Frequency-domain 2D seismic forward modeling method based on the LSCG method and the wavenumber compensation
-
摘要: 在地震勘探中,地震正演模拟是非常重要的技术。与时间域正演相比,频率域正演速度快,计算效率高。如何高效准确地完成频率域正演计算是目前该领域的一个重要问题。数值频散问题和如何提高计算效率降低求解分解阻抗内存占用量一直是频率域正演所需要解决的问题。与传统的直接法求解阻抗矩阵的频率域正演方法不同,本文采用最小二乘共轭梯度法(LSCG法)求解阻抗矩阵进行频率域正演,并提出了一种波数补偿的表达式来压制数值频散现象。经过简单模型和复杂模型的数值测试,采用最小二乘共轭梯度法(LSCG法)求解阻抗矩阵进行频率域正演能够有效降低计算时间,且采用波数补偿的频率域正演方法能够有效压制数值频散现象,提高波场模拟精度。Abstract: The seismic forward modeling technique is critical to seismic exploration.Moreover,it shows a faster rate and higher calculation efficiency in the frequency domain than in the time domain.Presently,there is a need to complete the forward calculation in the frequency domain efficiently and accurately.The specific problems include the numerical dispersion and the high memory consumption for calculating and decomposing impedance,which should be reduced by improving the calculation efficiency.Different from the conventional direct method,this study adopted the least-squares conjugate gradient (LSCG) method used to determine the impedance matrix for the frequency-domain forward modeling and proposed an expression for wavenumber compensation to suppress the numerical dispersion.The numerical tests of simple and complex models show that the LSCG method can effectively reduce the calculation time and that the frequency-domain forward modeling method based on wavenumber compensation can effectively suppress the numerical dispersion and thus improve the precision of wave field simulation.
-
-
[1] 陈可洋. 各向异性弹性介质方向行波波场分离正演数值模拟[J]. 岩性油气藏, 2014, 26(5):91-96.
[2] Cheng K Y. Numerical simulation of forward modeling of wavefield separation of directional traveling waves in anisotropic elastic media[J]. Lithologic Reservoirs, 2014, 26(5):91-96.
[3] 苏巍. 河流相砂岩储层地震响应特征与识别技术研究[D]. 长春: 吉林大学, 2007.;Su W. A study on seismic response characteristic and identification technology of fluvial sandstone reservoir[D]. Changchun: Jilin University, 2007.
[4] Lysmer J, Drake L A. A finite element method for seismology[J]. Methods in Computational Physics:Advances in Research and Applications, 1972, 11:181-216.
[5] Shin C S. Nonlinear elastic wave Inversion by Blocky Parameterization[D]. Tulsa: University of Tulsa, 1988.
[6] Jo C, Shin C, Suh J. An optimal 9-point finite-difference frequency space 2-D scalar wave extrapolator[J]. Geophysics, 1996, 61(2):529-537.
[7] Min J, Shin C, Kwon B, et al. Improved frequency-domain elastic wave modeing using weighted-averaging difference operators[J]. Geophysics, 2000, 65(3):884-895.
[8] Stekl I, Pratt K G. Frequency-domain finite accurate difference visco-elastic modeing by using rotated operators[J]. Geophysics, 1998, 63(5):1779-1794.
[9] Hustedt B, Opert S, Virieux J. Mixed-grid and staggered grid finite-difference methods for frequency-domain acoustic wave modeling[J]. Geophysics, 2004, 157(3):1269-1296.
[10] Paige C C, Saunders M A. LSQR:An algorithm for sparse liner equation and sparse least squares[J]. ACM Transaction Mathematical Software, 1982, 8(1):43-71.
[11] Bjorck A, Duff I S. A direct method for the solution of sparse liner least squares problems[J]. Linear Algebra and its Applications, 1980, 34(1):43-67.
[12] 张京思, 揣媛媛, 边立恩. 正演模拟技术在渤海油田 X 井区砂体连通性研究中的应用[J]. 岩性油气藏, 2016, 28(3):127-132.
[13] Zhang J S, Tuan Y Y, Bian L E. Application of forward modeling to study of sand body connectivityin X well field of Bohai Oilfield[J]. Lithologic Reservoirs, 2016, 28(3):127-132.
[14] 冯德山, 王向宇. 基于卷积完全匹配层的旋转交错网格高阶差分法模拟弹性波传播[J]. 物探与化探, 2018, 42(4):766-776.
[15] Feng D S, Wang X Y. Elastic wave propagation simulation in anisotropic media and random media using high-order difference method of rotation staggered grids based on convolutional perfectly matched layer[J]. Geophysical and Geochemical Exploration, 2018, 42( 4) :766-776.
[16] 袁茂林, 蒋福友, 杨鸿飞, 等. 高斯束线性正演模拟方法研究[J]. 物探与化探, 2017, 41(5):881-889.
[17] Yuan M L, Jiang F Y, Yang H F, et al. Gaussian-beam linear forward modeling[J]. Geophysical and Geochemical Exploration, 2017, 41(5):881-889.
[18] 李胜军, 刘伟方, 高建虎. 正演模拟技术在碳酸盐岩溶洞响应特征研究中的应用[J]. 岩性油气藏, 2011, 23(4):106-109.
[19] Li S J, Liu W F, Gao J H. Application of forward modeling to research of carbonate cave response[J]. Lithologic Reservoirs, 2011, 23(4):106-109.
[20] 王光文, 王海燕, 李洪强, 等. 地震正演技术在深反射地震剖面探测中的应用[J]. 物探与化探, 2021, 45(4):970-980.
[21] Wang G W, Wang H Y, Li H Q, et al. Application of seismic forward simulation technology in deep reflection seismic profile detection[J]. Geophysical and Geochemical Exploration, 2021, 45( 4) :970-980.
[22] 董良国, 李培明. 地震波传播数值模拟中的频散问题[J]. 天然气工业, 2004, 24(6):53-56.
[23] Dong L G, Li P M. Dispersion problem in numerical simulation of seismic wave propagation[J]. Natural Gas Industry, 2004, 24(6):53-56.
[24] 曹书红, 陈景波. 声波方程频率域高精度正演的17点格式及数值实现[J]. 地球物理学报, 2012, 55(10):3440-3449.
[25] Cao S H, Chen J B. A 17-point Scheme and its numerical implementation for high-accuracy modeling of frequency-domain acoustic equation[J]. Chinese Journal of Geophysics, 2012, 55(10):3440-3449.
-
计量
- 文章访问数: 1042
- PDF下载数: 228
- 施引文献: 0