中国自然资源航空物探遥感中心主办
地质出版社出版

基于谱反演方法的叠后纵波阻抗反演

邢文军, 曹思远, 陈思远, 孙耀光. 2023. 基于谱反演方法的叠后纵波阻抗反演. 物探与化探, 47(2): 429-437. doi: 10.11720/wtyht.2023.1222
引用本文: 邢文军, 曹思远, 陈思远, 孙耀光. 2023. 基于谱反演方法的叠后纵波阻抗反演. 物探与化探, 47(2): 429-437. doi: 10.11720/wtyht.2023.1222
XING Wen-Jun, CAO Si-Yuan, CHEN Si-Yuan, SUN Yao-Guang. 2023. Post-stack P-wave impedance inversion based on spectral inversion. Geophysical and Geochemical Exploration, 47(2): 429-437. doi: 10.11720/wtyht.2023.1222
Citation: XING Wen-Jun, CAO Si-Yuan, CHEN Si-Yuan, SUN Yao-Guang. 2023. Post-stack P-wave impedance inversion based on spectral inversion. Geophysical and Geochemical Exploration, 47(2): 429-437. doi: 10.11720/wtyht.2023.1222

基于谱反演方法的叠后纵波阻抗反演

  • 基金项目:

    国家重点研发计划项目(2017YFB0202900)

详细信息
    作者简介: 刑文军(1978-),男,河北唐山人,高级工程师,在读博士,硕士毕业于中国石油大学(华东),主要从事地震反演等地震地质综合研究工作
  • 中图分类号: P631.4

Post-stack P-wave impedance inversion based on spectral inversion

  • 提出一种基于谱反演方法的叠后地震数据纵波阻抗反演算法,用于提高地震反演精度。谱反演在地震高分辨率和反射系数反演中应用广泛,其基于反射系数的奇偶分解,能降低薄层之间的调谐效应,使反演数据体的分辨率得以提高,而由反射系数计算纵波阻抗的过程不适定,分步进行纵波阻抗反演会引入较大的累积误差。本研究提出基于谱反演方法的叠后纵波阻抗反演算法,引入TV正则化约束目标方程,通过迭代求解,可直接得到相对阻抗,然后同预先建立的低频模型进行频率域融合得到绝对阻抗。模型和实际数据说明,相比基于稀疏脉冲反褶积的阻抗反演,本文提出的方法反演分辨率较高,更有利于后续储层预测等研究的开展。
  • 加载中
  • [1]

    刘喜武, 年静波, 吴海波. 几种地震波阻抗反演方法的比较分析与综合应用[J]. 世界地质, 2005, 24(3):270-275.

    [2]

    Liu X W, Nian J B, Wu H B. Comparison of seismic impedance inversion methods and an application case[J]. Global Geology, 2005, 24(3):270-275.

    [3]

    Geyer C J. Practical Markov chain Monte Carlo[J]. Statistical Science, 1992:473-483.

    [4]

    张广智, 王丹阳, 印兴耀, 等. 基于MCMC的叠前地震反演方法研究[J]. 地球物理学报, 2011, 54(11):2926-2932.

    [5]

    Zhang G Z, Wang D Y, Yin X Y, et al. Study on prestack seismic inversion using Markov Chain Monte Carlo[J]. Chinese Journal of Geophysics, 2011, 54(11):2926-2932.

    [6]

    Vestergaard P D, Mosegaard K. Inversion of post-stack seismic data using simulated annealing[J]. Geophysical Prospecting, 1991, 39(5):613-624.

    [7]

    Haas A, Dubrule O. Geostatistical inversion:a sequential method of stochastic reservoir modeling constrained by seismic data[J]. First Break, 1994, 12(11):561-569.

    [8]

    Le Ravalec M, Noetinger B, Hu L Y. The FFT moving average(FFT-MA) generator:An efficient numerical method for generating and conditioning Gaussian simulations[J]. Mathematical Geology, 2000, 32(6):701-723.

    [9]

    王保丽, 印兴耀, 丁龙翔, 等. 基于FFT-MA谱模拟的快速随机反演方法研究. 地球物理学报, 2015, 58(2):664-673.

    [10]

    Wang B L, Yin X Y, Ding L X, et al. Study of fast stochastic inversion based on FFT-MA spectrum simulation[J]. Chinese Journal of Geophysics, 2015, 58(2):664-673.

    [11]

    王治强, 曹思远, 陈红灵, 等. 基于TV约束和Toeplitz矩阵分解的波阻抗反演[J]. 石油地球物理勘探, 2017, 52(6):1193-1199.

