1):487-495.

    [31]

    Ma Z Y, Wu M, Zheng H J, et al. A re-recognition of the main controlling factors for δ18O enrichment in deep geothermal water of Guanzhong Basin[J]. Geological Bulletin of China, 2018, 37(Z1):487-495.

    [32]

    贾旭兵. 关中盆地地下热水的可更新性与回灌问题研究[D]. 西安: 长安大学, 2009.

    [33]

    Jia X B. Study on the renewability and recharge of geothermal water in Guanzhong Basin[D]. Xi'an: Chang'an University, 2009.

    [34]

    马致远, 侯晨, 席临平. 超深层孔隙型热储地热尾水回灌堵塞机理[J]. 水文地质工程地质, 2013, 40(5):133-139.

    [35]

    Ma Z Y, Hou C, Xi L P. Reinjection clogging mechanism of used geothermal water in a super-deep-porous reservoir[J]. Hydrogeology & Engineering Geology, 2013, 40(5):133-139.

    [36]

    夏勇. 渭河盆地新生代沉积特征及与构造的关系[D]. 西安: 长安大学, 2007.

    [37]

    Xia Y. Sedimentary characteristics of Cenozoic strata in Weihe Basin and its relationship with tectonics[D]. Xi'an: Chang'an University, 2007.

    [38]

    权新昌. 渭河盆地断裂构造研究[J]. 中国煤田地质, 2005, 17 (3):1-4.

    [39]

    Quan X C. Study on fault structure in Weihe Basin[J]. Coalfield Geology in China, 2005, 17 (3):1-4.

    [40]

    李智超. 渭河盆地新生代岩相古地理及环境演化[D]. 西安: 西北大学, 2017.

    [41]

    Li Z C. Lithofacies palaeogeography and environmental evolution of Cenozoic Era in Weihe Basin[D]. Xi'an: Northwest University, 2017.

    [42]

    任占利, 刘润川, 任文波, 等. 渭河盆地地温场分布规律及其控制因素[J]. 地质学报, 2020, 94(7):1938-1949.

    [43]

    Ren Z L, Liu R C, Ren W B, et al. Distribution of geothermal field and its controlling factors in the Weihe basin[J]. Aata Geologica Sinica, 2020, 94(7):1938-1949.

    [44]

    何展翔, 王永涛, 刘云祥, 等. 综合物探技术新进展及应用[J]. 石油地球物理勘探, 2005, 40(1):108-112.

    [45]

    He Z X, Wang Y T, Liu Y X, et al. New progress and application of integrated geophysical prospecting technology[J]. Petroleum Geophysical Exploration, 2005, 40(1):108-112.

    [46]

    陈大磊, 王润生, 贺春艳, 等. 综合地球物理探测在深部空间结构中的应用——以胶东金矿集区为例[J]. 物探与化探, 2022, 46(1):70-77.

    [47]

    Chen D L, Wang R S, He C Y, et al. Application of integrated geophysical exploration in deep spatial structures:A case study of Jiaodong gold ore concentration area[J]. Geophysical and Geochemical Exploration, 2022, 46(1):70-77.

    [48]

    刘新号. 基于蓄水构造类型的山区综合找水技术[J]. 水文地质工程地质, 2011, 38(6):8-12.

    [49]

    Liu X H. Integrated techniques of locating groundwater in mountain areas based on groundwater-impounding types[J]. Hydrogeology & Engineering Geology, 2011, 38(6):8-12.

    [50]

    伍洲云, 徐宁玲, 范迪富. 带状(构造裂隙型)热储地热单井保护范围确定方法探讨[J]. 水文地质工程地质, 2014, 41(1):149-152.

    [51]

    Wu Z Y, Xu N L, Fang D F. Discussions on determining the protective scope of a geothermal well in zoned (tectonic fissure type)reservoir[J]. Hydrogeology & Engineering Geology, 2014, 41(1):149-152.

    [52]

    孙中任, 杨殿臣, 赵雪娟. 综合物探方法寻找深部地下水[J]. 物探与化探, 2017, 41(1):52-57.

    [53]

    Sun Z R, Yang D C, Zhao X J. The application of integrated geophysical methods to the prospecting for deep geothermal resource[J]. Geophysical and Geochemical Exploration, 2017, 41(1):52-57.

  • 加载中
计量
  • 文章访问数:  865
  • PDF下载数:  61
  • 施引文献:  0
出版历程
收稿日期:  2022-05-04
修回日期:  2023-02-20
刊出日期:  2023-02-24

目录