中国自然资源航空物探遥感中心主办
地质出版社出版

基于U-Net网络的FWI地震低频恢复方法

王莉利, 杜功鑫, 高新成, 王宁, 王维红. 2023. 基于U-Net网络的FWI地震低频恢复方法. 物探与化探, 47(2): 391-400. doi: 10.11720/wtyht.2023.1125
引用本文: 王莉利, 杜功鑫, 高新成, 王宁, 王维红. 2023. 基于U-Net网络的FWI地震低频恢复方法. 物探与化探, 47(2): 391-400. doi: 10.11720/wtyht.2023.1125
WANG Li-Li, DU Gong-Xin, GAO Xin-Cheng, WANG Ning, WANG Wei-Hong. 2023. FWI seismic low frequency recovery method based on the U-Net. Geophysical and Geochemical Exploration, 47(2): 391-400. doi: 10.11720/wtyht.2023.1125
Citation: WANG Li-Li, DU Gong-Xin, GAO Xin-Cheng, WANG Ning, WANG Wei-Hong. 2023. FWI seismic low frequency recovery method based on the U-Net. Geophysical and Geochemical Exploration, 47(2): 391-400. doi: 10.11720/wtyht.2023.1125

基于U-Net网络的FWI地震低频恢复方法

  • 基金项目:

    国家重点自然科学基金项目“粘声介质最小二乘逆时偏移及全波形反演研究”(41930431)

    国家自然科学基金项目“基于数据驱动的逆散射级数层间多次波压制方法”(41974116)

    黑龙江省自然科学基金联合引导项目“深部储层衰减补偿逆时偏移成像研究”(LH2021D009)

    东北石油大学引导性创新基金项目“基于自适应卷积神经网络的地震速度建模方法研究”(2020YDL-03)

详细信息
    作者简介: 王莉利(1979-),女,博士,副教授,主要从事基于人工智能技术的地震数据处理等领域的科研工作
  • 中图分类号: P631.4

FWI seismic low frequency recovery method based on the U-Net

  • 由于实际地震资料中缺乏低频数据,使得全波形反演易陷入局部极小值,导致反演质量差,结果不可靠。为解决这一问题,本文利用数据驱动低频恢复映射思想,分别利用高通和低通滤波器从原始数据中分离出高频数据和低频数据,对其进行一系列数据预处理操作,将处理后的数据作为模型的训练集;利用U-Net网络为基础构建模型,建立高低频之间的映射关系。为了有效防止模型过拟合,本文在U-Net模型基础上添加了Dropout层和批处理层。利用训练后的模型从高频数据中预测对应低频数据并进行逆数据预处理,对比分析逆数据预处理后的预测低频数据和真实低频数据之间误差,并利用多尺度全波形反演在洼陷模型和Marmousi模型进行有效性验证。实验结果表明:训练与测试数据的预测低频与真实低频数据的平均相对误差为5.02%和13.32%,误差较小,数据吻合良好;洼陷模型、Marmousi模型以及实际数据的反演结果表明加入预测低频后反演质量得到显著提高,并且对处理含较大噪声的数据也有很好的效果。
  • 加载中
  • [1]

    Tarantola A. Linearized inversion of seismic reflection data[J]. Geophysical Prospecting, 1984, 32(6):998-1015.

    [2]

    Wu R S, Luo J, Wu B. Seismic envelope inversion and modulation signal model[J]. Geophysics, 2014, 79(3):WA13-WA24.

    [3]

    Bo?mann F, Ma J. Asymmetric chirplet transform for sparse representation of seismic data[J]. Geophysics, 2015, 80(6):WD89-WD100.

    [4]

    Shin C, Cha Y H. Waveform inversion in the Laplace domain[J]. Geophysical Journal International, 2008, 173(3):922-931.

    [5]

    Li Y E, Demanet L. Full-waveform inversion with extrapolated low-frequency data[J]. Geophysics, 2016, 81(6):R339-R348.

    [6]

    Hu W. FWI without low frequency data-beat tone inversion[C]// SEG Technical Program Expanded Abstracts 2014,Society of Exploration Geophysicists, 2014:1116-1120.

    [7]

    刘张聚, 童思友, 方云峰, 等. 基于时域加权的拉普拉斯—频率域弹性波全波形反演[J]. 石油地球物理勘探, 2021, 56(2):302-312.

    [8]

    Liu Z J, Tong S Y, Fang Y F, el at. Full waveform inversion of elastic wave in Laplace frequency domain based on time domain weighting[J] Oil Geophysical Prospecting, 2021, 56(2):302-312.

    [9]

    Jin Y, Hu W, Wu X, et al. Learn low wavenumber information in FWI via deep inception based convolutional networks[C]// 2018 SEG International Exposition and Annual Meeting,OnePetro, 2018.

    [10]

    Sun H, Demanet L. Low frequency extrapolation with deep learning[C]// SEG Technical Program Expanded Abstracts 2018,Society of Exploration Geophysicists, 2018:2011-2015.

    [11]

    Ovcharenko O, Kazei V, Kalita M, et al. Deep learning for low-frequency extrapolation from multioffset seismic data[J]. Geophysics, 2019, 84(6):R989-R1001.

    [12]

    Ovcharenko O, Kazei V, Peter D, et al. Transfer learning for low frequency extrapolation from shot gathers for FWI applications[C]// 81st EAGE Conference and Exhibition 2019,European Association of Geoscientists & Engineers, 2019(1):1-5.

    [13]

    Sun H, Demanet L. Deep learning for low frequency extrapolation of multicomponent data in elastic full waveform inversion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-11.

    [14]

    Fang J, Zhou H, Elita Li Y, et al. Data-driven low-frequency signal recovery using deep-learning predictions in full-waveform inversion[J]. Geophysics, 2020, 85(6):A37-A43.

    [15]

    Hu W, Jin Y, Wu X, et al. Progressive transfer learning for low-frequency data prediction in full waveform inversion[J]. Geophysics, 2021, 86(4):1-82.

    [16]

    Mousavi A, Baraniuk R G. Learning to invert:Signal recovery via deep convolutional networks[C]// 2017 IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP),IEEE, 2017:2272-2276.

    [17]

    Ronneberger O, Fischer P, Brox T. U-net:Convolutional networks for biomedical image segmentation[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention,Springer,Cham, 2015:234-241.

    [18]

    Zeiler M D. Adadelta:an adaptive learning rate method[J]. Computer Science, 2012:1-6.

    [19]

    Bunks C, Saleck F M, Zaleski S, et al. Multiscale seismic waveform inversion[J]. Geophysics, 1995, 60(5):1457-1473.

  • 加载中
计量
  • 文章访问数:  917
  • PDF下载数:  69
  • 施引文献:  0
出版历程
收稿日期:  2022-03-22
修回日期:  2023-04-20
刊出日期:  2023-04-27

目录