    [12]

    Wang Z Q, Cao S Y, Chen H L, et al. Wave impedance inversion based on TV regularization and Toeplitz-sparse matrix factorization[J]. Oil Geophysical Prospecting, 2017, 52(6):1193-1199.

    [13]

    Cooke D A, Schneider W A. Generalized linear inversion of reflection seismic data[J]. Geophysics, 1983, 48(6):665-676.

    [14]

    Lancaster S, Whitcombe D. Fast-track “colored” inversion[C]// SEG Technical Program Expanded Abstracts, 2000:1572-1575.

    [15]

    Taylor H L, Banks S C, Mocoy J F. Deconvolution with the L1-norm[J]. Geophysics, 1979, 44(1):39-52.

    [16]

    夏红敏, 刘兰锋, 张显辉, 等. 地震数据谱反演压缩感知算法实现及应用[J]. 石油地球物理勘探, 2021, 56(2):295-301.

    [17]

    Xia H M, Liu L F, Zhang X H, et al. Implementation and application of compressed sensing algorithm for seismic spectrum inversion[J]. Oil Geophysical Prospecting, 2021, 56(2):295-301.

    [18]

    宋磊, 印兴耀, 宗兆云, 等. 基于先验约束的深度学习地震波阻抗反演方法[J]. 石油地球物理勘探, 2021, 56(4):716-727.

    [19]

    Song L, Yin X Y, Zong Z Y, et al. Deep learning seismic impedance inversion based on prior constraints[J]. Oil Geophysical Prospecting, 2021, 56(4):716-727.

    [20]

    王泽峰, 许辉群, 杨梦琼, 等. 时域卷积神经网络地震波阻抗反演因素影响的研究[J]. 地球物理学进展, 2022, 37(5):280-289.

    [21]

    Wang Z F, Xu H Q, Yang M Q, et al. Study on the influence of preprocessing and hyperparameters on Temporal convolutional network seismic impedance inversion[J]. Progress in Geophysics, 2022, 37(5):280-289.

    [22]

    印兴耀, 刘晓晶, 吴国忱, 等. 模型约束基追踪反演方法[J]. 石油物探, 2016, 55(1):115-122.

    [23]

    Yin X Y, Liu X J, Wu G C, et al. Basis pursuit inversion method under model constraint[J]. Geophysical Prospecting for Petroleum, 2016, 55(1):115-122.

    [24]

    边国柱, 张立群. 地震数据的谱白化处理[J]. 石油物探, 1986, 25(2):26-33.

    [25]

    Bian G Z, Zhang L Q. Spectral whitening of seismic data[J]. Geophysical Prospecting for Petroleum, 1986, 25(2):26-33.

    [26]

    孙雷鸣, 曾维辉, 方中于. 地震薄层反射系数谱反演算法研究及应用[J]. 物探化探计算技术, 2014, 36(4):462-470.

    [27]

    Sun L M, Zeng W H, Fang Z Y. Thin-bed reflectivity inversion and seismic application[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2014, 36(4):462-470.

    [28]

    迟唤昭, 刘财, 单玄龙, 等. 谱反演方法在致密薄层砂体预测中的应用研究[J]. 石油物探, 2015, 54(3):337-344.

    [29]

    Chi H Z, Liu C, Shan X L, et al. Application of spectral inversion for tight thin-bed sand body prediction[J]. Geophysical Prospecting for Petroleum, 2015, 54(3):337-344.

    [30]

    Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306.

    [31]

    Wang Y H. Inverse Q-filter for seismic resolution enhancement[J]. Geophysics, 2006, 71(3):V51-V60.

    [32]

    Chen S Y, Cao S Y, Sun Y G, et al. Nonstationary spectral inversion of seismic data[C] // SEG Technical Program Expanded Abstracts, 2021:2934-2938.

    [33]

    Wang L Q, Zhou H, Wang Y F, et al. Three-parameter prestack seismic inversion based on L1-2 minimization[J]. Geophysics, 2019, 84(5):R753-R766.

    [34]

    Liu J, Zhang J, Huang Z. Accurate estimation of acoustic impedance based on spectral inversion[J]. Geophysical Prospecting, 2018, 66(1):169-181.

    [35]

    Boyd S, Parikh N, Chu E. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends in Machine Learning, 2010, 3(1):1-122.

    [36]

    Martin G S, Wiley R, Marfurt K J. Marmousi2:An elastic upgrade for Marmousi[J]. Lead. Edge, 2006, 25(2):156-166.

  • 加载中
计量
  • 文章访问数:  956
  • PDF下载数:  170
  • 施引文献:  0
出版历程
收稿日期:  2022-05-18
修回日期:  2023-04-20
刊出日期:  2023-04-27

目录